static int computeCountersSampleSize(SFLReceiver *receiver, SFL_COUNTERS_SAMPLE_TYPE *cs) { SFLCounters_sample_element *elem = cs->elements; #ifdef SFL_USE_32BIT_INDEX u_int siz = 24; /* tag, length, sequence_number, ds_class, ds_index, number of elements */ #else u_int siz = 20; /* tag, length, sequence_number, source_id, number of elements */ #endif cs->num_elements = 0; /* we're going to count them again even if this was set by the client */ for(; elem != NULL; elem = elem->nxt) { u_int elemSiz = 0; cs->num_elements++; siz += 8; /* tag, length */ switch(elem->tag) { case SFLCOUNTERS_GENERIC: elemSiz = sizeof(elem->counterBlock.generic); break; case SFLCOUNTERS_ETHERNET: elemSiz = sizeof(elem->counterBlock.ethernet); break; case SFLCOUNTERS_TOKENRING: elemSiz = sizeof(elem->counterBlock.tokenring); break; case SFLCOUNTERS_VG: elemSiz = sizeof(elem->counterBlock.vg); break; case SFLCOUNTERS_VLAN: elemSiz = sizeof(elem->counterBlock.vlan); break; default: sflError(receiver, "unexpected counters_tag"); return -1; break; } // cache the element size, and accumulate it into the overall FlowSample size elem->length = elemSiz; siz += elemSiz; } return siz; }
static int computeCountersSampleSize(SFLReceiver *receiver, SFL_COUNTERS_SAMPLE_TYPE *cs) { SFLCounters_sample_element *elem; uint32_t elemSiz; #ifdef SFL_USE_32BIT_INDEX uint siz = 24; /* tag, length, sequence_number, ds_class, ds_index, number of elements */ #else uint32_t siz = 20; /* tag, length, sequence_number, source_id, number of elements */ #endif cs->num_elements = 0; /* we're going to count them again even if this was set by the client */ for( elem = cs->elements; elem != NULL; elem = elem->nxt) { cs->num_elements++; siz += 8; /* tag, length */ elemSiz = 0; /* here we are assuming that the structure fields are not expanded to be 64-bit aligned, because then the sizeof(struct) would be larger than the wire-encoding. */ switch(elem->tag) { case SFLCOUNTERS_GENERIC: elemSiz = sizeof(elem->counterBlock.generic); break; case SFLCOUNTERS_ETHERNET: elemSiz = sizeof(elem->counterBlock.ethernet); break; case SFLCOUNTERS_TOKENRING: elemSiz = sizeof(elem->counterBlock.tokenring); break; case SFLCOUNTERS_VG: elemSiz = sizeof(elem->counterBlock.vg); break; case SFLCOUNTERS_VLAN: elemSiz = sizeof(elem->counterBlock.vlan); break; case SFLCOUNTERS_PROCESSOR: elemSiz = sizeof(elem->counterBlock.processor); break; case SFLCOUNTERS_HOST_HID: elemSiz = hostIdEncodingLength(&elem->counterBlock.host_hid); break; case SFLCOUNTERS_HOST_PAR: elemSiz = 8 /*sizeof(elem->counterBlock.host_par)*/; break; case SFLCOUNTERS_ADAPTORS: elemSiz = adaptorListEncodingLength(elem->counterBlock.adaptors); break; case SFLCOUNTERS_HOST_CPU: elemSiz = 68 /*sizeof(elem->counterBlock.host_cpu)*/; break; case SFLCOUNTERS_HOST_MEM: elemSiz = 72 /*sizeof(elem->counterBlock.host_mem)*/ ; break; case SFLCOUNTERS_HOST_DSK: elemSiz = 52 /*sizeof(elem->counterBlock.host_dsk)*/; break; case SFLCOUNTERS_HOST_NIO: elemSiz = 40 /*sizeof(elem->counterBlock.host_nio)*/; break; case SFLCOUNTERS_HOST_VRT_NODE: elemSiz = 28 /*sizeof(elem->counterBlock.host_vrt_node)*/; break; case SFLCOUNTERS_HOST_VRT_CPU: elemSiz = 12 /*sizeof(elem->counterBlock.host_vrt_cpu)*/; break; case SFLCOUNTERS_HOST_VRT_MEM: elemSiz = 16 /*sizeof(elem->counterBlock.host_vrt_mem)*/; break; case SFLCOUNTERS_HOST_VRT_DSK: elemSiz = 52 /*sizeof(elem->counterBlock.host_vrt_dsk)*/; break; case SFLCOUNTERS_HOST_VRT_NIO: elemSiz = 40 /*sizeof(elem->counterBlock.host_vrt_nio)*/; break; default: { char errm[128]; sprintf(errm, "computeCounterSampleSize(): unexpected counters tag (%u)", elem->tag); sflError(receiver, errm); return -1; } break; } // cache the element size, and accumulate it into the overall FlowSample size elem->length = elemSiz; siz += elemSiz; } return siz; }
static int computeFlowSampleSize(SFLReceiver *receiver, SFL_FLOW_SAMPLE_TYPE *fs) { SFLFlow_sample_element *elem; uint32_t elemSiz; #ifdef SFL_USE_32BIT_INDEX uint siz = 52; /* tag, length, sequence_number, ds_class, ds_index, sampling_rate, sample_pool, drops, inputFormat, input, outputFormat, output, number of elements */ #else uint32_t siz = 40; /* tag, length, sequence_number, source_id, sampling_rate, sample_pool, drops, input, output, number of elements */ #endif fs->num_elements = 0; /* we're going to count them again even if this was set by the client */ for(elem = fs->elements; elem != NULL; elem = elem->nxt) { fs->num_elements++; siz += 8; /* tag, length */ elemSiz = 0; switch(elem->tag) { case SFLFLOW_HEADER: elemSiz = 16; /* header_protocol, frame_length, stripped, header_length */ elemSiz += ((elem->flowType.header.header_length + 3) / 4) * 4; /* header, rounded up to nearest 4 bytes */ break; case SFLFLOW_ETHERNET: elemSiz = sizeof(SFLSampled_ethernet); break; case SFLFLOW_IPV4: elemSiz = sizeof(SFLSampled_ipv4); break; case SFLFLOW_IPV6: elemSiz = sizeof(SFLSampled_ipv6); break; case SFLFLOW_EX_SWITCH: elemSiz = sizeof(SFLExtended_switch); break; case SFLFLOW_EX_ROUTER: elemSiz = routerEncodingLength(&elem->flowType.router); break; case SFLFLOW_EX_GATEWAY: elemSiz = gatewayEncodingLength(&elem->flowType.gateway); break; case SFLFLOW_EX_USER: elemSiz = userEncodingLength(&elem->flowType.user); break; case SFLFLOW_EX_URL: elemSiz = urlEncodingLength(&elem->flowType.url); break; case SFLFLOW_EX_MPLS: elemSiz = mplsEncodingLength(&elem->flowType.mpls); break; case SFLFLOW_EX_NAT: elemSiz = natEncodingLength(&elem->flowType.nat); break; case SFLFLOW_EX_MPLS_TUNNEL: elemSiz = mplsTunnelEncodingLength(&elem->flowType.mpls_tunnel); break; case SFLFLOW_EX_MPLS_VC: elemSiz = mplsVcEncodingLength(&elem->flowType.mpls_vc); break; case SFLFLOW_EX_MPLS_FTN: elemSiz = mplsFtnEncodingLength(&elem->flowType.mpls_ftn); break; case SFLFLOW_EX_MPLS_LDP_FEC: elemSiz = mplsLdpFecEncodingLength(&elem->flowType.mpls_ldp_fec); break; case SFLFLOW_EX_VLAN_TUNNEL: elemSiz = vlanTunnelEncodingLength(&elem->flowType.vlan_tunnel); break; default: sflError(receiver, "unexpected packet_data_tag"); return -1; break; } // cache the element size, and accumulate it into the overall FlowSample size elem->length = elemSiz; siz += elemSiz; } return siz; }
int sfl_receiver_writeCountersSample(SFLReceiver *receiver, SFL_COUNTERS_SAMPLE_TYPE *cs) { int packedSize; SFLCounters_sample_element *elem; if(cs == NULL) return -1; // if the sample pkt is full enough so that this sample might put // it over the limit, then we should send it now. if((packedSize = computeCountersSampleSize(receiver, cs)) == -1) return -1; // check in case this one sample alone is too big for the datagram // in fact - if it is even half as big then we should ditch it. Very // important to avoid overruning the packet buffer. if(packedSize > (int)(receiver->sFlowRcvrMaximumDatagramSize / 2)) { sflError(receiver, "counters sample too big for datagram"); return -1; } if((receiver->sampleCollector.pktlen + packedSize) >= receiver->sFlowRcvrMaximumDatagramSize) sendSample(receiver); receiver->sampleCollector.numSamples++; #ifdef SFL_USE_32BIT_INDEX putNet32(receiver, SFLCOUNTERS_SAMPLE_EXPANDED); #else putNet32(receiver, SFLCOUNTERS_SAMPLE); #endif putNet32(receiver, packedSize - 8); // tag and length not included putNet32(receiver, cs->sequence_number); #ifdef SFL_USE_32BIT_INDEX putNet32(receiver, cs->ds_class); putNet32(receiver, cs->ds_index); #else putNet32(receiver, cs->source_id); #endif putNet32(receiver, cs->num_elements); for(elem = cs->elements; elem != NULL; elem = elem->nxt) { putNet32(receiver, elem->tag); putNet32(receiver, elem->length); // length cached in computeCountersSampleSize() switch(elem->tag) { case SFLCOUNTERS_GENERIC: putGenericCounters(receiver, &(elem->counterBlock.generic)); break; case SFLCOUNTERS_ETHERNET: // all these counters are 32-bit putNet32_run(receiver, &elem->counterBlock.ethernet, sizeof(elem->counterBlock.ethernet) / 4); break; case SFLCOUNTERS_TOKENRING: // all these counters are 32-bit putNet32_run(receiver, &elem->counterBlock.tokenring, sizeof(elem->counterBlock.tokenring) / 4); break; case SFLCOUNTERS_VG: putNet32(receiver, elem->counterBlock.vg.dot12InHighPriorityFrames); putNet64(receiver, elem->counterBlock.vg.dot12InHighPriorityOctets); putNet32(receiver, elem->counterBlock.vg.dot12InNormPriorityFrames); putNet64(receiver, elem->counterBlock.vg.dot12InNormPriorityOctets); putNet32(receiver, elem->counterBlock.vg.dot12InIPMErrors); putNet32(receiver, elem->counterBlock.vg.dot12InOversizeFrameErrors); putNet32(receiver, elem->counterBlock.vg.dot12InDataErrors); putNet32(receiver, elem->counterBlock.vg.dot12InNullAddressedFrames); putNet32(receiver, elem->counterBlock.vg.dot12OutHighPriorityFrames); putNet64(receiver, elem->counterBlock.vg.dot12OutHighPriorityOctets); putNet32(receiver, elem->counterBlock.vg.dot12TransitionIntoTrainings); putNet64(receiver, elem->counterBlock.vg.dot12HCInHighPriorityOctets); putNet64(receiver, elem->counterBlock.vg.dot12HCInNormPriorityOctets); putNet64(receiver, elem->counterBlock.vg.dot12HCOutHighPriorityOctets); break; case SFLCOUNTERS_VLAN: putNet32(receiver, elem->counterBlock.vlan.vlan_id); putNet64(receiver, elem->counterBlock.vlan.octets); putNet32(receiver, elem->counterBlock.vlan.ucastPkts); putNet32(receiver, elem->counterBlock.vlan.multicastPkts); putNet32(receiver, elem->counterBlock.vlan.broadcastPkts); putNet32(receiver, elem->counterBlock.vlan.discards); break; case SFLCOUNTERS_PROCESSOR: putNet32(receiver, elem->counterBlock.processor.five_sec_cpu); putNet32(receiver, elem->counterBlock.processor.one_min_cpu); putNet32(receiver, elem->counterBlock.processor.five_min_cpu); putNet64(receiver, elem->counterBlock.processor.total_memory); putNet64(receiver, elem->counterBlock.processor.free_memory); break; case SFLCOUNTERS_HOST_HID: putString(receiver, &elem->counterBlock.host_hid.hostname); put128(receiver, elem->counterBlock.host_hid.uuid); putNet32(receiver, elem->counterBlock.host_hid.machine_type); putNet32(receiver, elem->counterBlock.host_hid.os_name); putString(receiver, &elem->counterBlock.host_hid.os_release); break; case SFLCOUNTERS_HOST_PAR: putNet32(receiver, elem->counterBlock.host_par.dsClass); putNet32(receiver, elem->counterBlock.host_par.dsIndex); break; case SFLCOUNTERS_ADAPTORS: putAdaptorList(receiver, elem->counterBlock.adaptors); break; case SFLCOUNTERS_HOST_CPU: putNetFloat(receiver, elem->counterBlock.host_cpu.load_one); putNetFloat(receiver, elem->counterBlock.host_cpu.load_five); putNetFloat(receiver, elem->counterBlock.host_cpu.load_fifteen); putNet32(receiver, elem->counterBlock.host_cpu.proc_run); putNet32(receiver, elem->counterBlock.host_cpu.proc_total); putNet32(receiver, elem->counterBlock.host_cpu.cpu_num); putNet32(receiver, elem->counterBlock.host_cpu.cpu_speed); putNet32(receiver, elem->counterBlock.host_cpu.uptime); putNet32(receiver, elem->counterBlock.host_cpu.cpu_user); putNet32(receiver, elem->counterBlock.host_cpu.cpu_nice); putNet32(receiver, elem->counterBlock.host_cpu.cpu_system); putNet32(receiver, elem->counterBlock.host_cpu.cpu_idle); putNet32(receiver, elem->counterBlock.host_cpu.cpu_wio); putNet32(receiver, elem->counterBlock.host_cpu.cpu_intr); putNet32(receiver, elem->counterBlock.host_cpu.cpu_sintr); putNet32(receiver, elem->counterBlock.host_cpu.interrupts); putNet32(receiver, elem->counterBlock.host_cpu.contexts); break; case SFLCOUNTERS_HOST_MEM: putNet64(receiver, elem->counterBlock.host_mem.mem_total); putNet64(receiver, elem->counterBlock.host_mem.mem_free); putNet64(receiver, elem->counterBlock.host_mem.mem_shared); putNet64(receiver, elem->counterBlock.host_mem.mem_buffers); putNet64(receiver, elem->counterBlock.host_mem.mem_cached); putNet64(receiver, elem->counterBlock.host_mem.swap_total); putNet64(receiver, elem->counterBlock.host_mem.swap_free); putNet32(receiver, elem->counterBlock.host_mem.page_in); putNet32(receiver, elem->counterBlock.host_mem.page_out); putNet32(receiver, elem->counterBlock.host_mem.swap_in); putNet32(receiver, elem->counterBlock.host_mem.swap_out); break; case SFLCOUNTERS_HOST_DSK: putNet64(receiver, elem->counterBlock.host_dsk.disk_total); putNet64(receiver, elem->counterBlock.host_dsk.disk_free); putNet32(receiver, elem->counterBlock.host_dsk.part_max_used); putNet32(receiver, elem->counterBlock.host_dsk.reads); putNet64(receiver, elem->counterBlock.host_dsk.bytes_read); putNet32(receiver, elem->counterBlock.host_dsk.read_time); putNet32(receiver, elem->counterBlock.host_dsk.writes); putNet64(receiver, elem->counterBlock.host_dsk.bytes_written); putNet32(receiver, elem->counterBlock.host_dsk.write_time); break; case SFLCOUNTERS_HOST_NIO: putNet64(receiver, elem->counterBlock.host_nio.bytes_in); putNet32(receiver, elem->counterBlock.host_nio.pkts_in); putNet32(receiver, elem->counterBlock.host_nio.errs_in); putNet32(receiver, elem->counterBlock.host_nio.drops_in); putNet64(receiver, elem->counterBlock.host_nio.bytes_out); putNet32(receiver, elem->counterBlock.host_nio.pkts_out); putNet32(receiver, elem->counterBlock.host_nio.errs_out); putNet32(receiver, elem->counterBlock.host_nio.drops_out); break; case SFLCOUNTERS_HOST_VRT_NODE: putNet32(receiver, elem->counterBlock.host_vrt_node.mhz); putNet32(receiver, elem->counterBlock.host_vrt_node.cpus); putNet64(receiver, elem->counterBlock.host_vrt_node.memory); putNet64(receiver, elem->counterBlock.host_vrt_node.memory_free); putNet32(receiver, elem->counterBlock.host_vrt_node.num_domains); break; case SFLCOUNTERS_HOST_VRT_CPU: putNet32(receiver, elem->counterBlock.host_vrt_cpu.state); putNet32(receiver, elem->counterBlock.host_vrt_cpu.cpuTime); putNet32(receiver, elem->counterBlock.host_vrt_cpu.nrVirtCpu); break; case SFLCOUNTERS_HOST_VRT_MEM: putNet64(receiver, elem->counterBlock.host_vrt_mem.memory); putNet64(receiver, elem->counterBlock.host_vrt_mem.maxMemory); break; case SFLCOUNTERS_HOST_VRT_DSK: putNet64(receiver, elem->counterBlock.host_vrt_dsk.capacity); putNet64(receiver, elem->counterBlock.host_vrt_dsk.allocation); putNet64(receiver, elem->counterBlock.host_vrt_dsk.available); putNet32(receiver, elem->counterBlock.host_vrt_dsk.rd_req); putNet64(receiver, elem->counterBlock.host_vrt_dsk.rd_bytes); putNet32(receiver, elem->counterBlock.host_vrt_dsk.wr_req); putNet64(receiver, elem->counterBlock.host_vrt_dsk.wr_bytes); putNet32(receiver, elem->counterBlock.host_vrt_dsk.errs); break; case SFLCOUNTERS_HOST_VRT_NIO: putNet64(receiver, elem->counterBlock.host_vrt_nio.bytes_in); putNet32(receiver, elem->counterBlock.host_vrt_nio.pkts_in); putNet32(receiver, elem->counterBlock.host_vrt_nio.errs_in); putNet32(receiver, elem->counterBlock.host_vrt_nio.drops_in); putNet64(receiver, elem->counterBlock.host_vrt_nio.bytes_out); putNet32(receiver, elem->counterBlock.host_vrt_nio.pkts_out); putNet32(receiver, elem->counterBlock.host_vrt_nio.errs_out); putNet32(receiver, elem->counterBlock.host_vrt_nio.drops_out); break; default: { char errm[128]; sprintf(errm, "unexpected counters tag (%u)", elem->tag); sflError(receiver, errm); return -1; } break; } } // sanity check assert(((u_char *)receiver->sampleCollector.datap - (u_char *)receiver->sampleCollector.data - receiver->sampleCollector.pktlen) == (uint32_t)packedSize); // update the pktlen receiver->sampleCollector.pktlen = (u_char *)receiver->sampleCollector.datap - (u_char *)receiver->sampleCollector.data; return packedSize; }
int sfl_receiver_writeFlowSample(SFLReceiver *receiver, SFL_FLOW_SAMPLE_TYPE *fs) { int packedSize; SFLFlow_sample_element *elem; if(fs == NULL) return -1; if((packedSize = computeFlowSampleSize(receiver, fs)) == -1) return -1; // check in case this one sample alone is too big for the datagram // in fact - if it is even half as big then we should ditch it. Very // important to avoid overruning the packet buffer. if(packedSize > (int)(receiver->sFlowRcvrMaximumDatagramSize / 2)) { sflError(receiver, "flow sample too big for datagram"); return -1; } // if the sample pkt is full enough so that this sample might put // it over the limit, then we should send it now before going on. if((receiver->sampleCollector.pktlen + packedSize) >= receiver->sFlowRcvrMaximumDatagramSize) sendSample(receiver); receiver->sampleCollector.numSamples++; #ifdef SFL_USE_32BIT_INDEX putNet32(receiver, SFLFLOW_SAMPLE_EXPANDED); #else putNet32(receiver, SFLFLOW_SAMPLE); #endif putNet32(receiver, packedSize - 8); // don't include tag and len putNet32(receiver, fs->sequence_number); #ifdef SFL_USE_32BIT_INDEX putNet32(receiver, fs->ds_class); putNet32(receiver, fs->ds_index); #else putNet32(receiver, fs->source_id); #endif putNet32(receiver, fs->sampling_rate); putNet32(receiver, fs->sample_pool); putNet32(receiver, fs->drops); #ifdef SFL_USE_32BIT_INDEX putNet32(receiver, fs->inputFormat); putNet32(receiver, fs->input); putNet32(receiver, fs->outputFormat); putNet32(receiver, fs->output); #else putNet32(receiver, fs->input); putNet32(receiver, fs->output); #endif putNet32(receiver, fs->num_elements); for(elem = fs->elements; elem != NULL; elem = elem->nxt) { putNet32(receiver, elem->tag); putNet32(receiver, elem->length); // length cached in computeFlowSampleSize() switch(elem->tag) { case SFLFLOW_HEADER: putNet32(receiver, elem->flowType.header.header_protocol); putNet32(receiver, elem->flowType.header.frame_length); putNet32(receiver, elem->flowType.header.stripped); putNet32(receiver, elem->flowType.header.header_length); /* the header */ memcpy(receiver->sampleCollector.datap, elem->flowType.header.header_bytes, elem->flowType.header.header_length); /* round up to multiple of 4 to preserve alignment */ receiver->sampleCollector.datap += ((elem->flowType.header.header_length + 3) / 4); break; case SFLFLOW_ETHERNET: putNet32(receiver, elem->flowType.ethernet.eth_len); putMACAddress(receiver, elem->flowType.ethernet.src_mac); putMACAddress(receiver, elem->flowType.ethernet.dst_mac); putNet32(receiver, elem->flowType.ethernet.eth_type); break; case SFLFLOW_IPV4: putNet32(receiver, elem->flowType.ipv4.length); putNet32(receiver, elem->flowType.ipv4.protocol); put32(receiver, elem->flowType.ipv4.src_ip.addr); put32(receiver, elem->flowType.ipv4.dst_ip.addr); putNet32(receiver, elem->flowType.ipv4.src_port); putNet32(receiver, elem->flowType.ipv4.dst_port); putNet32(receiver, elem->flowType.ipv4.tcp_flags); putNet32(receiver, elem->flowType.ipv4.tos); break; case SFLFLOW_IPV6: putNet32(receiver, elem->flowType.ipv6.length); putNet32(receiver, elem->flowType.ipv6.protocol); put128(receiver, elem->flowType.ipv6.src_ip.addr); put128(receiver, elem->flowType.ipv6.dst_ip.addr); putNet32(receiver, elem->flowType.ipv6.src_port); putNet32(receiver, elem->flowType.ipv6.dst_port); putNet32(receiver, elem->flowType.ipv6.tcp_flags); putNet32(receiver, elem->flowType.ipv6.priority); break; case SFLFLOW_EX_SWITCH: putSwitch(receiver, &elem->flowType.sw); break; case SFLFLOW_EX_ROUTER: putRouter(receiver, &elem->flowType.router); break; case SFLFLOW_EX_GATEWAY: putGateway(receiver, &elem->flowType.gateway); break; case SFLFLOW_EX_USER: putUser(receiver, &elem->flowType.user); break; case SFLFLOW_EX_URL: putUrl(receiver, &elem->flowType.url); break; case SFLFLOW_EX_MPLS: putMpls(receiver, &elem->flowType.mpls); break; case SFLFLOW_EX_NAT: putNat(receiver, &elem->flowType.nat); break; case SFLFLOW_EX_MPLS_TUNNEL: putMplsTunnel(receiver, &elem->flowType.mpls_tunnel); break; case SFLFLOW_EX_MPLS_VC: putMplsVc(receiver, &elem->flowType.mpls_vc); break; case SFLFLOW_EX_MPLS_FTN: putMplsFtn(receiver, &elem->flowType.mpls_ftn); break; case SFLFLOW_EX_MPLS_LDP_FEC: putMplsLdpFec(receiver, &elem->flowType.mpls_ldp_fec); break; case SFLFLOW_EX_VLAN_TUNNEL: putVlanTunnel(receiver, &elem->flowType.vlan_tunnel); break; default: sflError(receiver, "unexpected packet_data_tag"); return -1; break; } } // sanity check assert(((u_char *)receiver->sampleCollector.datap - (u_char *)receiver->sampleCollector.data - receiver->sampleCollector.pktlen) == (uint32_t)packedSize); // update the pktlen receiver->sampleCollector.pktlen = (u_char *)receiver->sampleCollector.datap - (u_char *)receiver->sampleCollector.data; return packedSize; }
int sfl_receiver_writeCountersSample(SFLReceiver *receiver, SFL_COUNTERS_SAMPLE_TYPE *cs) { int packedSize; if(cs == NULL) return -1; // if the sample pkt is full enough so that this sample might put // it over the limit, then we should send it now. if((packedSize = computeCountersSampleSize(receiver, cs)) == -1) return -1; // check in case this one sample alone is too big for the datagram // in fact - if it is even half as big then we should ditch it. Very // important to avoid overruning the packet buffer. if(packedSize > (int)(receiver->sFlowRcvrMaximumDatagramSize / 2)) { sflError(receiver, "counters sample too big for datagram"); return -1; } if((receiver->sampleCollector.pktlen + packedSize) >= receiver->sFlowRcvrMaximumDatagramSize) sendSample(receiver); receiver->sampleCollector.numSamples++; #ifdef SFL_USE_32BIT_INDEX putNet32(receiver, SFLCOUNTERS_SAMPLE_EXPANDED); #else putNet32(receiver, SFLCOUNTERS_SAMPLE); #endif putNet32(receiver, packedSize - 8); // tag and length not included putNet32(receiver, cs->sequence_number); #ifdef SFL_USE_32BIT_INDEX putNet32(receiver, cs->ds_class); putNet32(receiver, cs->ds_index); #else putNet32(receiver, cs->source_id); #endif putNet32(receiver, cs->num_elements); { SFLCounters_sample_element *elem = cs->elements; for(; elem != NULL; elem = elem->nxt) { putNet32(receiver, elem->tag); putNet32(receiver, elem->length); // length cached in computeCountersSampleSize() switch(elem->tag) { case SFLCOUNTERS_GENERIC: putGenericCounters(receiver, &(elem->counterBlock.generic)); break; case SFLCOUNTERS_ETHERNET: // all these counters are 32-bit putNet32_run(receiver, &elem->counterBlock.ethernet, sizeof(elem->counterBlock.ethernet) / 4); break; case SFLCOUNTERS_TOKENRING: // all these counters are 32-bit putNet32_run(receiver, &elem->counterBlock.tokenring, sizeof(elem->counterBlock.tokenring) / 4); break; case SFLCOUNTERS_VG: // mixed sizes putNet32(receiver, elem->counterBlock.vg.dot12InHighPriorityFrames); putNet64(receiver, elem->counterBlock.vg.dot12InHighPriorityOctets); putNet32(receiver, elem->counterBlock.vg.dot12InNormPriorityFrames); putNet64(receiver, elem->counterBlock.vg.dot12InNormPriorityOctets); putNet32(receiver, elem->counterBlock.vg.dot12InIPMErrors); putNet32(receiver, elem->counterBlock.vg.dot12InOversizeFrameErrors); putNet32(receiver, elem->counterBlock.vg.dot12InDataErrors); putNet32(receiver, elem->counterBlock.vg.dot12InNullAddressedFrames); putNet32(receiver, elem->counterBlock.vg.dot12OutHighPriorityFrames); putNet64(receiver, elem->counterBlock.vg.dot12OutHighPriorityOctets); putNet32(receiver, elem->counterBlock.vg.dot12TransitionIntoTrainings); putNet64(receiver, elem->counterBlock.vg.dot12HCInHighPriorityOctets); putNet64(receiver, elem->counterBlock.vg.dot12HCInNormPriorityOctets); putNet64(receiver, elem->counterBlock.vg.dot12HCOutHighPriorityOctets); break; case SFLCOUNTERS_VLAN: // mixed sizes putNet32(receiver, elem->counterBlock.vlan.vlan_id); putNet64(receiver, elem->counterBlock.vlan.octets); putNet32(receiver, elem->counterBlock.vlan.ucastPkts); putNet32(receiver, elem->counterBlock.vlan.multicastPkts); putNet32(receiver, elem->counterBlock.vlan.broadcastPkts); putNet32(receiver, elem->counterBlock.vlan.discards); break; default: sflError(receiver, "unexpected counters_tag"); return -1; break; } } } // sanity check assert(((u_char *)receiver->sampleCollector.datap - (u_char *)receiver->sampleCollector.data - receiver->sampleCollector.pktlen) == (u_int32_t)packedSize); // update the pktlen receiver->sampleCollector.pktlen = (u_char *)receiver->sampleCollector.datap - (u_char *)receiver->sampleCollector.data; return packedSize; }