void hmac_sha512(const void *key_p, const uint32_t keylen, const void *msg_p, const uint32_t msglen, uint8_t *hmac) { const uint8_t *key = key_p; const uint8_t *msg = msg_p; int i; uint8_t buf[SHA512_BLOCK_LENGTH], o_key_pad[SHA512_BLOCK_LENGTH], i_key_pad[SHA512_BLOCK_LENGTH]; SHA512_CTX ctx; memset(buf, 0, SHA512_BLOCK_LENGTH); if (keylen > SHA512_BLOCK_LENGTH) { sha512_Raw(key, keylen, buf); } else { memcpy(buf, key, keylen); } for (i = 0; i < SHA512_BLOCK_LENGTH; i++) { o_key_pad[i] = buf[i] ^ 0x5c; i_key_pad[i] = buf[i] ^ 0x36; } sha512_Init(&ctx); sha512_Update(&ctx, i_key_pad, SHA512_BLOCK_LENGTH); sha512_Update(&ctx, msg, msglen); sha512_Final(buf, &ctx); sha512_Init(&ctx); sha512_Update(&ctx, o_key_pad, SHA512_BLOCK_LENGTH); sha512_Update(&ctx, buf, SHA512_DIGEST_LENGTH); sha512_Final(hmac, &ctx); MEMSET_BZERO(buf, sizeof(buf)); MEMSET_BZERO(o_key_pad, sizeof(o_key_pad)); MEMSET_BZERO(i_key_pad, sizeof(i_key_pad)); }
void hmac_sha512_Final(HMAC_SHA512_CTX *hctx, uint8_t *hmac) { sha512_Final(&(hctx->ctx), hmac); sha512_Init(&(hctx->ctx)); sha512_Update(&(hctx->ctx), hctx->o_key_pad, SHA512_BLOCK_LENGTH); sha512_Update(&(hctx->ctx), hmac, SHA512_DIGEST_LENGTH); sha512_Final(&(hctx->ctx), hmac); memzero(hctx, sizeof(HMAC_SHA512_CTX)); }
void pbkdf2_hmac_sha512_Init(PBKDF2_HMAC_SHA512_CTX *pctx, const uint8_t *pass, int passlen, const uint8_t *salt, int saltlen) { SHA512_CTX ctx; uint32_t blocknr = 1; #if BYTE_ORDER == LITTLE_ENDIAN REVERSE32(blocknr, blocknr); #endif hmac_sha512_prepare(pass, passlen, pctx->odig, pctx->idig); memset(pctx->g, 0, sizeof(pctx->g)); pctx->g[8] = 0x8000000000000000; pctx->g[15] = (SHA512_BLOCK_LENGTH + SHA512_DIGEST_LENGTH) * 8; memcpy (ctx.state, pctx->idig, sizeof(pctx->idig)); ctx.bitcount[0] = SHA512_BLOCK_LENGTH * 8; ctx.bitcount[1] = 0; sha512_Update(&ctx, salt, saltlen); sha512_Update(&ctx, (uint8_t*)&blocknr, sizeof(blocknr)); sha512_Final(&ctx, (uint8_t*)pctx->g); #if BYTE_ORDER == LITTLE_ENDIAN for (uint32_t k = 0; k < SHA512_DIGEST_LENGTH / sizeof(uint64_t); k++) { REVERSE64(pctx->g[k], pctx->g[k]); } #endif sha512_Transform(pctx->odig, pctx->g, pctx->g); memcpy(pctx->f, pctx->g, SHA512_DIGEST_LENGTH); pctx->first = 1; }
void hmac_sha512_prepare(const uint8_t *key, const uint32_t keylen, uint64_t *opad_digest, uint64_t *ipad_digest) { static CONFIDENTIAL uint64_t key_pad[SHA512_BLOCK_LENGTH / sizeof(uint64_t)]; memzero(key_pad, sizeof(key_pad)); if (keylen > SHA512_BLOCK_LENGTH) { static CONFIDENTIAL SHA512_CTX context; sha512_Init(&context); sha512_Update(&context, key, keylen); sha512_Final(&context, (uint8_t *)key_pad); } else { memcpy(key_pad, key, keylen); } /* compute o_key_pad and its digest */ for (int i = 0; i < SHA512_BLOCK_LENGTH / (int)sizeof(uint64_t); i++) { uint64_t data; #if BYTE_ORDER == LITTLE_ENDIAN REVERSE64(key_pad[i], data); #else data = key_pad[i]; #endif key_pad[i] = data ^ 0x5c5c5c5c5c5c5c5c; } sha512_Transform(sha512_initial_hash_value, key_pad, opad_digest); /* convert o_key_pad to i_key_pad and compute its digest */ for (int i = 0; i < SHA512_BLOCK_LENGTH / (int)sizeof(uint64_t); i++) { key_pad[i] = key_pad[i] ^ 0x5c5c5c5c5c5c5c5c ^ 0x3636363636363636; } sha512_Transform(sha512_initial_hash_value, key_pad, ipad_digest); memzero(key_pad, sizeof(key_pad)); }