/* ******************************************************************************** * PRIVATE PROGRAM CODE ******************************************************************************** */ void MR475_quant_store_results( gc_predState *pred_st, /* i/o: gain predictor state struct */ const Word16 *p, /* i : pointer to selected quantizer table entry */ Word16 gcode0, /* i : predicted CB gain, Q(14 - exp_gcode0) */ Word16 exp_gcode0, /* i : exponent of predicted CB gain, Q0 */ Word16 *gain_pit, /* o : Pitch gain, Q14 */ Word16 *gain_cod /* o : Code gain, Q1 */ ) { Word16 g_code, exp, frac, tmp; Word32 L_tmp; Word16 qua_ener_MR122; /* o : quantized energy error, MR122 version Q10 */ Word16 qua_ener; /* o : quantized energy error, Q10 */ /* Read the quantized gains */ *gain_pit = *p++; g_code = *p++; /*------------------------------------------------------------------* * calculate final fixed codebook gain: * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * * * gc = gc0 * g * *------------------------------------------------------------------*/ L_tmp = L_mult(g_code, gcode0); L_tmp = L_shr(L_tmp, sub(10, exp_gcode0)); *gain_cod = extract_h(L_tmp); /*------------------------------------------------------------------* * calculate predictor update values and update gain predictor: * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * * * qua_ener = log2(g) * * qua_ener_MR122 = 20*log10(g) * *------------------------------------------------------------------*/ Log2 (L_deposit_l (g_code), &exp, &frac); /* Log2(x Q12) = log2(x) + 12 */ exp = sub(exp, 12); tmp = shr_r (frac, 5); qua_ener_MR122 = add (tmp, shl (exp, 10)); L_tmp = Mpy_32_16(exp, frac, 24660); /* 24660 Q12 ~= 6.0206 = 20*log10(2) */ qua_ener = round (L_shl (L_tmp, 13)); /* Q12 * Q0 = Q13 -> Q10 */ gc_pred_update(pred_st, qua_ener_MR122, qua_ener); }
/************************************************************************* * * FUNCTION: Dec_gain() * * PURPOSE: Decode the pitch and codebook gains * ************************************************************************/ void Dec_gain( gc_predState *pred_state, /* i/o: MA predictor state */ enum Mode mode, /* i : AMR mode */ Word16 index, /* i : index of quantization. */ Word16 code[], /* i : Innovative vector. */ Word16 evenSubfr, /* i : Flag for even subframes */ Word16 * gain_pit, /* o : Pitch gain. */ Word16 * gain_cod /* o : Code gain. */ ) { const Word16 *p; Word16 frac, gcode0, exp, qua_ener, qua_ener_MR122; Word16 g_code; Word32 L_tmp; /* Read the quantized gains (table depends on mode) */ index = shl (index, 2); test(); test(); test(); if ( sub (mode, MR102) == 0 || sub (mode, MR74) == 0 || sub (mode, MR67) == 0) { p = &table_gain_highrates[index]; move16 (); *gain_pit = *p++; move16 (); g_code = *p++; move16 (); qua_ener_MR122 = *p++; move16 (); qua_ener = *p; move16 (); } else { test(); if (sub (mode, MR475) == 0) { index = add (index, shl(sub(1, evenSubfr), 1)); p = &table_gain_MR475[index]; move16 (); *gain_pit = *p++; move16 (); g_code = *p++; move16 (); /*---------------------------------------------------------* * calculate predictor update values (not stored in 4.75 * * quantizer table to save space): * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * * * qua_ener = log2(g) * * qua_ener_MR122 = 20*log10(g) * *---------------------------------------------------------*/ /* Log2(x Q12) = log2(x) + 12 */ Log2 (L_deposit_l (g_code), &exp, &frac); exp = sub(exp, 12); qua_ener_MR122 = add (shr_r (frac, 5), shl (exp, 10)); /* 24660 Q12 ~= 6.0206 = 20*log10(2) */ L_tmp = Mpy_32_16(exp, frac, 24660); qua_ener = round (L_shl (L_tmp, 13)); /* Q12 * Q0 = Q13 -> Q10 */ } else { p = &table_gain_lowrates[index]; move16 (); *gain_pit = *p++; move16 (); g_code = *p++; move16 (); qua_ener_MR122 = *p++; move16 (); qua_ener = *p; move16 (); } } /*-------------------------------------------------------------------* * predict codebook gain * * ~~~~~~~~~~~~~~~~~~~~~ * * gc0 = Pow2(int(d)+frac(d)) * * = 2^exp + 2^frac * * * * gcode0 (Q14) = 2^14*2^frac = gc0 * 2^(14-exp) * *-------------------------------------------------------------------*/ gc_pred(pred_state, mode, code, &exp, &frac, NULL, NULL); gcode0 = extract_l(Pow2(14, frac)); /*------------------------------------------------------------------* * read quantized gains, update table of past quantized energies * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * st->past_qua_en(Q10) = 20 * Log10(g_fac) / constant * * = Log2(g_fac) * * = qua_ener * * constant = 20*Log10(2) * *------------------------------------------------------------------*/ L_tmp = L_mult(g_code, gcode0); L_tmp = L_shr(L_tmp, sub(10, exp)); *gain_cod = extract_h(L_tmp); /* update table of past quantized energies */ gc_pred_update(pred_state, qua_ener_MR122, qua_ener); return; }
/************************************************************************* * * Function: gain_adapt() * Purpose: calculate pitch/codebook gain adaptation factor alpha * (and update the adaptor state) * ************************************************************************** */ void gain_adapt( GainAdaptState *st, /* i : state struct */ Word16 ltpg, /* i : ltp coding gain (log2()), Q13 */ Word16 gain_cod, /* i : code gain, Q1 */ Word16 *alpha /* o : gain adaptation factor, Q15 */ ) { Word16 adapt; /* adaptdation status; 0, 1, or 2 */ Word16 result; /* alpha factor, Q13 */ Word16 filt; /* median-filtered LTP coding gain, Q13 */ Word16 tmp, i; /* basic adaptation */ if (sub (ltpg, LTP_GAIN_THR1) <= 0) { adapt = 0; } else { if (sub (ltpg, LTP_GAIN_THR2) <= 0) { adapt = 1; } else { adapt = 2; } } /* * // onset indicator * if ((cbGain > onFact * cbGainMem[0]) && (cbGain > 100.0)) * onset = 8; * else * if (onset) * onset--; */ /* tmp = cbGain / onFact; onFact = 2.0; 200 Q1 = 100.0 */ tmp = shr_r (gain_cod, 1); if ((sub (tmp, st->prev_gc) > 0) && sub(gain_cod, 200) > 0) { st->onset = 8; } else { if (st->onset != 0) { st->onset = sub (st->onset, 1); } } /* * // if onset, increase adaptor state * if (onset && (gainAdapt < 2)) gainAdapt++; */ if ((st->onset != 0) && (sub (adapt, 2) < 0)) { adapt = add (adapt, 1); } st->ltpg_mem[0] = ltpg; filt = gmed_n (st->ltpg_mem, 5); /* function result */ if (adapt == 0) { if (sub (filt, 5443) > 0) /* 5443 Q13 = 0.66443... */ { result = 0; } else { if (filt < 0) { result = 16384; /* 16384 Q15 = 0.5 */ } else { /* result = 0.5 - 0.75257499*filt */ /* result (Q15) = 16384 - 24660 * (filt << 2) */ filt = shl (filt, 2); /* Q15 */ result = sub (16384, mult (24660, filt)); } } } else { result = 0; } /* * if (prevAlpha == 0.0) result = 0.5 * (result + prevAlpha); */ if (st->prev_alpha == 0) { result = shr (result, 1); } /* store the result */ *alpha = result; /* update adapter state memory */ st->prev_alpha = result; st->prev_gc = gain_cod; for (i = LTPG_MEM_SIZE-1; i > 0; i--) { st->ltpg_mem[i] = st->ltpg_mem[i-1]; } /* mem[0] is just present for convenience in calling the gmed_n[5] * function above. The memory depth is really LTPG_MEM_SIZE-1. */ }
/*-----------------------------------------------------------* * procedure Calc_exc_rand * * ~~~~~~~~~~~~~ * * Computes comfort noise excitation * * for SID and not-transmitted frames * *-----------------------------------------------------------*/ void Calc_exc_rand( Word32 L_exc_err[4], Word16 cur_gain, /* (i) : target sample gain */ Word16 *exc, /* (i/o) : excitation array */ Word16 *seed, /* (i) : current Vad decision */ Flag flag_cod /* (i) : encoder/decoder flag */ ) { Word16 i, j, i_subfr; Word16 temp1, temp2; Word16 pos[4]; Word16 sign[4]; Word16 t0, frac; Word16 *cur_exc; Word16 g, Gp, Gp2; Word16 excg[L_SUBFR], excs[L_SUBFR]; Word32 L_acc, L_ener, L_k; Word16 max, hi, lo, inter_exc; Word16 sh; Word16 x1, x2; if(cur_gain == 0) { for(i=0; i<L_FRAME; i++) { exc[i] = 0; } Gp = 0; t0 = add(L_SUBFR,1); for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR) { if(flag_cod != FLAG_DEC) update_exc_err(L_exc_err, Gp, t0); } return; } /* Loop on subframes */ cur_exc = exc; for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR) { /* generate random adaptive codebook & fixed codebook parameters */ /*****************************************************************/ temp1 = Random(seed); frac = sub((temp1 & (Word16)0x0003), 1); if(sub(frac, 2) == 0) frac = 0; temp1 = shr(temp1, 2); t0 = add((temp1 & (Word16)0x003F), 40); temp1 = shr(temp1, 6); temp2 = temp1 & (Word16)0x0007; pos[0] = add(shl(temp2, 2), temp2); /* 5 * temp2 */ temp1 = shr(temp1, 3); sign[0] = temp1 & (Word16)0x0001; temp1 = shr(temp1, 1); temp2 = temp1 & (Word16)0x0007; temp2 = add(shl(temp2, 2), temp2); pos[1] = add(temp2, 1); /* 5 * x + 1 */ temp1 = shr(temp1, 3); sign[1] = temp1 & (Word16)0x0001; temp1 = Random(seed); temp2 = temp1 & (Word16)0x0007; temp2 = add(shl(temp2, 2), temp2); pos[2] = add(temp2, 2); /* 5 * x + 2 */ temp1 = shr(temp1, 3); sign[2] = temp1 & (Word16)0x0001; temp1 = shr(temp1, 1); temp2 = temp1 & (Word16)0x000F; pos[3] = add((temp2 & (Word16)1), 3); /* j+3*/ temp2 = (shr(temp2, 1)) & (Word16)7; temp2 = add(shl(temp2, 2), temp2); /* 5i */ pos[3] = add(pos[3], temp2); temp1 = shr(temp1, 4); sign[3] = temp1 & (Word16)0x0001; Gp = Random(seed) & (Word16)0x1FFF; /* < 0.5 Q14 */ Gp2 = shl(Gp, 1); /* Q15 */ /* Generate gaussian excitation */ /********************************/ L_acc = 0L; for(i=0; i<L_SUBFR; i++) { temp1 = Gauss(seed); L_acc = L_mac(L_acc, temp1, temp1); excg[i] = temp1; } /* Compute fact = alpha x cur_gain * sqrt(L_SUBFR / Eg) with Eg = SUM(i=0->39) excg[i]^2 and alpha = 0.5 alpha x sqrt(L_SUBFR)/2 = 1 + FRAC1 */ L_acc = Inv_sqrt(L_shr(L_acc,1)); /* Q30 */ L_Extract(L_acc, &hi, &lo); /* cur_gain = cur_gainR << 3 */ temp1 = mult_r(cur_gain, FRAC1); temp1 = add(cur_gain, temp1); /* <=> alpha x cur_gainR x 2^2 x sqrt(L_SUBFR) */ L_acc = Mpy_32_16(hi, lo, temp1); /* fact << 17 */ sh = norm_l(L_acc); temp1 = extract_h(L_shl(L_acc, sh)); /* fact << (sh+1) */ sh = sub(sh, 14); for(i=0; i<L_SUBFR; i++) { temp2 = mult_r(excg[i], temp1); temp2 = shr_r(temp2, sh); /* shl if sh < 0 */ excg[i] = temp2; } /* generate random adaptive excitation */ /****************************************/ Pred_lt_3(cur_exc, t0, frac, L_SUBFR); /* compute adaptive + gaussian exc -> cur_exc */ /**********************************************/ max = 0; for(i=0; i<L_SUBFR; i++) { temp1 = mult_r(cur_exc[i], Gp2); temp1 = add(temp1, excg[i]); /* may overflow */ cur_exc[i] = temp1; temp1 = abs_s(temp1); if(sub(temp1,max) > 0) max = temp1; } /* rescale cur_exc -> excs */ if(max == 0) sh = 0; else { sh = sub(3, norm_s(max)); if(sh <= 0) sh = 0; } for(i=0; i<L_SUBFR; i++) { excs[i] = shr(cur_exc[i], sh); } /* Compute fixed code gain */ /***************************/ /**********************************************************/ /*** Solve EQ(X) = 4 X**2 + 2 b X + c */ /**********************************************************/ L_ener = 0L; for(i=0; i<L_SUBFR; i++) { L_ener = L_mac(L_ener, excs[i], excs[i]); } /* ener x 2^(-2sh + 1) */ /* inter_exc = b >> sh */ inter_exc = 0; for(i=0; i<4; i++) { j = pos[i]; if(sign[i] == 0) { inter_exc = sub(inter_exc, excs[j]); } else { inter_exc = add(inter_exc, excs[j]); } } /* Compute k = cur_gainR x cur_gainR x L_SUBFR */ L_acc = L_mult(cur_gain, L_SUBFR); L_acc = L_shr(L_acc, 6); temp1 = extract_l(L_acc); /* cur_gainR x L_SUBFR x 2^(-2) */ L_k = L_mult(cur_gain, temp1); /* k << 2 */ temp1 = add(1, shl(sh,1)); L_acc = L_shr(L_k, temp1); /* k x 2^(-2sh+1) */ /* Compute delta = b^2 - 4 c */ L_acc = L_sub(L_acc, L_ener); /* - 4 c x 2^(-2sh-1) */ inter_exc = shr(inter_exc, 1); L_acc = L_mac(L_acc, inter_exc, inter_exc); /* 2^(-2sh-1) */ sh = add(sh, 1); /* inter_exc = b x 2^(-sh) */ /* L_acc = delta x 2^(-2sh+1) */ if(L_acc < 0) { /* adaptive excitation = 0 */ Copy(excg, cur_exc, L_SUBFR); temp1 = abs_s(excg[(int)pos[0]]) | abs_s(excg[(int)pos[1]]); temp2 = abs_s(excg[(int)pos[2]]) | abs_s(excg[(int)pos[3]]); temp1 = temp1 | temp2; sh = ((temp1 & (Word16)0x4000) == 0) ? (Word16)1 : (Word16)2; inter_exc = 0; for(i=0; i<4; i++) { temp1 = shr(excg[(int)pos[i]], sh); if(sign[i] == 0) { inter_exc = sub(inter_exc, temp1); } else { inter_exc = add(inter_exc, temp1); } } /* inter_exc = b >> sh */ L_Extract(L_k, &hi, &lo); L_acc = Mpy_32_16(hi, lo, K0); /* k x (1- alpha^2) << 2 */ temp1 = sub(shl(sh, 1), 1); /* temp1 > 0 */ L_acc = L_shr(L_acc, temp1); /* 4k x (1 - alpha^2) << (-2sh+1) */ L_acc = L_mac(L_acc, inter_exc, inter_exc); /* delta << (-2sh+1) */ Gp = 0; } temp2 = Sqrt(L_acc); /* >> sh */ x1 = sub(temp2, inter_exc); x2 = negate(add(inter_exc, temp2)); /* x 2^(-sh+2) */ if(sub(abs_s(x2),abs_s(x1)) < 0) x1 = x2; temp1 = sub(2, sh); g = shr_r(x1, temp1); /* shl if temp1 < 0 */ if(g >= 0) { if(sub(g, G_MAX) > 0) g = G_MAX; } else { if(add(g, G_MAX) < 0) g = negate(G_MAX); } /* Update cur_exc with ACELP excitation */ for(i=0; i<4; i++) { j = pos[i]; if(sign[i] != 0) { cur_exc[j] = add(cur_exc[j], g); } else { cur_exc[j] = sub(cur_exc[j], g); } } if(flag_cod != FLAG_DEC) update_exc_err(L_exc_err, Gp, t0); cur_exc += L_SUBFR; } /* end of loop on subframes */ return; }
//============================================================================= //函数名称:Dec_gain //函数功能:解码的音调和码书增益 //============================================================================= void Dec_gain( gc_predState *pred_state, /* i/o: MA predictor state */ enum Mode mode, /* i : AMR mode */ Word16 index, /* i : index of quantization. */ Word16 code[], /* i : Innovative vector. */ Word16 evenSubfr, /* i : Flag for even subframes */ Word16 * gain_pit, /* o : Pitch gain. */ Word16 * gain_cod, /* o : Code gain. */ Flag * pOverflow ) { const Word16 *p; Word16 frac; Word16 gcode0; Word16 exp; Word16 qua_ener; Word16 qua_ener_MR122; Word16 g_code; Word32 L_tmp; Word16 temp1; Word16 temp2; /* Read the quantized gains (table depends on mode) */ //阅读量化收益(表取决于模式) index = shl(index, 2, pOverflow); if (mode == MR102 || mode == MR74 || mode == MR67) { p = &table_gain_highrates[index]; *gain_pit = *p++; g_code = *p++; qua_ener_MR122 = *p++; qua_ener = *p; } else { if (mode == MR475) { index += (1 ^ evenSubfr) << 1; /* evenSubfr is 0 or 1 */ if (index > (MR475_VQ_SIZE*4 - 2)) { index = (MR475_VQ_SIZE * 4 - 2); /* avoid possible buffer overflow */ } p = &table_gain_MR475[index]; *gain_pit = *p++; g_code = *p++; /*---------------------------------------------------------* * calculate predictor update values (not stored in 4.75 * * quantizer table to save space): * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * * * qua_ener = log2(g) * * qua_ener_MR122 = 20*log10(g) * *---------------------------------------------------------*/ //计算预测更新值(不存储在4.75量化表,以节省空间) /* Log2(x Q12) = log2(x) + 12 */ temp1 = (Word16) L_deposit_l(g_code); Log2(temp1, &exp, &frac, pOverflow); exp = sub(exp, 12, pOverflow); temp1 = shr_r(frac, 5, pOverflow); temp2 = shl(exp, 10, pOverflow); qua_ener_MR122 = add(temp1, temp2, pOverflow); /* 24660 Q12 ~= 6.0206 = 20*log10(2) */ L_tmp = Mpy_32_16(exp, frac, 24660, pOverflow); L_tmp = L_shl(L_tmp, 13, pOverflow); qua_ener = pv_round(L_tmp, pOverflow); /* Q12 * Q0 = Q13 -> Q10 */ } else { p = &table_gain_lowrates[index]; *gain_pit = *p++; g_code = *p++; qua_ener_MR122 = *p++; qua_ener = *p; } } /*-------------------------------------------------------------------* * predict codebook gain * * ~~~~~~~~~~~~~~~~~~~~~ * * gc0 = Pow2(int(d)+frac(d)) * * = 2^exp + 2^frac * * * * gcode0 (Q14) = 2^14*2^frac = gc0 * 2^(14-exp) * *-------------------------------------------------------------------*/ gc_pred(pred_state, mode, code, &exp, &frac, NULL, NULL, pOverflow); gcode0 = (Word16) Pow2(14, frac, pOverflow); /*------------------------------------------------------------------* * read quantized gains, update table of past quantized energies * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * st->past_qua_en(Q10) = 20 * Log10(g_fac) / constant * * = Log2(g_fac) * * = qua_ener * * constant = 20*Log10(2) * *------------------------------------------------------------------*/ L_tmp = L_mult(g_code, gcode0, pOverflow); temp1 = sub(10, exp, pOverflow); L_tmp = L_shr(L_tmp, temp1, pOverflow); *gain_cod = extract_h(L_tmp); /* update table of past quantized energies */ //过去的量化能量表更新 gc_pred_update(pred_state, qua_ener_MR122, qua_ener); return; }
Word16 vad2 (Word16 * farray_ptr, vadState2 * st) { /* * The channel table is defined below. In this table, the * lower and higher frequency coefficients for each of the 16 * channels are specified. The table excludes the coefficients * with numbers 0 (DC), 1, and 64 (Foldover frequency). */ const static Word16 ch_tbl[NUM_CHAN][2] = { {2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 16}, {17, 19}, {20, 22}, {23, 26}, {27, 30}, {31, 35}, {36, 41}, {42, 48}, {49, 55}, {56, 63} }; /* channel energy scaling table - allows efficient division by number * of DFT bins in the channel: 1/2, 1/3, 1/4, etc. */ const static Word16 ch_tbl_sh[NUM_CHAN] = { 16384, 16384, 16384, 16384, 16384, 16384, 10923, 10923, 10923, 8192, 8192, 6554, 5461, 4681, 4681, 4096 }; /* * The voice metric table is defined below. It is a non- * linear table with a deadband near zero. It maps the SNR * index (quantized SNR value) to a number that is a measure * of voice quality. */ const static Word16 vm_tbl[90] = { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 23, 24, 24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50 }; /* hangover as a function of peak SNR (3 dB steps) */ const static Word16 hangover_table[20] = { 30, 30, 30, 30, 30, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 8, 8, 8 }; /* burst sensitivity as a function of peak SNR (3 dB steps) */ const static Word16 burstcount_table[20] = { 8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4 }; /* voice metric sensitivity as a function of peak SNR (3 dB steps) */ const static Word16 vm_threshold_table[20] = { 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 40, 51, 71, 100, 139, 191, 257, 337, 432 }; /* State tables that use 22,9 or 27,4 scaling for ch_enrg[] */ const static Word16 noise_floor_chan[2] = {NOISE_FLOOR_CHAN_0, NOISE_FLOOR_CHAN_1}; const static Word16 min_chan_enrg[2] = {MIN_CHAN_ENRG_0, MIN_CHAN_ENRG_1}; const static Word16 ine_noise[2] = {INE_NOISE_0, INE_NOISE_1}; const static Word16 fbits[2] = {FRACTIONAL_BITS_0, FRACTIONAL_BITS_1}; const static Word16 state_change_shift_r[2] = {STATE_1_TO_0_SHIFT_R, STATE_0_TO_1_SHIFT_R}; /* Energy scale table given 30,1 input scaling (also account for -6 dB shift on input) */ const static Word16 enrg_norm_shift[2] = {(FRACTIONAL_BITS_0-1+2), (FRACTIONAL_BITS_1-1+2)}; /* Automatic variables */ Word32 Lenrg; /* scaled as 30,1 */ Word32 Ltne; /* scaled as 22,9 */ Word32 Ltce; /* scaled as 22,9 or 27,4 */ Word16 tne_db; /* scaled as 7,8 */ Word16 tce_db; /* scaled as 7,8 */ Word16 input_buffer[FRM_LEN]; /* used for block normalising input data */ Word16 data_buffer[FFT_LEN]; /* used for in-place FFT */ Word16 ch_snr[NUM_CHAN]; /* scaled as 7,8 */ Word16 ch_snrq; /* scaled as 15,0 (in 0.375 dB steps) */ Word16 vm_sum; /* scaled as 15,0 */ Word16 ch_enrg_dev; /* scaled as 7,8 */ Word32 Lpeak; /* maximum channel energy */ Word16 p2a_flag; /* flag to indicate spectral peak-to-average ratio > 10 dB */ Word16 ch_enrg_db[NUM_CHAN]; /* scaled as 7,8 */ Word16 ch_noise_db; /* scaled as 7,8 */ Word16 alpha; /* scaled as 0,15 */ Word16 one_m_alpha; /* scaled as 0,15 */ Word16 update_flag; /* set to indicate a background noise estimate update */ Word16 i, j, j1, j2; /* Scratch variables */ Word16 hi1, lo1; Word32 Ltmp, Ltmp1, Ltmp2; Word16 tmp; Word16 normb_shift; /* block norm shift count */ Word16 ivad; /* intermediate VAD decision (return value) */ Word16 tsnrq; /* total signal-to-noise ratio (quantized 3 dB steps) scaled as 15,0 */ Word16 xt; /* instantaneous frame SNR in dB, scaled as 7,8 */ Word16 state_change; /* Increment frame counter */ st->Lframe_cnt = L_add(st->Lframe_cnt, 1); /* Block normalize the input */ normb_shift = block_norm(farray_ptr, input_buffer, FRM_LEN, FFT_HEADROOM); /* Pre-emphasize the input data and store in the data buffer with the appropriate offset */ for (i = 0; i < DELAY; i++) { data_buffer[i] = 0; move16(); } st->pre_emp_mem = shr_r(st->pre_emp_mem, sub(st->last_normb_shift, normb_shift)); st->last_normb_shift = normb_shift; move16(); data_buffer[DELAY] = add(input_buffer[0], mult(PRE_EMP_FAC, st->pre_emp_mem)); move16(); for (i = DELAY + 1, j = 1; i < DELAY + FRM_LEN; i++, j++) { data_buffer[i] = add(input_buffer[j], mult(PRE_EMP_FAC, input_buffer[j-1])); move16(); } st->pre_emp_mem = input_buffer[FRM_LEN-1]; move16(); for (i = DELAY + FRM_LEN; i < FFT_LEN; i++) { data_buffer[i] = 0; move16(); } /* Perform FFT on the data buffer */ r_fft(data_buffer); /* Use normb_shift factor to determine the scaling of the energy estimates */ state_change = 0; move16(); test(); if (st->shift_state == 0) { test(); if (sub(normb_shift, -FFT_HEADROOM+2) <= 0) { state_change = 1; move16(); st->shift_state = 1; move16(); } } else { test(); if (sub(normb_shift, -FFT_HEADROOM+5) >= 0) { state_change = 1; move16(); st->shift_state = 0; move16(); } } /* Scale channel energy estimate */ test(); if (state_change) { for (i = LO_CHAN; i <= HI_CHAN; i++) { st->Lch_enrg[i] = L_shr(st->Lch_enrg[i], state_change_shift_r[st->shift_state]); move32(); } } /* Estimate the energy in each channel */ test(); if (L_sub(st->Lframe_cnt, 1) == 0) { alpha = 32767; move16(); one_m_alpha = 0; move16(); } else { alpha = CEE_SM_FAC; move16(); one_m_alpha = ONE_MINUS_CEE_SM_FAC; move16(); } for (i = LO_CHAN; i <= HI_CHAN; i++) { Lenrg = 0; move16(); j1 = ch_tbl[i][0]; move16(); j2 = ch_tbl[i][1]; move16(); for (j = j1; j <= j2; j++) { Lenrg = L_mac(Lenrg, data_buffer[2 * j], data_buffer[2 * j]); Lenrg = L_mac(Lenrg, data_buffer[2 * j + 1], data_buffer[2 * j + 1]); } /* Denorm energy & scale 30,1 according to the state */ Lenrg = L_shr_r(Lenrg, sub(shl(normb_shift, 1), enrg_norm_shift[st->shift_state])); /* integrate over time: e[i] = (1-alpha)*e[i] + alpha*enrg/num_bins_in_chan */ tmp = mult(alpha, ch_tbl_sh[i]); L_Extract (Lenrg, &hi1, &lo1); Ltmp = Mpy_32_16(hi1, lo1, tmp); L_Extract (st->Lch_enrg[i], &hi1, &lo1); st->Lch_enrg[i] = L_add(Ltmp, Mpy_32_16(hi1, lo1, one_m_alpha)); move32(); test(); if (L_sub(st->Lch_enrg[i], min_chan_enrg[st->shift_state]) < 0) { st->Lch_enrg[i] = min_chan_enrg[st->shift_state]; move32(); } } /* Compute the total channel energy estimate (Ltce) */ Ltce = 0; move16(); for (i = LO_CHAN; i <= HI_CHAN; i++) { Ltce = L_add(Ltce, st->Lch_enrg[i]); } /* Calculate spectral peak-to-average ratio, set flag if p2a > 10 dB */ Lpeak = 0; move32(); for (i = LO_CHAN+2; i <= HI_CHAN; i++) /* Sine waves not valid for low frequencies */ { test(); if (L_sub(st->Lch_enrg [i], Lpeak) > 0) { Lpeak = st->Lch_enrg [i]; move32(); } } /* Set p2a_flag if peak (dB) > average channel energy (dB) + 10 dB */ /* Lpeak > Ltce/num_channels * 10^(10/10) */ /* Lpeak > (10/16)*Ltce */ L_Extract (Ltce, &hi1, &lo1); Ltmp = Mpy_32_16(hi1, lo1, 20480); test(); if (L_sub(Lpeak, Ltmp) > 0) { p2a_flag = TRUE; move16(); } else { p2a_flag = FALSE; move16(); } /* Initialize channel noise estimate to either the channel energy or fixed level */ /* Scale the energy appropriately to yield state 0 (22,9) scaling for noise */ test(); if (L_sub(st->Lframe_cnt, 4) <= 0) { test(); if (p2a_flag == TRUE) { for (i = LO_CHAN; i <= HI_CHAN; i++) { st->Lch_noise[i] = INE_NOISE_0; move32(); } } else { for (i = LO_CHAN; i <= HI_CHAN; i++) { test(); if (L_sub(st->Lch_enrg[i], ine_noise[st->shift_state]) < 0) { st->Lch_noise[i] = INE_NOISE_0; move32(); } else { test(); if (st->shift_state == 1) { st->Lch_noise[i] = L_shr(st->Lch_enrg[i], state_change_shift_r[0]); move32(); } else { st->Lch_noise[i] = st->Lch_enrg[i]; move32(); } } } } } /* Compute the channel energy (in dB), the channel SNRs, and the sum of voice metrics */ vm_sum = 0; move16(); for (i = LO_CHAN; i <= HI_CHAN; i++) { ch_enrg_db[i] = fn10Log10(st->Lch_enrg[i], fbits[st->shift_state]); move16(); ch_noise_db = fn10Log10(st->Lch_noise[i], FRACTIONAL_BITS_0); ch_snr[i] = sub(ch_enrg_db[i], ch_noise_db); move16(); /* quantize channel SNR in 3/8 dB steps (scaled 7,8 => 15,0) */ /* ch_snr = round((snr/(3/8))>>8) */ /* = round(((0.6667*snr)<<2)>>8) */ /* = round((0.6667*snr)>>6) */ ch_snrq = shr_r(mult(21845, ch_snr[i]), 6); /* Accumulate the sum of voice metrics */ test(); if (sub(ch_snrq, 89) < 0) { test(); if (ch_snrq > 0) { j = ch_snrq; move16(); } else { j = 0; move16(); } } else { j = 89; move16(); } vm_sum = add(vm_sum, vm_tbl[j]); } /* Initialize NOMINAL peak voice energy and average noise energy, calculate instantaneous SNR */ test(),test(),logic16(); if (L_sub(st->Lframe_cnt, 4) <= 0 || st->fupdate_flag == TRUE) { /* tce_db = (96 - 22 - 10*log10(64) (due to FFT)) scaled as 7,8 */ tce_db = 14320; move16(); st->negSNRvar = 0; move16(); st->negSNRbias = 0; move16(); /* Compute the total noise estimate (Ltne) */ Ltne = 0; move32(); for (i = LO_CHAN; i <= HI_CHAN; i++) { Ltne = L_add(Ltne, st->Lch_noise[i]); } /* Get total noise in dB */ tne_db = fn10Log10(Ltne, FRACTIONAL_BITS_0); /* Initialise instantaneous and long-term peak signal-to-noise ratios */ xt = sub(tce_db, tne_db); st->tsnr = xt; move16(); } else { /* Calculate instantaneous frame signal-to-noise ratio */ /* xt = 10*log10( sum(2.^(ch_snr*0.1*log2(10)))/length(ch_snr) ) */ Ltmp1 = 0; move32(); for (i=LO_CHAN; i<=HI_CHAN; i++) { /* Ltmp2 = ch_snr[i] * 0.1 * log2(10); (ch_snr scaled as 7,8) */ Ltmp2 = L_shr(L_mult(ch_snr[i], 10885), 8); L_Extract(Ltmp2, &hi1, &lo1); hi1 = add(hi1, 3); /* 2^3 to compensate for negative SNR */ Ltmp1 = L_add(Ltmp1, Pow2(hi1, lo1)); } xt = fn10Log10(Ltmp1, 4+3); /* average by 16, inverse compensation 2^3 */ /* Estimate long-term "peak" SNR */ test(),test(); if (sub(xt, st->tsnr) > 0) { /* tsnr = 0.9*tsnr + 0.1*xt; */ st->tsnr = round(L_add(L_mult(29491, st->tsnr), L_mult(3277, xt))); } /* else if (xt > 0.625*tsnr) */ else if (sub(xt, mult(20480, st->tsnr)) > 0) { /* tsnr = 0.998*tsnr + 0.002*xt; */ st->tsnr = round(L_add(L_mult(32702, st->tsnr), L_mult(66, xt))); } } /* Quantize the long-term SNR in 3 dB steps, limit to 0 <= tsnrq <= 19 */ tsnrq = shr(mult(st->tsnr, 10923), 8); /* tsnrq = min(19, max(0, tsnrq)); */ test(),test(); if (sub(tsnrq, 19) > 0) { tsnrq = 19; move16(); } else if (tsnrq < 0) { tsnrq = 0; move16(); } /* Calculate the negative SNR sensitivity bias */ test(); if (xt < 0) { /* negSNRvar = 0.99*negSNRvar + 0.01*xt*xt; */ /* xt scaled as 7,8 => xt*xt scaled as 14,17, shift to 7,8 and round */ tmp = round(L_shl(L_mult(xt, xt), 7)); st->negSNRvar = round(L_add(L_mult(32440, st->negSNRvar), L_mult(328, tmp))); /* if (negSNRvar > 4.0) negSNRvar = 4.0; */ test(); if (sub(st->negSNRvar, 1024) > 0) { st->negSNRvar = 1024; move16(); } /* negSNRbias = max(12.0*(negSNRvar - 0.65), 0.0); */ tmp = mult_r(shl(sub(st->negSNRvar, 166), 4), 24576); test(); if (tmp < 0) { st->negSNRbias = 0; move16(); } else { st->negSNRbias = shr(tmp, 8); } } /* Determine VAD as a function of the voice metric sum and quantized SNR */ tmp = add(vm_threshold_table[tsnrq], st->negSNRbias); test(); if (sub(vm_sum, tmp) > 0) { ivad = 1; move16(); st->burstcount = add(st->burstcount, 1); test(); if (sub(st->burstcount, burstcount_table[tsnrq]) > 0) { st->hangover = hangover_table[tsnrq]; move16(); } } else { st->burstcount = 0; move16(); st->hangover = sub(st->hangover, 1); test(); if (st->hangover <= 0) { ivad = 0; move16(); st->hangover = 0; move16(); } else { ivad = 1; move16(); } } /* Calculate log spectral deviation */ ch_enrg_dev = 0; move16(); test(); if (L_sub(st->Lframe_cnt, 1) == 0) { for (i = LO_CHAN; i <= HI_CHAN; i++) { st->ch_enrg_long_db[i] = ch_enrg_db[i]; move16(); } } else { for (i = LO_CHAN; i <= HI_CHAN; i++) { tmp = abs_s(sub(st->ch_enrg_long_db[i], ch_enrg_db[i])); ch_enrg_dev = add(ch_enrg_dev, tmp); } } /* * Calculate long term integration constant as a function of instantaneous SNR * (i.e., high SNR (tsnr dB) -> slower integration (alpha = HIGH_ALPHA), * low SNR (0 dB) -> faster integration (alpha = LOW_ALPHA) */ /* alpha = HIGH_ALPHA - ALPHA_RANGE * (tsnr - xt) / tsnr, low <= alpha <= high */ tmp = sub(st->tsnr, xt); test(),logic16(),test(),test(); if (tmp <= 0 || st->tsnr <= 0) { alpha = HIGH_ALPHA; move16(); one_m_alpha = 32768L-HIGH_ALPHA; move16(); } else if (sub(tmp, st->tsnr) > 0) { alpha = LOW_ALPHA; move16(); one_m_alpha = 32768L-LOW_ALPHA; move16(); } else { tmp = div_s(tmp, st->tsnr); alpha = sub(HIGH_ALPHA, mult(ALPHA_RANGE, tmp)); one_m_alpha = sub(32767, alpha); } /* Calc long term log spectral energy */ for (i = LO_CHAN; i <= HI_CHAN; i++) { Ltmp1 = L_mult(one_m_alpha, ch_enrg_db[i]); Ltmp2 = L_mult(alpha, st->ch_enrg_long_db[i]); st->ch_enrg_long_db[i] = round(L_add(Ltmp1, Ltmp2)); } /* Set or clear the noise update flags */ update_flag = FALSE; move16(); st->fupdate_flag = FALSE; move16(); test(),test(); if (sub(vm_sum, UPDATE_THLD) <= 0) { test(); if (st->burstcount == 0) { update_flag = TRUE; move16(); st->update_cnt = 0; move16(); } } else if (L_sub(Ltce, noise_floor_chan[st->shift_state]) > 0) { test(); if (sub(ch_enrg_dev, DEV_THLD) < 0) { test(); if (p2a_flag == FALSE) { test(); if (st->LTP_flag == FALSE) { st->update_cnt = add(st->update_cnt, 1); test(); if (sub(st->update_cnt, UPDATE_CNT_THLD) >= 0) { update_flag = TRUE; move16(); st->fupdate_flag = TRUE; move16(); } } } } } test(); if (sub(st->update_cnt, st->last_update_cnt) == 0) { st->hyster_cnt = add(st->hyster_cnt, 1); } else { st->hyster_cnt = 0; move16(); } st->last_update_cnt = st->update_cnt; move16(); test(); if (sub(st->hyster_cnt, HYSTER_CNT_THLD) > 0) { st->update_cnt = 0; move16(); } /* Conditionally update the channel noise estimates */ test(); if (update_flag == TRUE) { /* Check shift state */ test(); if (st->shift_state == 1) { /* get factor to shift ch_enrg[] from state 1 to 0 (noise always state 0) */ tmp = state_change_shift_r[0]; move16(); } else { /* No shift if already state 0 */ tmp = 0; move16(); } /* Update noise energy estimate */ for (i = LO_CHAN; i <= HI_CHAN; i++) { test(); /* integrate over time: en[i] = (1-alpha)*en[i] + alpha*e[n] */ /* (extract with shift compensation for state 1) */ L_Extract (L_shr(st->Lch_enrg[i], tmp), &hi1, &lo1); Ltmp = Mpy_32_16(hi1, lo1, CNE_SM_FAC); L_Extract (st->Lch_noise[i], &hi1, &lo1); st->Lch_noise[i] = L_add(Ltmp, Mpy_32_16(hi1, lo1, ONE_MINUS_CNE_SM_FAC)); move32(); /* Limit low level noise */ test(); if (L_sub(st->Lch_noise[i], MIN_NOISE_ENRG_0) < 0) { st->Lch_noise[i] = MIN_NOISE_ENRG_0; move32(); } } } return(ivad); } /* end of vad2 () */
/*-----------------------------------------------------------* * procedure Calc_exc_rand * * ~~~~~~~~~~~~~ * * Computes comfort noise excitation * * for SID and not-transmitted frames * *-----------------------------------------------------------*/ void WebRtcG729fix_Calc_exc_rand( int32_t L_exc_err[], int16_t cur_gain, /* (i) : target sample gain */ int16_t *exc, /* (i/o) : excitation array */ int16_t *seed, /* (i) : current Vad decision */ int flag_cod /* (i) : encoder/decoder flag */ ) { int16_t i, j, i_subfr; int16_t temp1, temp2; int16_t pos[4]; int16_t sign[4]; int16_t t0, frac; int16_t *cur_exc; int16_t g, Gp, Gp2; int16_t excg[L_SUBFR], excs[L_SUBFR]; int32_t L_acc, L_ener, L_k; int16_t max, hi, lo, inter_exc; int16_t sh; int16_t x1, x2; if (cur_gain == 0) { WebRtcSpl_ZerosArrayW16(exc, L_FRAME); Gp = 0; t0 = WebRtcSpl_AddSatW16(L_SUBFR,1); for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR) { if (flag_cod != FLAG_DEC) WebRtcG729fix_update_exc_err(L_exc_err, Gp, t0); } return; } /* Loop on subframes */ cur_exc = exc; for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR) { /* generate random adaptive codebook & fixed codebook parameters */ /*****************************************************************/ temp1 = WebRtcG729fix_Random(seed); frac = WebRtcSpl_SubSatW16((temp1 & (int16_t)0x0003), 1); if(frac == 2) frac = 0; temp1 = shr(temp1, 2); t0 = WebRtcSpl_AddSatW16((temp1 & (int16_t)0x003F), 40); temp1 = shr(temp1, 6); temp2 = temp1 & (int16_t)0x0007; pos[0] = WebRtcSpl_AddSatW16(shl(temp2, 2), temp2); /* 5 * temp2 */ temp1 = shr(temp1, 3); sign[0] = temp1 & (int16_t)0x0001; temp1 = shr(temp1, 1); temp2 = temp1 & (int16_t)0x0007; temp2 = WebRtcSpl_AddSatW16(shl(temp2, 2), temp2); pos[1] = WebRtcSpl_AddSatW16(temp2, 1); /* 5 * x + 1 */ temp1 = shr(temp1, 3); sign[1] = temp1 & (int16_t)0x0001; temp1 = WebRtcG729fix_Random(seed); temp2 = temp1 & (int16_t)0x0007; temp2 = WebRtcSpl_AddSatW16(shl(temp2, 2), temp2); pos[2] = WebRtcSpl_AddSatW16(temp2, 2); /* 5 * x + 2 */ temp1 = shr(temp1, 3); sign[2] = temp1 & (int16_t)0x0001; temp1 = shr(temp1, 1); temp2 = temp1 & (int16_t)0x000F; pos[3] = WebRtcSpl_AddSatW16((temp2 & (int16_t)1), 3); /* j+3*/ temp2 = (shr(temp2, 1)) & (int16_t)7; temp2 = WebRtcSpl_AddSatW16(shl(temp2, 2), temp2); /* 5i */ pos[3] = WebRtcSpl_AddSatW16(pos[3], temp2); temp1 = shr(temp1, 4); sign[3] = temp1 & (int16_t)0x0001; Gp = WebRtcG729fix_Random(seed) & (int16_t)0x1FFF; /* < 0.5 Q14 */ Gp2 = shl(Gp, 1); /* Q15 */ /* Generate gaussian excitation */ /********************************/ L_acc = 0L; for(i=0; i<L_SUBFR; i++) { temp1 = Gauss(seed); L_acc = L_mac(L_acc, temp1, temp1); excg[i] = temp1; } /* Compute fact = alpha x cur_gain * sqrt(L_SUBFR / Eg) with Eg = SUM(i=0->39) excg[i]^2 and alpha = 0.5 alpha x sqrt(L_SUBFR)/2 = 1 + FRAC1 */ L_acc = WebRtcG729fix_Inv_sqrt(L_shr(L_acc,1)); /* Q30 */ WebRtcG729fix_L_Extract(L_acc, &hi, &lo); /* cur_gain = cur_gainR << 3 */ temp1 = mult_r(cur_gain, FRAC1); temp1 = WebRtcSpl_AddSatW16(cur_gain, temp1); /* <=> alpha x cur_gainR x 2^2 x sqrt(L_SUBFR) */ L_acc = WebRtcG729fix_Mpy_32_16(hi, lo, temp1); /* fact << 17 */ sh = WebRtcSpl_NormW32(L_acc); temp1 = extract_h(L_shl(L_acc, sh)); /* fact << (sh+1) */ sh = WebRtcSpl_SubSatW16(sh, 14); for (i = 0; i < L_SUBFR; i++) { temp2 = mult_r(excg[i], temp1); temp2 = shr_r(temp2, sh); /* shl if sh < 0 */ excg[i] = temp2; } /* generate random adaptive excitation */ /****************************************/ WebRtcG729fix_Pred_lt_3(cur_exc, t0, frac, L_SUBFR); /* compute adaptive + gaussian exc -> cur_exc */ /**********************************************/ max = 0; for(i = 0; i < L_SUBFR; i++) { temp1 = mult_r(cur_exc[i], Gp2); temp1 = WebRtcSpl_AddSatW16(temp1, excg[i]); /* may overflow */ cur_exc[i] = temp1; temp1 = abs_s(temp1); if (temp1 > max) max = temp1; } /* rescale cur_exc -> excs */ if (max == 0) sh = 0; else { sh = WebRtcSpl_SubSatW16(3, WebRtcSpl_NormW16(max)); if (sh <= 0) sh = 0; } for (i = 0; i < L_SUBFR; i++) { excs[i] = shr(cur_exc[i], sh); } /* Compute fixed code gain */ /***************************/ /**********************************************************/ /*** Solve EQ(X) = 4 X**2 + 2 b X + c */ /**********************************************************/ L_ener = 0L; for (i = 0; i < L_SUBFR; i++) { L_ener = L_mac(L_ener, excs[i], excs[i]); } /* ener x 2^(-2sh + 1) */ /* inter_exc = b >> sh */ inter_exc = 0; for (i = 0; i < 4; i++) { j = pos[i]; if (sign[i] == 0) { inter_exc = WebRtcSpl_SubSatW16(inter_exc, excs[j]); } else { inter_exc = WebRtcSpl_AddSatW16(inter_exc, excs[j]); } } /* Compute k = cur_gainR x cur_gainR x L_SUBFR */ L_acc = L_mult(cur_gain, L_SUBFR); L_acc = L_shr(L_acc, 6); temp1 = extract_l(L_acc); /* cur_gainR x L_SUBFR x 2^(-2) */ L_k = L_mult(cur_gain, temp1); /* k << 2 */ temp1 = WebRtcSpl_AddSatW16(1, shl(sh,1)); L_acc = L_shr(L_k, temp1); /* k x 2^(-2sh+1) */ /* Compute delta = b^2 - 4 c */ L_acc = WebRtcSpl_SubSatW32(L_acc, L_ener); /* - 4 c x 2^(-2sh-1) */ inter_exc = shr(inter_exc, 1); L_acc = L_mac(L_acc, inter_exc, inter_exc); /* 2^(-2sh-1) */ sh = WebRtcSpl_AddSatW16(sh, 1); /* inter_exc = b x 2^(-sh) */ /* L_acc = delta x 2^(-2sh+1) */ if (L_acc < 0) { /* adaptive excitation = 0 */ WEBRTC_SPL_MEMCPY_W16(cur_exc, excg, L_SUBFR); temp1 = abs_s(excg[(int)pos[0]]) | abs_s(excg[(int)pos[1]]); temp2 = abs_s(excg[(int)pos[2]]) | abs_s(excg[(int)pos[3]]); temp1 = temp1 | temp2; sh = ((temp1 & (int16_t)0x4000) == 0) ? (int16_t)1 : (int16_t)2; inter_exc = 0; for(i=0; i<4; i++) { temp1 = shr(excg[(int)pos[i]], sh); if(sign[i] == 0) { inter_exc = WebRtcSpl_SubSatW16(inter_exc, temp1); } else { inter_exc = WebRtcSpl_AddSatW16(inter_exc, temp1); } } /* inter_exc = b >> sh */ WebRtcG729fix_L_Extract(L_k, &hi, &lo); L_acc = WebRtcG729fix_Mpy_32_16(hi, lo, K0); /* k x (1- alpha^2) << 2 */ temp1 = WebRtcSpl_SubSatW16(shl(sh, 1), 1); /* temp1 > 0 */ L_acc = L_shr(L_acc, temp1); /* 4k x (1 - alpha^2) << (-2sh+1) */ L_acc = L_mac(L_acc, inter_exc, inter_exc); /* delta << (-2sh+1) */ Gp = 0; } temp2 = Sqrt(L_acc); /* >> sh */ x1 = WebRtcSpl_SubSatW16(temp2, inter_exc); x2 = negate(WebRtcSpl_AddSatW16(inter_exc, temp2)); /* x 2^(-sh+2) */ if(abs_s(x2) < abs_s(x1)) x1 = x2; temp1 = WebRtcSpl_SubSatW16(2, sh); g = shr_r(x1, temp1); /* shl if temp1 < 0 */ if (g >= 0) { if (g > G_MAX) g = G_MAX; } else { if (WebRtcSpl_AddSatW16(g, G_MAX) < 0) g = negate(G_MAX); } /* Update cur_exc with ACELP excitation */ for (i = 0; i < 4; i++) { j = pos[i]; if (sign[i] != 0) { cur_exc[j] = WebRtcSpl_AddSatW16(cur_exc[j], g); } else { cur_exc[j] = WebRtcSpl_SubSatW16(cur_exc[j], g); } } if (flag_cod != FLAG_DEC) WebRtcG729fix_update_exc_err(L_exc_err, Gp, t0); cur_exc += L_SUBFR; } /* end of loop on subframes */ return; }