Exemple #1
0
/*
 * sfs_bmap_get_sub_nolock - according entry pointer entp and index, find the index of indrect disk block
 *                           return the index of indrect disk block to ino_store. no lock protect
 * @sfs:      sfs file system
 * @entp:     the pointer of index of entry disk block
 * @index:    the index of block in indrect block
 * @create:   BOOL, if the block isn't allocated, if create = 1 the alloc a block,  otherwise just do nothing
 * @ino_store: 0 OR the index of already inused block or new allocated block.
 */
static int
sfs_bmap_get_sub_nolock(struct sfs_fs *sfs, uint32_t *entp, uint32_t index, bool create, uint32_t *ino_store) {
    assert(index < SFS_BLK_NENTRY);
    int ret;
    uint32_t ent, ino = 0;
    off_t offset = index * sizeof(uint32_t);  // the offset of entry in entry block
	// if entry block is existd, read the content of entry block into  sfs->sfs_buffer
    if ((ent = *entp) != 0) {
        if ((ret = sfs_rbuf(sfs, &ino, sizeof(uint32_t), ent, offset)) != 0) {
            return ret;
        }
        if (ino != 0 || !create) {
            goto out;
        }
    }
    else {
        if (!create) {
            goto out;
        }
		//if entry block isn't existd, allocated a entry block (for indrect block)
        if ((ret = sfs_block_alloc(sfs, &ent)) != 0) {
            return ret;
        }
    }

    if ((ret = sfs_block_alloc(sfs, &ino)) != 0) {
        goto failed_cleanup;
    }
    if ((ret = sfs_wbuf(sfs, &ino, sizeof(uint32_t), ent, offset)) != 0) {
        sfs_block_free(sfs, ino);
        goto failed_cleanup;
    }

out:
    if (ent != *entp) {
        *entp = ent;
    }
    *ino_store = ino;
    return 0;

failed_cleanup:
    if (ent != *entp) {
        sfs_block_free(sfs, ent);
    }
    return ret;
}
Exemple #2
0
/*
 * sfs_bmap_free_sub_nolock - set the entry item to 0 (free) in the indirect block
 */
static int
sfs_bmap_free_sub_nolock(struct sfs_fs *sfs, uint32_t ent, uint32_t index) {
    assert(sfs_block_inuse(sfs, ent) && index < SFS_BLK_NENTRY);
    int ret;
    uint32_t ino, zero = 0;
    off_t offset = index * sizeof(uint32_t);
    if ((ret = sfs_rbuf(sfs, &ino, sizeof(uint32_t), ent, offset)) != 0) {
        return ret;
    }
    if (ino != 0) {
        if ((ret = sfs_wbuf(sfs, &zero, sizeof(uint32_t), ent, offset)) != 0) {
            return ret;
        }
        sfs_block_free(sfs, ino);
    }
    return 0;
}
static int
sfs_bmap_get_sub_nolock(struct sfs_fs *sfs, uint32_t *entp, uint32_t index, bool create, uint32_t *ino_store) {
    assert(index < SFS_BLK_NENTRY);
    int ret;
    uint32_t ent, ino = 0;
    off_t offset = index * sizeof(uint32_t);
    if ((ent = *entp) != 0) {
        if ((ret = sfs_rbuf(sfs, &ino, sizeof(uint32_t), ent, offset)) != 0) {
            return ret;
        }
        if (ino != 0 || !create) {
            goto out;
        }
    }
    else {
        if (!create) {
            goto out;
        }
        if ((ret = sfs_block_alloc(sfs, &ent)) != 0) {
            return ret;
        }
    }

    if ((ret = sfs_block_alloc(sfs, &ino)) != 0) {
        goto failed_cleanup;
    }
    if ((ret = sfs_wbuf(sfs, &ino, sizeof(uint32_t), ent, offset)) != 0) {
        sfs_block_free(sfs, ino);
        goto failed_cleanup;
    }

out:
    if (ent != *entp) {
        *entp = ent;
    }
    *ino_store = ino;
    return 0;

failed_cleanup:
    if (ent != *entp) {
        sfs_block_free(sfs, ent);
    }
    return ret;
}
Exemple #4
0
/*
 * sfs_fsync - Force any dirty inode info associated with this file to stable storage.
 */
static int
sfs_fsync(struct inode *node) {
    struct sfs_fs *sfs = fsop_info(vop_fs(node), sfs);
    struct sfs_inode *sin = vop_info(node, sfs_inode);
    int ret = 0;
    if (sin->dirty) {
        lock_sin(sin);
        {
            if (sin->dirty) {
                sin->dirty = 0;
                if ((ret = sfs_wbuf(sfs, sin->din, sizeof(struct sfs_disk_inode), sin->ino, 0)) != 0) {
                    sin->dirty = 1;
                }
            }
        }
        unlock_sin(sin);
    }
    return ret;
}
Exemple #5
0
static int
sfs_fsync(struct inode *node) {
    struct sfs_fs *sfs = fsop_info(vop_fs(node), sfs);
    struct sfs_inode *sin = vop_info(node, sfs_inode);
    if (sin->din->nlinks == 0 || !sin->dirty) {
        return 0;
    }
    int ret;
    if ((ret = trylock_sin(sin)) != 0) {
        return ret;
    }
    if (sin->dirty) {
        sin->dirty = 0;
        if ((ret = sfs_wbuf(sfs, sin->din, sizeof(struct sfs_disk_inode), sin->ino, 0)) != 0) {
            sin->dirty = 1;
        }
    }
    unlock_sin(sin);
    return ret;
}
Exemple #6
0
static int
sfs_dirent_write_nolock(struct sfs_fs *sfs, struct sfs_inode *sin, int slot, uint32_t ino, const char *name) {
    assert(sin->din->type == SFS_TYPE_DIR && (slot >= 0 && slot <= sin->din->blocks));
    struct sfs_disk_entry *entry;
    if ((entry = kmalloc(sizeof(struct sfs_disk_entry))) == NULL) {
        return -E_NO_MEM;
    }
    memset(entry, 0, sizeof(struct sfs_disk_entry));

    if (ino != 0) {
        assert(strlen(name) <= SFS_MAX_FNAME_LEN);
        entry->ino = ino, strcpy(entry->name, name);
    }
    int ret;
    if ((ret = sfs_bmap_load_nolock(sfs, sin, slot, &ino)) != 0) {
        goto out;
    }
    assert(sfs_block_inuse(sfs, ino));
    ret = sfs_wbuf(sfs, entry, sizeof(struct sfs_disk_entry), ino, 0);
out:
    kfree(entry);
    return ret;
}
static int
sfs_create(struct inode *node, const char *name, bool excl, struct inode **node_store) {
    // kprintf("ready to create a file\n");
    if (strlen(name) > SFS_MAX_FNAME_LEN) {
        return -1;
    }
    // sfs_create_inode(struct sfs_fs *sfs, struct sfs_disk_inode *din, uint32_t ino, struct inode **node_store)
    struct sfs_fs *sfs = fsop_info(vop_fs(node), sfs);
    struct sfs_inode *sin = vop_info(node, sfs_inode);
    int ret;
    // sfs_create_inode(struct sfs_fs *sfs, struct sfs_disk_inode *din, uint32_t ino, struct inode **node_store)
    struct inode *node_tmp = NULL;
    int empty_slot = -1;
    lock_sfs_fs(sfs);
    // sfs_block_alloc(struct sfs_fs *sfs, uint32_t *ino_store)
    sfs_dirent_search_nolock(sfs, sin, name, node_tmp, NULL, &empty_slot);
    // kprintf("%s\n", __func__);
    if (node_tmp) {
        node_store = node_tmp;
    } else {
        if (empty_slot < 0) {
            kprintf("no slot\n");
            return -1;
        }
        struct sfs_disk_inode *din = alloc_disk_inode(SFS_TYPE_FILE);
        int ino;
        sfs_block_alloc(sfs, &ino);
        // kprintf("%s\n", __func__);
        // if (sfs_block_inuse(sfs, ino)) {
        //     kprintf("be sure use\n");
        // } else {
        //     kprintf("not used\n");
        // }
        sfs_create_inode(sfs, din, ino, &node_tmp);
        ++ (din->__nlinks__);
        sfs_set_links(sfs, vop_info(node_tmp, sfs_inode));
        // kprintf("0x%08x\n", node_tmp);
        // sfs_namefile(struct inode *node, struct iobuf *iob)
        // sfs_dirent_write_nolock(struct sfs_fs *sfs, struct sfs_inode *sin, int slot, uint32_t ino, const char *name)
        sfs_dirent_write_nolock(sfs, sin, empty_slot, ino, name);
        // ++ sin->din->blocks;
        int secno = ram2block(ino);
        swapper_block_changed(secno);
        swapper_block_late_sync(secno);
        // kprintf("sin->ino is %d\n", sin->ino);
        sin->dirty = 1;
        lock_sin(sin);
        {
            if (sin->dirty) {
                sin->dirty = 0;
                if ((ret = sfs_wbuf(sfs, sin->din, sizeof(struct sfs_disk_inode), sin->ino, 0)) != 0) {
                    sin->dirty = 1;
                }
            }
        }
        unlock_sin(sin);
        secno = ram2block(sin->ino);
        swapper_block_changed(secno);
        swapper_block_late_sync(secno);
        vop_info(node_tmp, sfs_inode)->dirty = 1;
        sfs->super_dirty = 1;
        // if ((ret = sfs_bmap_load_nolock(sfs, sin, slot, &ino)) != 0) {
        //     return ret;
        // }
        // assert(sfs_block_inuse(sfs, ino));
        // kprintf("ino is %d\n", ino);
        // kprintf("empty slot is %d\n", empty_slot);
        // kprintf("father ino is %d\n", sin->ino);
        *node_store = node_tmp;
    }
    unlock_sfs_fs(sfs);
    // sfs_create_inode(sfs, struct sfs_disk_inode *din, uint32_t ino, struct inode **node_store)
    return 0;
}
static int
sfs_fsync(struct inode *node) {
    struct sfs_fs *sfs = fsop_info(vop_fs(node), sfs);
    struct sfs_inode *sin = vop_info(node, sfs_inode);
    int ret = 0;


    // if (sfs->super_dirty) {
    //     lock_sfs_fs(sfs);
    //     if (sfs->super_dirty) {
    //         sfs->super_dirty = 0;
    //         if ((ret = sfs_wbuf(sfs, sfs->freemap, sizeof(uint32_t) * 400, 1, 0)) != 0) {
    //             // sfs_wbuf(struct sfs_fs *sfs, void *buf, size_t len, uint32_t blkno, off_t offset)
    //             sfs->super_dirty = 1;
    //         }
    //     }
    //     unlock_sfs_fs(sfs);
    // }
    if (sfs->super_dirty) {
        sfs_sync_super(sfs);
        sfs_sync_freemap(sfs);
        swapper_block_changed(0);
    }

    int secno = -1;

    if (sin->dirty) {
        lock_sin(sin);
        {
            if (sin->dirty) {
                sin->dirty = 0;
                if ((ret = sfs_wbuf(sfs, sin->din, sizeof(struct sfs_disk_inode), sin->ino, 0)) != 0) {
                    sin->dirty = 1;
                }
            }
        }
        // int secno = 0;
        // kprintf("in %s: sin->din is %d sin->ino is %d\n", __func__, sin->din, sin->ino);
        int tmp_din = sin->ino;
        while (tmp_din >= 0) {
            secno += 1; // start from `-1`
            tmp_din -= 32;
        }
        unlock_sin(sin);
    }

    // kprintf("secno is %d sfs->super_dirty is %s\n", secno, sfs->super_dirty ? "true" : "false");
    // assert((secno < 0 && !sfs->super_dirty) || (secno >= 0 && sfs->super_dirty));
    if (secno != 0) {
        // kprintf("sync is secno %d\n", secno);
        if (sfs->super_dirty) {
            sfs->super_dirty = 0;
            swapper_block_sync(0);
        }
        if (secno > 0) {
            swapper_block_sync(secno);
        }
    }
    if (secno == 0) {
        swapper_block_sync(0);
    }
    swapper_block_real_sync();
    // kprintf("super->unused_blocks is %d\n", sfs->super.unused_blocks);
    // uint16_t *begin = (uint16_t *)_initrd_begin;
    // int item = 0;
    // for (item = 0; item < 4000; ++item) {
    //     kprintf("0x%04x ", begin[item]);
    // }
    // kprintf("in %s: %d is %s and addr. of sfs is 0x%08x addr. of freemap is 0x%08x\n",
    // __func__, 436, sfs_block_inuse(sfs, 436)?"used":"free", sfs, sfs->freemap);
    return ret;
}