Exemple #1
0
GURLS_EXPORT void eig(const gMat2D<float>& A, gVec<float>& Wr, gVec<float>& Wi)
{
    if (A.cols() != A.rows())
        throw gException("The input matrix A must be squared");

    float* Atmp = new float[A.getSize()];
    copy(Atmp, A.getData(), A.getSize());

    char jobvl = 'N', jobvr = 'N';
    int n = A.cols(), lda = A.cols(), ldvl = 1, ldvr = 1;
    int info, lwork = 4*n;
    float* work = new float[lwork];

    sgeev_(&jobvl, &jobvr, &n, Atmp, &lda, Wr.getData(), Wi.getData(), NULL, &ldvl, NULL, &ldvr, work, &lwork, &info);

    delete[] Atmp;
    delete[] work;

    if(info != 0)
    {
        std::stringstream str;
        str << "Eigenvalues/eigenVectors computation failed, error code " << info << ";" << std::endl;
        throw gException(str.str());
    }
}
Exemple #2
0
void THLapack_(geev)(char jobvl, char jobvr, int n, real *a, int lda, real *wr, real *wi, real* vl, int ldvl, real *vr, int ldvr, real *work, int lwork, int *info)
{
#ifdef USE_LAPACK
#if defined(TH_REAL_IS_DOUBLE)
  dgeev_(&jobvl, &jobvr, &n, a, &lda, wr, wi, vl, &ldvl, vr, &ldvr, work, &lwork, info);
#else
  sgeev_(&jobvl, &jobvr, &n, a, &lda, wr, wi, vl, &ldvl, vr, &ldvr, work, &lwork, info);
#endif
#else
  THError("geev : Lapack library not found in compile time\n");
#endif
}
Exemple #3
0
GURLS_EXPORT void eig(const gMat2D<float>& A, gVec<float>& Wr, gVec<float>& Wi) {

    if (A.cols() != A.rows()) {
        throw gException("The input matrix A must be squared");
    }

    char jobvl = 'N', jobvr = 'N';
    int n = A.cols(), lda = A.cols(), ldvl = 1, ldvr = 1;
    int info, lwork = 4*n;
    float* work = new float[lwork];
    sgeev_(&jobvl, &jobvr, &n, const_cast<gMat2D<float>&>(A).getData(), &lda, Wr.getData(), Wi.getData(), NULL, &ldvl, NULL, &ldvr, work, &lwork, &info);
    delete[] work;
}
Exemple #4
0
void THLapack_(geev)(char jobvl, char jobvr, int n, real *a, int lda, real *wr, real *wi, real* vl, int ldvl, real *vr, int ldvr, real *work, int lwork, int *info)
{
#ifdef USE_LAPACK
#if defined(TH_REAL_IS_DOUBLE)
    extern void dgeev_(char *jobvl, char *jobvr, int *n, double *a, int *lda, double *wr, double *wi, double* vl, int *ldvl, double *vr, int *ldvr, double *work, int *lwork, int *info);
    dgeev_(&jobvl, &jobvr, &n, a, &lda, wr, wi, vl, &ldvl, vr, &ldvr, work, &lwork, info);
#else
    extern void sgeev_(char *jobvl, char *jobvr, int *n, float *a, int *lda, float *wr, float *wi, float* vl, int *ldvl, float *vr, int *ldvr, float *work, int *lwork, int *info);
    sgeev_(&jobvl, &jobvr, &n, a, &lda, wr, wi, vl, &ldvl, vr, &ldvr, work, &lwork, info);
#endif
#else
    THError("geev : Lapack library not found in compile time\n");
#endif
}
Exemple #5
0
GURLS_EXPORT void eig(const gMat2D<float>& A, gMat2D<float>& V, gVec<float>& Wr, gVec<float>& Wi) {

    if (A.cols() != A.rows()) {
        throw gException("The input matrix A must be squared");
    }

    char jobvl = 'N', jobvr = 'V';
    int n = A.cols(), lda = A.cols(), ldvl = 1, ldvr = A.cols();
    int info, lwork = 4*n;
    float* work = new float[lwork];
    gMat2D<float> Atmp = A;
    gMat2D<float> Vtmp = V;
    sgeev_(&jobvl, &jobvr, &n, Atmp.getData(), &lda, Wr.getData(), Wi.getData(), NULL, &ldvl, Vtmp.getData(), &ldvr, work, &lwork, &info);
    Vtmp.transpose(V);
    delete[] work;
}
Exemple #6
0
/*============================================================================
 *                              get_eigen_values
 *
 * Compute the eigen values for the matrix M using the LAPACK routine sgeev.
 * The return value is the return value of this function and will be zero
 * on success.
 *==========================================================================*/
int __sgeev_ (char jobvl, char jobvr, int n, float *a, 
	int lda, float *wr, float *wi, float *vl, int ldvl, float *vr, 
	int ldvr, float *work, int lwork)
{
    integer info;
    sgeev_((char *)&jobvl, 
           (char *)&jobvr, 
           (integer *)&n, 
           (real *)a, 
           (integer *)&lda, 
           (real *)wr, 
           (real *)wi, 
           (real *)vl, 
           (integer *)&ldvl, 
           (real *)vr, 
           (integer *)&ldvr, 
           (real *)work, 
           (integer *)&lwork, 
           (integer *)&info);

    return info;
}
Exemple #7
0
/* Subroutine */ int serred_(char *path, integer *nunit)
{
    /* Format strings */
    static char fmt_9999[] = "(1x,a3,\002 routines passed the tests of the e"
	    "rror exits (\002,i3,\002 tests done)\002)";
    static char fmt_9998[] = "(\002 *** \002,a3,\002 routines failed the tes"
	    "ts of the error ex\002,\002its ***\002)";

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer info, sdim;
    static real a[16]	/* was [4][4] */;
    static logical b[4];
    static integer i__, j;
    static real s[4], u[16]	/* was [4][4] */, w[16], abnrm;
    extern /* Subroutine */ int sgees_(char *, char *, L_fp, integer *, real *
	    , integer *, integer *, real *, real *, real *, integer *, real *,
	     integer *, logical *, integer *), sgeev_(char *, 
	    char *, integer *, real *, integer *, real *, real *, real *, 
	    integer *, real *, integer *, real *, integer *, integer *);
    static char c2[2];
    static real r1[4], r2[4];
    static integer iw[8];
    static real wi[4];
    static integer nt;
    static real vl[16]	/* was [4][4] */, vr[16]	/* was [4][4] */, wr[
	    4], vt[16]	/* was [4][4] */;
    extern /* Subroutine */ int sgesdd_(char *, integer *, integer *, real *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    integer *, integer *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), sgesvd_(char *, char *, integer *, integer 
	    *, real *, integer *, real *, real *, integer *, real *, integer *
	    , real *, integer *, integer *);
    extern logical sslect_();
    extern /* Subroutine */ int sgeesx_(char *, char *, L_fp, char *, integer 
	    *, real *, integer *, integer *, real *, real *, real *, integer *
	    , real *, real *, real *, integer *, integer *, integer *, 
	    logical *, integer *), sgeevx_(char *, 
	    char *, char *, char *, integer *, real *, integer *, real *, 
	    real *, real *, integer *, real *, integer *, integer *, integer *
	    , real *, real *, real *, real *, real *, integer *, integer *, 
	    integer *);
    static integer ihi, ilo;

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };
    static cilist io___24 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___25 = { 0, 0, 0, fmt_9998, 0 };



#define a_ref(a_1,a_2) a[(a_2)*4 + a_1 - 5]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       December 22, 1999   


    Purpose   
    =======   

    SERRED tests the error exits for the eigenvalue driver routines for   
    REAL matrices:   

    PATH  driver   description   
    ----  ------   -----------   
    SEV   SGEEV    find eigenvalues/eigenvectors for nonsymmetric A   
    SES   SGEES    find eigenvalues/Schur form for nonsymmetric A   
    SVX   SGEEVX   SGEEV + balancing and condition estimation   
    SSX   SGEESX   SGEES + balancing and condition estimation   
    SBD   SGESVD   compute SVD of an M-by-N matrix A   
          SGESDD   compute SVD of an M-by-N matrix A (by divide and   
                   conquer)   

    Arguments   
    =========   

    PATH    (input) CHARACTER*3   
            The LAPACK path name for the routines to be tested.   

    NUNIT   (input) INTEGER   
            The unit number for output.   

    ===================================================================== */


    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Initialize A */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    a_ref(i__, j) = 0.f;
/* L10: */
	}
/* L20: */
    }
    for (i__ = 1; i__ <= 4; ++i__) {
	a_ref(i__, i__) = 1.f;
/* L30: */
    }
    infoc_1.ok = TRUE_;
    nt = 0;

    if (lsamen_(&c__2, c2, "EV")) {

/*        Test SGEEV */

	s_copy(srnamc_1.srnamt, "SGEEV ", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	sgeev_("X", "N", &c__0, a, &c__1, wr, wi, vl, &c__1, vr, &c__1, w, &
		c__1, &info);
	chkxer_("SGEEV ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sgeev_("N", "X", &c__0, a, &c__1, wr, wi, vl, &c__1, vr, &c__1, w, &
		c__1, &info);
	chkxer_("SGEEV ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	sgeev_("N", "N", &c_n1, a, &c__1, wr, wi, vl, &c__1, vr, &c__1, w, &
		c__1, &info);
	chkxer_("SGEEV ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	sgeev_("N", "N", &c__2, a, &c__1, wr, wi, vl, &c__1, vr, &c__1, w, &
		c__6, &info);
	chkxer_("SGEEV ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	sgeev_("V", "N", &c__2, a, &c__2, wr, wi, vl, &c__1, vr, &c__1, w, &
		c__8, &info);
	chkxer_("SGEEV ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	sgeev_("N", "V", &c__2, a, &c__2, wr, wi, vl, &c__1, vr, &c__1, w, &
		c__8, &info);
	chkxer_("SGEEV ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 13;
	sgeev_("V", "V", &c__1, a, &c__1, wr, wi, vl, &c__1, vr, &c__1, w, &
		c__3, &info);
	chkxer_("SGEEV ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 7;

    } else if (lsamen_(&c__2, c2, "ES")) {

/*        Test SGEES */

	s_copy(srnamc_1.srnamt, "SGEES ", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	sgees_("X", "N", (L_fp)sslect_, &c__0, a, &c__1, &sdim, wr, wi, vl, &
		c__1, w, &c__1, b, &info);
	chkxer_("SGEES ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sgees_("N", "X", (L_fp)sslect_, &c__0, a, &c__1, &sdim, wr, wi, vl, &
		c__1, w, &c__1, b, &info);
	chkxer_("SGEES ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	sgees_("N", "S", (L_fp)sslect_, &c_n1, a, &c__1, &sdim, wr, wi, vl, &
		c__1, w, &c__1, b, &info);
	chkxer_("SGEES ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	sgees_("N", "S", (L_fp)sslect_, &c__2, a, &c__1, &sdim, wr, wi, vl, &
		c__1, w, &c__6, b, &info);
	chkxer_("SGEES ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	sgees_("V", "S", (L_fp)sslect_, &c__2, a, &c__2, &sdim, wr, wi, vl, &
		c__1, w, &c__6, b, &info);
	chkxer_("SGEES ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 13;
	sgees_("N", "S", (L_fp)sslect_, &c__1, a, &c__1, &sdim, wr, wi, vl, &
		c__1, w, &c__2, b, &info);
	chkxer_("SGEES ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 6;

    } else if (lsamen_(&c__2, c2, "VX")) {

/*        Test SGEEVX */

	s_copy(srnamc_1.srnamt, "SGEEVX", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	sgeevx_("X", "N", "N", "N", &c__0, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &ilo, &ihi, s, &abnrm, r1, r2, w, &c__1, iw, &info);
	chkxer_("SGEEVX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sgeevx_("N", "X", "N", "N", &c__0, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &ilo, &ihi, s, &abnrm, r1, r2, w, &c__1, iw, &info);
	chkxer_("SGEEVX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	sgeevx_("N", "N", "X", "N", &c__0, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &ilo, &ihi, s, &abnrm, r1, r2, w, &c__1, iw, &info);
	chkxer_("SGEEVX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	sgeevx_("N", "N", "N", "X", &c__0, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &ilo, &ihi, s, &abnrm, r1, r2, w, &c__1, iw, &info);
	chkxer_("SGEEVX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	sgeevx_("N", "N", "N", "N", &c_n1, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &ilo, &ihi, s, &abnrm, r1, r2, w, &c__1, iw, &info);
	chkxer_("SGEEVX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	sgeevx_("N", "N", "N", "N", &c__2, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &ilo, &ihi, s, &abnrm, r1, r2, w, &c__1, iw, &info);
	chkxer_("SGEEVX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	sgeevx_("N", "V", "N", "N", &c__2, a, &c__2, wr, wi, vl, &c__1, vr, &
		c__1, &ilo, &ihi, s, &abnrm, r1, r2, w, &c__6, iw, &info);
	chkxer_("SGEEVX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 13;
	sgeevx_("N", "N", "V", "N", &c__2, a, &c__2, wr, wi, vl, &c__1, vr, &
		c__1, &ilo, &ihi, s, &abnrm, r1, r2, w, &c__6, iw, &info);
	chkxer_("SGEEVX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 21;
	sgeevx_("N", "N", "N", "N", &c__1, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &ilo, &ihi, s, &abnrm, r1, r2, w, &c__1, iw, &info);
	chkxer_("SGEEVX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 21;
	sgeevx_("N", "V", "N", "N", &c__1, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &ilo, &ihi, s, &abnrm, r1, r2, w, &c__2, iw, &info);
	chkxer_("SGEEVX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 21;
	sgeevx_("N", "N", "V", "V", &c__1, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &ilo, &ihi, s, &abnrm, r1, r2, w, &c__3, iw, &info);
	chkxer_("SGEEVX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 11;

    } else if (lsamen_(&c__2, c2, "SX")) {

/*        Test SGEESX */

	s_copy(srnamc_1.srnamt, "SGEESX", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	sgeesx_("X", "N", (L_fp)sslect_, "N", &c__0, a, &c__1, &sdim, wr, wi, 
		vl, &c__1, r1, r2, w, &c__1, iw, &c__1, b, &info);
	chkxer_("SGEESX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sgeesx_("N", "X", (L_fp)sslect_, "N", &c__0, a, &c__1, &sdim, wr, wi, 
		vl, &c__1, r1, r2, w, &c__1, iw, &c__1, b, &info);
	chkxer_("SGEESX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	sgeesx_("N", "N", (L_fp)sslect_, "X", &c__0, a, &c__1, &sdim, wr, wi, 
		vl, &c__1, r1, r2, w, &c__1, iw, &c__1, b, &info);
	chkxer_("SGEESX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	sgeesx_("N", "N", (L_fp)sslect_, "N", &c_n1, a, &c__1, &sdim, wr, wi, 
		vl, &c__1, r1, r2, w, &c__1, iw, &c__1, b, &info);
	chkxer_("SGEESX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	sgeesx_("N", "N", (L_fp)sslect_, "N", &c__2, a, &c__1, &sdim, wr, wi, 
		vl, &c__1, r1, r2, w, &c__6, iw, &c__1, b, &info);
	chkxer_("SGEESX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	sgeesx_("V", "N", (L_fp)sslect_, "N", &c__2, a, &c__2, &sdim, wr, wi, 
		vl, &c__1, r1, r2, w, &c__6, iw, &c__1, b, &info);
	chkxer_("SGEESX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 16;
	sgeesx_("N", "N", (L_fp)sslect_, "N", &c__1, a, &c__1, &sdim, wr, wi, 
		vl, &c__1, r1, r2, w, &c__2, iw, &c__1, b, &info);
	chkxer_("SGEESX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 7;

    } else if (lsamen_(&c__2, c2, "BD")) {

/*        Test SGESVD */

	s_copy(srnamc_1.srnamt, "SGESVD", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	sgesvd_("X", "N", &c__0, &c__0, a, &c__1, s, u, &c__1, vt, &c__1, w, &
		c__1, &info);
	chkxer_("SGESVD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sgesvd_("N", "X", &c__0, &c__0, a, &c__1, s, u, &c__1, vt, &c__1, w, &
		c__1, &info);
	chkxer_("SGESVD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sgesvd_("O", "O", &c__0, &c__0, a, &c__1, s, u, &c__1, vt, &c__1, w, &
		c__1, &info);
	chkxer_("SGESVD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	sgesvd_("N", "N", &c_n1, &c__0, a, &c__1, s, u, &c__1, vt, &c__1, w, &
		c__1, &info);
	chkxer_("SGESVD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	sgesvd_("N", "N", &c__0, &c_n1, a, &c__1, s, u, &c__1, vt, &c__1, w, &
		c__1, &info);
	chkxer_("SGESVD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	sgesvd_("N", "N", &c__2, &c__1, a, &c__1, s, u, &c__1, vt, &c__1, w, &
		c__5, &info);
	chkxer_("SGESVD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	sgesvd_("A", "N", &c__2, &c__1, a, &c__2, s, u, &c__1, vt, &c__1, w, &
		c__5, &info);
	chkxer_("SGESVD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	sgesvd_("N", "A", &c__1, &c__2, a, &c__1, s, u, &c__1, vt, &c__1, w, &
		c__5, &info);
	chkxer_("SGESVD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 8;

/*        Test SGESDD */

	s_copy(srnamc_1.srnamt, "SGESDD", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	sgesdd_("X", &c__0, &c__0, a, &c__1, s, u, &c__1, vt, &c__1, w, &c__1,
		 iw, &info);
	chkxer_("SGESDD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	sgesdd_("N", &c_n1, &c__0, a, &c__1, s, u, &c__1, vt, &c__1, w, &c__1,
		 iw, &info);
	chkxer_("SGESDD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	sgesdd_("N", &c__0, &c_n1, a, &c__1, s, u, &c__1, vt, &c__1, w, &c__1,
		 iw, &info);
	chkxer_("SGESDD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	sgesdd_("N", &c__2, &c__1, a, &c__1, s, u, &c__1, vt, &c__1, w, &c__5,
		 iw, &info);
	chkxer_("SGESDD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	sgesdd_("A", &c__2, &c__1, a, &c__2, s, u, &c__1, vt, &c__1, w, &c__5,
		 iw, &info);
	chkxer_("SGESDD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	sgesdd_("A", &c__1, &c__2, a, &c__1, s, u, &c__1, vt, &c__1, w, &c__5,
		 iw, &info);
	chkxer_("SGESDD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 6;
    }

/*     Print a summary line. */

    if (! lsamen_(&c__2, c2, "BD")) {
	if (infoc_1.ok) {
	    io___24.ciunit = infoc_1.nout;
	    s_wsfe(&io___24);
	    do_fio(&c__1, path, (ftnlen)3);
	    do_fio(&c__1, (char *)&nt, (ftnlen)sizeof(integer));
	    e_wsfe();
	} else {
	    io___25.ciunit = infoc_1.nout;
	    s_wsfe(&io___25);
	    do_fio(&c__1, path, (ftnlen)3);
	    e_wsfe();
	}
    }

    return 0;

/*     End of SERRED */

} /* serred_ */
/* Subroutine */ int sdrvev_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, real *thresh, integer *nounit, real *
	a, integer *lda, real *h__, real *wr, real *wi, real *wr1, real *wi1, 
	real *vl, integer *ldvl, real *vr, integer *ldvr, real *lre, integer *
	ldlre, real *result, real *work, integer *nwork, integer *iwork, 
	integer *info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };

    /* Format strings */
    static char fmt_9993[] = "(\002 SDRVEV: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9999[] = "(/1x,a3,\002 -- Real Eigenvalue-Eigenvector De"
	    "composition\002,\002 Driver\002,/\002 Matrix types (see SDRVEV f"
	    "or details): \002)";
    static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
	    "rix.             \002,\002           \002,\002  5=Diagonal: geom"
	    "etr. spaced entries.\002,/\002  2=Identity matrix.              "
	    "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
	    "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
	    " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
	    "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
	    "ll, evenly spaced.\002)";
    static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
	    "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
	    "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
	    "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
	    "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
	    "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
	    " 12=Well-cond., random complex \002,6x,\002   \002,\002 17=Ill-c"
	    "ond., large rand. complx \002,/\002 13=Ill-condi\002,\002tioned,"
	    " evenly spaced.     \002,\002 18=Ill-cond., small rand.\002,\002"
	    " complx \002)";
    static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
	    " \002,\002 21=Matrix \002,\002with small random entries.\002,"
	    "/\002 20=Matrix with large ran\002,\002dom entries.   \002,/)";
    static char fmt_9995[] = "(\002 Tests performed with test threshold ="
	    "\002,f8.2,//\002 1 = | A VR - VR W | / ( n |A| ulp ) \002,/\002 "
	    "2 = | transpose(A) VL - VL W | / ( n |A| ulp ) \002,/\002 3 = | "
	    "|VR(i)| - 1 | / ulp \002,/\002 4 = | |VL(i)| - 1 | / ulp \002,"
	    "/\002 5 = 0 if W same no matter if VR or VL computed,\002,\002 1"
	    "/ulp otherwise\002,/\002 6 = 0 if VR same no matter if VL comput"
	    "ed,\002,\002  1/ulp otherwise\002,/\002 7 = 0 if VL same no matt"
	    "er if VR computed,\002,\002  1/ulp otherwise\002,/)";
    static char fmt_9994[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed"
	    "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)="
	    "\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, h_dim1, h_offset, lre_dim1, lre_offset, vl_dim1,
	     vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4;
    real r__1, r__2, r__3, r__4, r__5;

    /* Local variables */
    integer j, n, jj;
    real dum[1], res[2];
    integer iwk;
    real ulp, vmx, cond;
    integer jcol;
    char path[3];
    integer nmax;
    real unfl, ovfl, tnrm, vrmx, vtst;
    extern doublereal snrm2_(integer *, real *, integer *);
    logical badnn;
    integer nfail, imode, iinfo;
    real conds;
    extern /* Subroutine */ int sget22_(char *, char *, char *, integer *, 
	    real *, integer *, real *, integer *, real *, real *, real *, 
	    real *), sgeev_(char *, char *, integer *, 
	     real *, integer *, real *, real *, real *, integer *, real *, 
	    integer *, real *, integer *, integer *);
    real anorm;
    integer jsize, nerrs, itype, jtype, ntest;
    real rtulp;
    extern doublereal slapy2_(real *, real *);
    extern /* Subroutine */ int slabad_(real *, real *);
    char adumma[1*1];
    extern doublereal slamch_(char *);
    integer idumma[1];
    integer ioldsd[4];
    extern /* Subroutine */ int slatme_(integer *, char *, integer *, real *, 
	    integer *, real *, real *, char *, char *, char *, char *, real *, 
	     integer *, real *, integer *, integer *, real *, real *, integer 
	    *, real *, integer *), 
	    slacpy_(char *, integer *, integer *, real *, integer *, real *, 
	    integer *), slaset_(char *, integer *, integer *, real *, 
	    real *, real *, integer *), slatmr_(integer *, integer *, 
	    char *, integer *, char *, real *, integer *, real *, real *, 
	    char *, char *, real *, integer *, real *, real *, integer *, 
	    real *, char *, integer *, integer *, integer *, real *, real *, 
	    char *, real *, integer *, integer *, integer *);
    integer ntestf;
    extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer 
	    *), slatms_(integer *, integer *, char *, integer *, char 
	    *, real *, integer *, real *, real *, integer *, integer *, char *
, real *, integer *, real *, integer *);
    real ulpinv;
    integer nnwork;
    real rtulpi;
    integer mtypes, ntestt;

    /* Fortran I/O blocks */
    static cilist io___32 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___35 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___48 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9994, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*     SDRVEV  checks the nonsymmetric eigenvalue problem driver SGEEV. */

/*     When SDRVEV is called, a number of matrix "sizes" ("n's") and a */
/*     number of matrix "types" are specified.  For each size ("n") */
/*     and each type of matrix, one matrix will be generated and used */
/*     to test the nonsymmetric eigenroutines.  For each matrix, 7 */
/*     tests will be performed: */

/*     (1)     | A * VR - VR * W | / ( n |A| ulp ) */

/*       Here VR is the matrix of unit right eigenvectors. */
/*       W is a block diagonal matrix, with a 1x1 block for each */
/*       real eigenvalue and a 2x2 block for each complex conjugate */
/*       pair.  If eigenvalues j and j+1 are a complex conjugate pair, */
/*       so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the */
/*       2 x 2 block corresponding to the pair will be: */

/*               (  wr  wi  ) */
/*               ( -wi  wr  ) */

/*       Such a block multiplying an n x 2 matrix  ( ur ui ) on the */
/*       right will be the same as multiplying  ur + i*ui  by  wr + i*wi. */

/*     (2)     | A**H * VL - VL * W**H | / ( n |A| ulp ) */

/*       Here VL is the matrix of unit left eigenvectors, A**H is the */
/*       conjugate transpose of A, and W is as above. */

/*     (3)     | |VR(i)| - 1 | / ulp and whether largest component real */

/*       VR(i) denotes the i-th column of VR. */

/*     (4)     | |VL(i)| - 1 | / ulp and whether largest component real */

/*       VL(i) denotes the i-th column of VL. */

/*     (5)     W(full) = W(partial) */

/*       W(full) denotes the eigenvalues computed when both VR and VL */
/*       are also computed, and W(partial) denotes the eigenvalues */
/*       computed when only W, only W and VR, or only W and VL are */
/*       computed. */

/*     (6)     VR(full) = VR(partial) */

/*       VR(full) denotes the right eigenvectors computed when both VR */
/*       and VL are computed, and VR(partial) denotes the result */
/*       when only VR is computed. */

/*      (7)     VL(full) = VL(partial) */

/*       VL(full) denotes the left eigenvectors computed when both VR */
/*       and VL are also computed, and VL(partial) denotes the result */
/*       when only VL is computed. */

/*     The "sizes" are specified by an array NN(1:NSIZES); the value of */
/*     each element NN(j) specifies one size. */
/*     The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
/*     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
/*     Currently, the list of possible types is: */

/*     (1)  The zero matrix. */
/*     (2)  The identity matrix. */
/*     (3)  A (transposed) Jordan block, with 1's on the diagonal. */

/*     (4)  A diagonal matrix with evenly spaced entries */
/*          1, ..., ULP  and random signs. */
/*          (ULP = (first number larger than 1) - 1 ) */
/*     (5)  A diagonal matrix with geometrically spaced entries */
/*          1, ..., ULP  and random signs. */
/*     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*          and random signs. */

/*     (7)  Same as (4), but multiplied by a constant near */
/*          the overflow threshold */
/*     (8)  Same as (4), but multiplied by a constant near */
/*          the underflow threshold */

/*     (9)  A matrix of the form  U' T U, where U is orthogonal and */
/*          T has evenly spaced entries 1, ..., ULP with random signs */
/*          on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (10) A matrix of the form  U' T U, where U is orthogonal and */
/*          T has geometrically spaced entries 1, ..., ULP with random */
/*          signs on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (11) A matrix of the form  U' T U, where U is orthogonal and */
/*          T has "clustered" entries 1, ULP,..., ULP with random */
/*          signs on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (12) A matrix of the form  U' T U, where U is orthogonal and */
/*          T has real or complex conjugate paired eigenvalues randomly */
/*          chosen from ( ULP, 1 ) and random O(1) entries in the upper */
/*          triangle. */

/*     (13) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */
/*          with random signs on the diagonal and random O(1) entries */
/*          in the upper triangle. */

/*     (14) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has geometrically spaced entries */
/*          1, ..., ULP with random signs on the diagonal and random */
/*          O(1) entries in the upper triangle. */

/*     (15) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */
/*          with random signs on the diagonal and random O(1) entries */
/*          in the upper triangle. */

/*     (16) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has real or complex conjugate paired */
/*          eigenvalues randomly chosen from ( ULP, 1 ) and random */
/*          O(1) entries in the upper triangle. */

/*     (17) Same as (16), but multiplied by a constant */
/*          near the overflow threshold */
/*     (18) Same as (16), but multiplied by a constant */
/*          near the underflow threshold */

/*     (19) Nonsymmetric matrix with random entries chosen from (-1,1). */
/*          If N is at least 4, all entries in first two rows and last */
/*          row, and first column and last two columns are zero. */
/*     (20) Same as (19), but multiplied by a constant */
/*          near the overflow threshold */
/*     (21) Same as (19), but multiplied by a constant */
/*          near the underflow threshold */

/*  Arguments */
/*  ========== */

/*  NSIZES  (input) INTEGER */
/*          The number of sizes of matrices to use.  If it is zero, */
/*          SDRVEV does nothing.  It must be at least zero. */

/*  NN      (input) INTEGER array, dimension (NSIZES) */
/*          An array containing the sizes to be used for the matrices. */
/*          Zero values will be skipped.  The values must be at least */
/*          zero. */

/*  NTYPES  (input) INTEGER */
/*          The number of elements in DOTYPE.   If it is zero, SDRVEV */
/*          does nothing.  It must be at least zero.  If it is MAXTYP+1 */
/*          and NSIZES is 1, then an additional type, MAXTYP+1 is */
/*          defined, which is to use whatever matrix is in A.  This */
/*          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
/*          DOTYPE(MAXTYP+1) is .TRUE. . */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          If DOTYPE(j) is .TRUE., then for each size in NN a */
/*          matrix of that size and of type j will be generated. */
/*          If NTYPES is smaller than the maximum number of types */
/*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
/*          MAXTYP will not be generated.  If NTYPES is larger */
/*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
/*          will be ignored. */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          On entry ISEED specifies the seed of the random number */
/*          generator. The array elements should be between 0 and 4095; */
/*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*          be odd.  The random number generator uses a linear */
/*          congruential sequence limited to small integers, and so */
/*          should produce machine independent random numbers. The */
/*          values of ISEED are changed on exit, and can be used in the */
/*          next call to SDRVEV to continue the same random number */
/*          sequence. */

/*  THRESH  (input) REAL */
/*          A test will count as "failed" if the "error", computed as */
/*          described above, exceeds THRESH.  Note that the error */
/*          is scaled to be O(1), so THRESH should be a reasonably */
/*          small multiple of 1, e.g., 10 or 100.  In particular, */
/*          it should not depend on the precision (single vs. double) */
/*          or the size of the matrix.  It must be at least zero. */

/*  NOUNIT  (input) INTEGER */
/*          The FORTRAN unit number for printing out error messages */
/*          (e.g., if a routine returns INFO not equal to 0.) */

/*  A       (workspace) REAL array, dimension (LDA, max(NN)) */
/*          Used to hold the matrix whose eigenvalues are to be */
/*          computed.  On exit, A contains the last matrix actually used. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of A, and H. LDA must be at */
/*          least 1 and at least max(NN). */

/*  H       (workspace) REAL array, dimension (LDA, max(NN)) */
/*          Another copy of the test matrix A, modified by SGEEV. */

/*  WR      (workspace) REAL array, dimension (max(NN)) */
/*  WI      (workspace) REAL array, dimension (max(NN)) */
/*          The real and imaginary parts of the eigenvalues of A. */
/*          On exit, WR + WI*i are the eigenvalues of the matrix in A. */

/*  WR1     (workspace) REAL array, dimension (max(NN)) */
/*  WI1     (workspace) REAL array, dimension (max(NN)) */
/*          Like WR, WI, these arrays contain the eigenvalues of A, */
/*          but those computed when SGEEV only computes a partial */
/*          eigendecomposition, i.e. not the eigenvalues and left */
/*          and right eigenvectors. */

/*  VL      (workspace) REAL array, dimension (LDVL, max(NN)) */
/*          VL holds the computed left eigenvectors. */

/*  LDVL    (input) INTEGER */
/*          Leading dimension of VL. Must be at least max(1,max(NN)). */

/*  VR      (workspace) REAL array, dimension (LDVR, max(NN)) */
/*          VR holds the computed right eigenvectors. */

/*  LDVR    (input) INTEGER */
/*          Leading dimension of VR. Must be at least max(1,max(NN)). */

/*  LRE     (workspace) REAL array, dimension (LDLRE,max(NN)) */
/*          LRE holds the computed right or left eigenvectors. */

/*  LDLRE   (input) INTEGER */
/*          Leading dimension of LRE. Must be at least max(1,max(NN)). */

/*  RESULT  (output) REAL array, dimension (7) */
/*          The values computed by the seven tests described above. */
/*          The values are currently limited to 1/ulp, to avoid overflow. */

/*  WORK    (workspace) REAL array, dimension (NWORK) */

/*  NWORK   (input) INTEGER */
/*          The number of entries in WORK.  This must be at least */
/*          5*NN(j)+2*NN(j)**2 for all j. */

/*  IWORK   (workspace) INTEGER array, dimension (max(NN)) */

/*  INFO    (output) INTEGER */
/*          If 0, then everything ran OK. */
/*           -1: NSIZES < 0 */
/*           -2: Some NN(j) < 0 */
/*           -3: NTYPES < 0 */
/*           -6: THRESH < 0 */
/*           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). */
/*          -16: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ). */
/*          -18: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ). */
/*          -20: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ). */
/*          -23: NWORK too small. */
/*          If  SLATMR, SLATMS, SLATME or SGEEV returns an error code, */
/*              the absolute value of it is returned. */

/* ----------------------------------------------------------------------- */

/*     Some Local Variables and Parameters: */
/*     ---- ----- --------- --- ---------- */

/*     ZERO, ONE       Real 0 and 1. */
/*     MAXTYP          The number of types defined. */
/*     NMAX            Largest value in NN. */
/*     NERRS           The number of tests which have exceeded THRESH */
/*     COND, CONDS, */
/*     IMODE           Values to be passed to the matrix generators. */
/*     ANORM           Norm of A; passed to matrix generators. */

/*     OVFL, UNFL      Overflow and underflow thresholds. */
/*     ULP, ULPINV     Finest relative precision and its inverse. */
/*     RTULP, RTULPI   Square roots of the previous 4 values. */

/*             The following four arrays decode JTYPE: */
/*     KTYPE(j)        The general type (1-10) for type "j". */
/*     KMODE(j)        The MODE value to be passed to the matrix */
/*                     generator for type "j". */
/*     KMAGN(j)        The order of magnitude ( O(1), */
/*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */
/*     KCONDS(j)       Selectw whether CONDS is to be 1 or */
/*                     1/sqrt(ulp).  (0 means irrelevant.) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --wr;
    --wi;
    --wr1;
    --wi1;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    lre_dim1 = *ldlre;
    lre_offset = 1 + lre_dim1;
    lre -= lre_offset;
    --result;
    --work;
    --iwork;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "EV", (ftnlen)2, (ftnlen)2);

/*     Check for errors */

    ntestt = 0;
    ntestf = 0;
    *info = 0;

/*     Important constants */

    badnn = FALSE_;
    nmax = 0;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.f) {
	*info = -6;
    } else if (*nounit <= 0) {
	*info = -7;
    } else if (*lda < 1 || *lda < nmax) {
	*info = -9;
    } else if (*ldvl < 1 || *ldvl < nmax) {
	*info = -16;
    } else if (*ldvr < 1 || *ldvr < nmax) {
	*info = -18;
    } else if (*ldlre < 1 || *ldlre < nmax) {
	*info = -20;
    } else /* if(complicated condition) */ {
/* Computing 2nd power */
	i__1 = nmax;
	if (nmax * 5 + (i__1 * i__1 << 1) > *nwork) {
	    *info = -23;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SDRVEV", &i__1);
	return 0;
    }

/*     Quick return if nothing to do */

    if (*nsizes == 0 || *ntypes == 0) {
	return 0;
    }

/*     More Important constants */

    unfl = slamch_("Safe minimum");
    ovfl = 1.f / unfl;
    slabad_(&unfl, &ovfl);
    ulp = slamch_("Precision");
    ulpinv = 1.f / ulp;
    rtulp = sqrt(ulp);
    rtulpi = 1.f / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L260;
	    }

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Compute "A" */

/*           Control parameters: */

/*           KMAGN  KCONDS  KMODE        KTYPE */
/*       =1  O(1)   1       clustered 1  zero */
/*       =2  large  large   clustered 2  identity */
/*       =3  small          exponential  Jordan */
/*       =4                 arithmetic   diagonal, (w/ eigenvalues) */
/*       =5                 random log   symmetric, w/ eigenvalues */
/*       =6                 random       general, w/ eigenvalues */
/*       =7                              random diagonal */
/*       =8                              random symmetric */
/*       =9                              random general */
/*       =10                             random triangular */

	    if (mtypes > 21) {
		goto L90;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L30;
		case 2:  goto L40;
		case 3:  goto L50;
	    }

L30:
	    anorm = 1.f;
	    goto L60;

L40:
	    anorm = ovfl * ulp;
	    goto L60;

L50:
	    anorm = unfl * ulpinv;
	    goto L60;

L60:

	    slaset_("Full", lda, &n, &c_b17, &c_b17, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices -- Identity & Jordan block */

/*              Zero */

	    if (itype == 1) {
		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a[jcol + jcol * a_dim1] = anorm;
/* L70: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a[jcol + jcol * a_dim1] = anorm;
		    if (jcol > 1) {
			a[jcol + (jcol - 1) * a_dim1] = 1.f;
		    }
/* L80: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n 
			+ 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
			&iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.f;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.f;
		}

		*(unsigned char *)&adumma[0] = ' ';
		slatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b31, 
			adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, &
			n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], 
			 &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b31, 
			&c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
			n << 1) + 1], &c__1, &c_b31, "N", idumma, &c__0, &
			c__0, &c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b31, 
			&c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
			n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &n, &
			c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b31, 
			&c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
			n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &n, &
			c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);
		if (n >= 4) {
		    slaset_("Full", &c__2, &n, &c_b17, &c_b17, &a[a_offset], 
			    lda);
		    i__3 = n - 3;
		    slaset_("Full", &i__3, &c__1, &c_b17, &c_b17, &a[a_dim1 + 
			    3], lda);
		    i__3 = n - 3;
		    slaset_("Full", &i__3, &c__2, &c_b17, &c_b17, &a[(n - 1) *
			     a_dim1 + 3], lda);
		    slaset_("Full", &c__1, &n, &c_b17, &c_b17, &a[n + a_dim1], 
			     lda);
		}

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b31, 
			&c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
			n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &c__0, &
			c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___32.ciunit = *nounit;
		s_wsfe(&io___32);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L90:

/*           Test for minimal and generous workspace */

	    for (iwk = 1; iwk <= 2; ++iwk) {
		if (iwk == 1) {
		    nnwork = n << 2;
		} else {
/* Computing 2nd power */
		    i__3 = n;
		    nnwork = n * 5 + (i__3 * i__3 << 1);
		}
		nnwork = max(nnwork,1);

/*              Initialize RESULT */

		for (j = 1; j <= 7; ++j) {
		    result[j] = -1.f;
/* L100: */
		}

/*              Compute eigenvalues and eigenvectors, and test them */

		slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
		sgeev_("V", "V", &n, &h__[h_offset], lda, &wr[1], &wi[1], &vl[
			vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1], &
			nnwork, &iinfo);
		if (iinfo != 0) {
		    result[1] = ulpinv;
		    io___35.ciunit = *nounit;
		    s_wsfe(&io___35);
		    do_fio(&c__1, "SGEEV1", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    goto L220;
		}

/*              Do Test (1) */

		sget22_("N", "N", "N", &n, &a[a_offset], lda, &vr[vr_offset], 
			ldvr, &wr[1], &wi[1], &work[1], res);
		result[1] = res[0];

/*              Do Test (2) */

		sget22_("T", "N", "T", &n, &a[a_offset], lda, &vl[vl_offset], 
			ldvl, &wr[1], &wi[1], &work[1], res);
		result[2] = res[0];

/*              Do Test (3) */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    tnrm = 1.f;
		    if (wi[j] == 0.f) {
			tnrm = snrm2_(&n, &vr[j * vr_dim1 + 1], &c__1);
		    } else if (wi[j] > 0.f) {
			r__1 = snrm2_(&n, &vr[j * vr_dim1 + 1], &c__1);
			r__2 = snrm2_(&n, &vr[(j + 1) * vr_dim1 + 1], &c__1);
			tnrm = slapy2_(&r__1, &r__2);
		    }
/* Computing MAX */
/* Computing MIN */
		    r__4 = ulpinv, r__5 = (r__1 = tnrm - 1.f, dabs(r__1)) / 
			    ulp;
		    r__2 = result[3], r__3 = dmin(r__4,r__5);
		    result[3] = dmax(r__2,r__3);
		    if (wi[j] > 0.f) {
			vmx = 0.f;
			vrmx = 0.f;
			i__4 = n;
			for (jj = 1; jj <= i__4; ++jj) {
			    vtst = slapy2_(&vr[jj + j * vr_dim1], &vr[jj + (j 
				    + 1) * vr_dim1]);
			    if (vtst > vmx) {
				vmx = vtst;
			    }
			    if (vr[jj + (j + 1) * vr_dim1] == 0.f && (r__1 = 
				    vr[jj + j * vr_dim1], dabs(r__1)) > vrmx) 
				    {
				vrmx = (r__2 = vr[jj + j * vr_dim1], dabs(
					r__2));
			    }
/* L110: */
			}
			if (vrmx / vmx < 1.f - ulp * 2.f) {
			    result[3] = ulpinv;
			}
		    }
/* L120: */
		}

/*              Do Test (4) */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    tnrm = 1.f;
		    if (wi[j] == 0.f) {
			tnrm = snrm2_(&n, &vl[j * vl_dim1 + 1], &c__1);
		    } else if (wi[j] > 0.f) {
			r__1 = snrm2_(&n, &vl[j * vl_dim1 + 1], &c__1);
			r__2 = snrm2_(&n, &vl[(j + 1) * vl_dim1 + 1], &c__1);
			tnrm = slapy2_(&r__1, &r__2);
		    }
/* Computing MAX */
/* Computing MIN */
		    r__4 = ulpinv, r__5 = (r__1 = tnrm - 1.f, dabs(r__1)) / 
			    ulp;
		    r__2 = result[4], r__3 = dmin(r__4,r__5);
		    result[4] = dmax(r__2,r__3);
		    if (wi[j] > 0.f) {
			vmx = 0.f;
			vrmx = 0.f;
			i__4 = n;
			for (jj = 1; jj <= i__4; ++jj) {
			    vtst = slapy2_(&vl[jj + j * vl_dim1], &vl[jj + (j 
				    + 1) * vl_dim1]);
			    if (vtst > vmx) {
				vmx = vtst;
			    }
			    if (vl[jj + (j + 1) * vl_dim1] == 0.f && (r__1 = 
				    vl[jj + j * vl_dim1], dabs(r__1)) > vrmx) 
				    {
				vrmx = (r__2 = vl[jj + j * vl_dim1], dabs(
					r__2));
			    }
/* L130: */
			}
			if (vrmx / vmx < 1.f - ulp * 2.f) {
			    result[4] = ulpinv;
			}
		    }
/* L140: */
		}

/*              Compute eigenvalues only, and test them */

		slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
		sgeev_("N", "N", &n, &h__[h_offset], lda, &wr1[1], &wi1[1], 
			dum, &c__1, dum, &c__1, &work[1], &nnwork, &iinfo);
		if (iinfo != 0) {
		    result[1] = ulpinv;
		    io___43.ciunit = *nounit;
		    s_wsfe(&io___43);
		    do_fio(&c__1, "SGEEV2", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    goto L220;
		}

/*              Do Test (5) */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    if (wr[j] != wr1[j] || wi[j] != wi1[j]) {
			result[5] = ulpinv;
		    }
/* L150: */
		}

/*              Compute eigenvalues and right eigenvectors, and test them */

		slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
		sgeev_("N", "V", &n, &h__[h_offset], lda, &wr1[1], &wi1[1], 
			dum, &c__1, &lre[lre_offset], ldlre, &work[1], &
			nnwork, &iinfo);
		if (iinfo != 0) {
		    result[1] = ulpinv;
		    io___44.ciunit = *nounit;
		    s_wsfe(&io___44);
		    do_fio(&c__1, "SGEEV3", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    goto L220;
		}

/*              Do Test (5) again */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    if (wr[j] != wr1[j] || wi[j] != wi1[j]) {
			result[5] = ulpinv;
		    }
/* L160: */
		}

/*              Do Test (6) */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			if (vr[j + jj * vr_dim1] != lre[j + jj * lre_dim1]) {
			    result[6] = ulpinv;
			}
/* L170: */
		    }
/* L180: */
		}

/*              Compute eigenvalues and left eigenvectors, and test them */

		slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
		sgeev_("V", "N", &n, &h__[h_offset], lda, &wr1[1], &wi1[1], &
			lre[lre_offset], ldlre, dum, &c__1, &work[1], &nnwork, 
			 &iinfo);
		if (iinfo != 0) {
		    result[1] = ulpinv;
		    io___45.ciunit = *nounit;
		    s_wsfe(&io___45);
		    do_fio(&c__1, "SGEEV4", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    goto L220;
		}

/*              Do Test (5) again */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    if (wr[j] != wr1[j] || wi[j] != wi1[j]) {
			result[5] = ulpinv;
		    }
/* L190: */
		}

/*              Do Test (7) */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			if (vl[j + jj * vl_dim1] != lre[j + jj * lre_dim1]) {
			    result[7] = ulpinv;
			}
/* L200: */
		    }
/* L210: */
		}

/*              End of Loop -- Check for RESULT(j) > THRESH */

L220:

		ntest = 0;
		nfail = 0;
		for (j = 1; j <= 7; ++j) {
		    if (result[j] >= 0.f) {
			++ntest;
		    }
		    if (result[j] >= *thresh) {
			++nfail;
		    }
/* L230: */
		}

		if (nfail > 0) {
		    ++ntestf;
		}
		if (ntestf == 1) {
		    io___48.ciunit = *nounit;
		    s_wsfe(&io___48);
		    do_fio(&c__1, path, (ftnlen)3);
		    e_wsfe();
		    io___49.ciunit = *nounit;
		    s_wsfe(&io___49);
		    e_wsfe();
		    io___50.ciunit = *nounit;
		    s_wsfe(&io___50);
		    e_wsfe();
		    io___51.ciunit = *nounit;
		    s_wsfe(&io___51);
		    e_wsfe();
		    io___52.ciunit = *nounit;
		    s_wsfe(&io___52);
		    do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real));
		    e_wsfe();
		    ntestf = 2;
		}

		for (j = 1; j <= 7; ++j) {
		    if (result[j] >= *thresh) {
			io___53.ciunit = *nounit;
			s_wsfe(&io___53);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer));
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real)
				);
			e_wsfe();
		    }
/* L240: */
		}

		nerrs += nfail;
		ntestt += ntest;

/* L250: */
	    }
L260:
	    ;
	}
/* L270: */
    }

/*     Summary */

    slasum_(path, nounit, &nerrs, &ntestt);



    return 0;

/*     End of SDRVEV */

} /* sdrvev_ */