/// \brief		Update Kalman filter
void UnscentedKalmanFilter::updateUKF(vnl_vector<double> u, vnl_vector<double> z)
{
	// create Sigma points X for the current estimate distribution
	vnl_matrix<double> X(N,2*N+1);
	sigmas(x_hat, P_hat+Q, sqrt(C), X);
	
	vnl_matrix<double> Dbg;

	qDebug() << "X: "; 
	for( int i = 0; i<6; i++)
	{
		qDebug() << X(i,0) << " " << X(i,1) << " " << X(i,2) << " " << X(i,3) << " " << X(i,4) << " " << X(i,5) << " "
			<< X(i,6) << " " << X(i,7) << " " << X(i,8) << " " << X(i,9) << " " << X(i,10) << " " << X(i,11)
			<< " " << X(i,12);
	}

	// apply unscented transformation for process model 
	vnl_vector<double> x1(6);
	vnl_matrix<double> X1(N,2*N+1), P1(N,N), X2(N,2*N+1);
	utf(X, u, x1, X1, P1, X2);

	// apply unscented transformation for observation model
	vnl_vector<double> z1(M);
	vnl_matrix<double> Z1(M,2*M+1), P2(M,M), Z2(M,2*M+1);
	utg(X1, z1, Z1, P2, Z2);
	// define transformated cross-covariance
	vnl_matrix<double> WC(2*N+1,2*N+1,0.0);
	WC.set_diagonal(Wc.get_row(0));
	vnl_matrix<double> P12 = X2*WC*Z2.transpose();
	// perform state update
	K = P12*vnl_matrix_inverse<double>(P2);
	x_hat = x1 + K*(z-z1);
	// perform covariance update
	P_hat = P1 - K*P12.transpose();
}
void FormEfficiencyCalibration::on_pushFit_2_clicked()
{
  QVector<SelectorItem> items = ui->spectrumSelector->items();
  std::vector<double> xx, yy;

  for (auto &fit : peak_sets_) {
    bool visible = false;

    for (auto &i : items)
      if (i.visible && (fit.second.metadata_.name == i.text.toStdString()))
        visible = true;

    if (visible) {
      for (auto &q : fit.second.peaks()) {
        //BROKEN

//        if (!q.second.flagged)
//          continue;

        double x = q.second.energy;
        double y = q.second.efficiency_relative_ * fit.second.activity_scale_factor_;

        xx.push_back(x);
        yy.push_back(y);
      }

    }
  }

//  LogInverse p = LogInverse(xx, yy, ui->spinTerms->value());

  std::vector<double> sigmas(yy.size(), 1);

  LogInverse p;
  p.add_coeff(0, -50, 50, 1);
  for (int i=1; i <= ui->spinTerms->value(); ++i) {
    if (i==1)
      p.add_coeff(i, -50, 50, 1);
    else
      p.add_coeff(i, -50, 50, 0);
  }

  p.fit(xx,yy,sigmas);

  if (p.coeffs_.size()) {
    new_calibration_.type_ = "Efficiency";
    new_calibration_.bits_ = fit_data_.metadata_.bits;
    new_calibration_.coefficients_ = p.coeffs();
    new_calibration_.calib_date_ = boost::posix_time::microsec_clock::universal_time();  //spectrum timestamp instead?
    new_calibration_.units_ = "ratio";
    new_calibration_.model_ = Qpx::CalibrationModel::loginverse;
    PL_DBG << "<Efficiency calibration> new calibration fit " << new_calibration_.to_string();
  }
  else
    PL_INFO << "<Efficiency calibration> Qpx::Calibration failed";

  replot_calib();
  toggle_push();
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void StatsGenODFWidget::extractStatsData(int index, StatsData* statsData, unsigned int phaseType)
{
  VectorOfFloatArray arrays;
  if(phaseType == DREAM3D::PhaseType::PrimaryPhase)
  {
    PrimaryStatsData* pp = PrimaryStatsData::SafePointerDownCast(statsData);
    arrays = pp->getODF_Weights();
  }
  if(phaseType == DREAM3D::PhaseType::PrecipitatePhase)
  {
    PrecipitateStatsData* pp = PrecipitateStatsData::SafePointerDownCast(statsData);
    arrays = pp->getODF_Weights();
  }
  if(phaseType == DREAM3D::PhaseType::TransformationPhase)
  {
    TransformationStatsData* tp = TransformationStatsData::SafePointerDownCast(statsData);
    arrays = tp->getODF_Weights();
  }
  if (arrays.size() > 0)
  {
    QVector<float> e1(static_cast<int>(arrays[0]->getNumberOfTuples()));
    ::memcpy( e1.data(), arrays[0]->getVoidPointer(0), sizeof(float)*e1.size() );

    QVector<float> e2(static_cast<int>(arrays[1]->getNumberOfTuples()));
    ::memcpy( e2.data(), arrays[1]->getVoidPointer(0), sizeof(float)*e2.size() );

    QVector<float> e3(static_cast<int>(arrays[2]->getNumberOfTuples()));
    ::memcpy( e3.data(), arrays[2]->getVoidPointer(0), sizeof(float)*e3.size() );

    QVector<float> weights(static_cast<int>(arrays[3]->getNumberOfTuples()));
    ::memcpy( weights.data(), arrays[3]->getVoidPointer(0), sizeof(float)*weights.size() );

    QVector<float> sigmas(static_cast<int>(arrays[4]->getNumberOfTuples()));
    ::memcpy( sigmas.data(), arrays[4]->getVoidPointer(0), sizeof(float)*sigmas.size() );

    // Convert from Radians to Degrees for the Euler Angles
    for(int i = 0; i < e1.size(); ++i)
    {
      e1[i] = e1[i] * 180.0f / M_PI;
      e2[i] = e2[i] * 180.0f / M_PI;
      e3[i] = e3[i] * 180.0f / M_PI;
    }

    if(e1.size() > 0)
    {
      // Load the data into the table model
      m_ODFTableModel->setTableData(e1, e2, e3, weights, sigmas);
    }
  }
  // Write the MDF Data if we have that functionality enabled
  if (m_MDFWidget != NULL)
  {
    m_MDFWidget->extractStatsData(index, statsData, phaseType);
  }
  updatePlots();
}
void BFilterUKF::predict(){
    //L=numel(x);                                 //numer of states
    //m=numel(z);                                 //numer of measurements
    unsigned int numStates = particles.samples.n_cols;

    float alpha=1.0f;                                 //default 1e-3, tunable
    float kappa=0.0f;                                       //default, tunable
    float beta=2.0f;                                     //default, tunable

    //lambda=alpha^2*(L+kappa)-L;                    //scaling factor
    float lambda=alpha*alpha*(numStates+kappa)-numStates;   //scaling factor

    float c=numStates+lambda;                                 //scaling factor gamma
    //Wm=[lambda/c 0.5/c+zeros(1,2*L)];           //weights for means
    Wm=zeros<fmat>(1, 2*numStates+1) + (0.5f/c);             //weights for means
    Wm(0)=lambda/c;

    Wc=Wm;
    Wc(0)=Wc(0)+(1-alpha*alpha+beta);               //weights for covariance
    c=sqrt(c);
    fmat X=sigmas(fvec(particles.samples),P,c);                            //sigma points around x
    utProcess(X,Wm,Wc,numStates,process->Q);
}
Exemple #5
0
TMatrixD Chol (TVectorD& covV)
{
  int nCov = covV.GetNrows();
  int n = int((sqrt(8*nCov+1.)-1.)/2.+0.5);
  if ( nCov != n*(n+1)/2. ) {
    std::cout << "Chol: length of vector " << nCov << " is not n*(n+1)/2" << std::endl;
    return TMatrixD();
  }
  

  // get diagonal elements
  int ind(0);
  TVectorD sigmas(n);
  for ( int i=0; i<n; ++i ) {
    for ( int j=0; j<=i; ++j ) {
      if ( j == i )  sigmas[i] = covV(ind);
      ++ind;
    }
  }
  // fill cov matrix (could be more elegant ...)
  ind = 0;
  TMatrixDSym covMatrix(n);
  for ( int i=0; i<n; ++i ) {
    for ( int j=0; j<=i; ++j ) {
      if ( j == i )
	covMatrix(i,i) = sigmas(i)*sigmas(i);
      else
	covMatrix(i,j) = covMatrix(j,i) = covV(ind)*sigmas(i)*sigmas(j);
      ++ind;
    }
  }
  covMatrix.Print();
  
  TDecompChol tdc(covMatrix);
  bool worked = tdc.Decompose();
  if ( !worked ) {
    std::cout << "Decomposition failed" << std::endl;
    return TMatrixD();
  }
  
  TMatrixD matU = tdc.GetU();
  return matU;

//   //
//   // cross check with random generation
//   //  
//   double sum0(0.);
//   TVectorD sum1(n);
//   TMatrixDSym sum2(n);


//   TRandom2 rgen;
//   TVectorD xrnd(n);
//   TVectorD xrndRot(n);
//   for ( unsigned int i=0; i<1000000; ++i ) {
//     for ( unsigned int j=0; j<n; ++j )  xrnd(j) = 0.;
//     for ( unsigned int j=0; j<n; ++j ) {
//       TVectorD aux(n);
//       for ( int k=0; k<n; ++k )  aux(k) = matU(j,k);
//       xrnd += rgen.Gaus(0.,1.)*aux;
//     }
// //       xrnd *= matUT;
//     sum0 += 1.;
//     for ( unsigned int j0=0; j0<n; ++j0 ) {
//       sum1(j0) += xrnd(j0);
//       for ( unsigned int j1=0; j1<n; ++j1 ) {
// 	sum2(j0,j1) += xrnd(j0)*xrnd(j1);
//       }
//     }
//   }
//   for ( unsigned int j0=0; j0<n; ++j0 ) {
//     printf("%10.3g",sum1(j0)/sum0);
//   }
//   printf("  sum1 \n");
//   printf("\n");
//   for ( unsigned int j0=0; j0<n; ++j0 ) {
//     for ( unsigned int j1=0; j1<n; ++j1 ) {
//       printf("%10.3g",sum2(j0,j1)/sum0);
//     }
//     printf(" sum2 \n");
//   }
//   return matU;

}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void StatsGenODFWidget::on_loadODFTextureBtn_clicked()
{

  QString file = angleFilePath->text();
  if(true == file.isEmpty())
  {
    return;
  }

  QFileInfo fi(angleFilePath->text());
  if(fi.exists() == false)
  {
    return;
  }

  size_t count = 0;
  QVector<float> e1s(count);
  QVector<float> e2s(count);
  QVector<float> e3s(count);
  QVector<float> weights(count);
  QVector<float> sigmas(count);

  QProgressDialog progress("Loading Data ....", "Cancel", 0, 3, this);
  progress.setWindowModality(Qt::WindowModal);
  progress.setMinimumDuration(2000);

  if (fi.suffix().compare(Ebsd::Ang::FileExt) == 0)
  {
    progress.setValue(1);
    progress.setLabelText("[1/3] Reading File ...");
    AngReader loader;
    loader.setFileName(angleFilePath->text());
    int err = loader.readFile();
    if(err < 0)
    {
      QMessageBox::critical(this, "Error loading the ANG file", loader.getErrorMessage(), QMessageBox::Ok);
      return;
    }
    float* phi1 = loader.getPhi1Pointer();
    float* phi = loader.getPhiPointer();
    float* phi2 = loader.getPhi2Pointer();

    int xDim = loader.getXDimension();
    int yDim = loader.getYDimension();
    count = xDim * yDim;
    e1s.resize(count);
    e2s.resize(count);
    e3s.resize(count);
    weights.resize(count);
    sigmas.resize(count);
    for(size_t i = 0; i < count; ++i)
    {
      e1s[i] = phi1[i];
      e2s[i] = phi[i];
      e3s[i] = phi2[i];
      weights[i] = 1.0;
      sigmas[i] = 0.0;
    }
  }
  else if (fi.suffix().compare(Ebsd::Ctf::FileExt) == 0)
  {
    progress.setValue(1);
    progress.setLabelText("[1/3] Reading File ...");
    CtfReader loader;
    loader.setFileName(angleFilePath->text());
    int err = loader.readFile();
    if(err < 0)
    {
      QMessageBox::critical(this, "Error loading the CTF file", loader.getErrorMessage(), QMessageBox::Ok);
      return;
    }
    float* phi1 = loader.getEuler1Pointer();
    float* phi = loader.getEuler2Pointer();
    float* phi2 = loader.getEuler3Pointer();

    int xDim = loader.getXDimension();
    int yDim = loader.getYDimension();
    count = xDim * yDim;
    e1s.resize(count);
    e2s.resize(count);
    e3s.resize(count);
    weights.resize(count);
    sigmas.resize(count);
    for(size_t i = 0; i < count; ++i)
    {
      e1s[i] = phi1[i];
      e2s[i] = phi[i];
      e3s[i] = phi2[i];
      weights[i] = 1.0;
      sigmas[i] = 0.0;
    }
  }
  else
  {
    progress.setValue(1);
    progress.setLabelText("[1/3] Reading File ...");
    AngleFileLoader::Pointer loader = AngleFileLoader::New();
    loader->setInputFile(angleFilePath->text());
    loader->setAngleRepresentation(angleRepresentation->currentIndex());
    loader->setFileAnglesInDegrees(anglesInDegrees->isChecked());
    loader->setOutputAnglesInDegrees(true);
    QString delim;
    int index = delimiter->currentIndex();
    switch(index)
    {
      case 0:
        delim = " ";
        break;
      case 1:
        delim = "\t";
        break;
      case 2:
        delim = ",";
        break;
      case 3:
        delim = ";";
        break;
      default:
        delim = " ";

    }

    loader->setDelimiter(delim);
    FloatArrayType::Pointer data = loader->loadData();
    if (loader->getErrorCode() < 0)
    {
      QMessageBox::critical(this, "Error Loading Angle data", loader->getErrorMessage(), QMessageBox::Ok);
      return;
    }
    count = data->getNumberOfTuples();
    e1s.resize(count);
    e2s.resize(count);
    e3s.resize(count);
    weights.resize(count);
    sigmas.resize(count);
    for(size_t i = 0; i < count; ++i)
    {
      e1s[i] = data->getComponent(i, 0);
      e2s[i] = data->getComponent(i, 1);
      e3s[i] = data->getComponent(i, 2);
      weights[i] = data->getComponent(i, 3);
      sigmas[i] = data->getComponent(i, 4);
    }

  }

  progress.setValue(2);
  progress.setLabelText("[2/3] Rendering Pole Figure ...");

  m_OdfBulkTableModel->removeRows(0, m_OdfBulkTableModel->rowCount());

#if 1
  m_OdfBulkTableModel->blockSignals(true);
  m_OdfBulkTableModel->setColumnData(SGODFTableModel::Euler1, e1s);
  m_OdfBulkTableModel->setColumnData(SGODFTableModel::Euler2, e2s);
  m_OdfBulkTableModel->setColumnData(SGODFTableModel::Euler3, e3s);
  m_OdfBulkTableModel->setColumnData(SGODFTableModel::Weight, weights);
  m_OdfBulkTableModel->setColumnData(SGODFTableModel::Sigma, sigmas);
  m_OdfBulkTableModel->blockSignals(false);
#endif
  on_m_CalculateODFBtn_clicked();
  progress.setValue(3);
}
/*************************************************************************
Linear regression

Variant of LRBuild which uses vector of standatd deviations (errors in
function values).

INPUT PARAMETERS:
    XY          -   training set, array [0..NPoints-1,0..NVars]:
                    * NVars columns - independent variables
                    * last column - dependent variable
    S           -   standard deviations (errors in function values)
                    array[0..NPoints-1], S[i]>0.
    NPoints     -   training set size, NPoints>NVars+1
    NVars       -   number of independent variables

OUTPUT PARAMETERS:
    Info        -   return code:
                    * -255, in case of unknown internal error
                    * -4, if internal SVD subroutine haven't converged
                    * -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1).
                    * -2, if S[I]<=0
                    *  1, if subroutine successfully finished
    LM          -   linear model in the ALGLIB format. Use subroutines of
                    this unit to work with the model.
    AR          -   additional results


  -- ALGLIB --
     Copyright 02.08.2008 by Bochkanov Sergey
*************************************************************************/
void lrbuilds(const ap::real_2d_array& xy,
     const ap::real_1d_array& s,
     int npoints,
     int nvars,
     int& info,
     linearmodel& lm,
     lrreport& ar)
{
    ap::real_2d_array xyi;
    ap::real_1d_array x;
    ap::real_1d_array means;
    ap::real_1d_array sigmas;
    int i;
    int j;
    double v;
    int offs;
    double mean;
    double variance;
    double skewness;
    double kurtosis;

    
    //
    // Test parameters
    //
    if( npoints<=nvars+1||nvars<1 )
    {
        info = -1;
        return;
    }
    
    //
    // Copy data, add one more column (constant term)
    //
    xyi.setbounds(0, npoints-1, 0, nvars+1);
    for(i = 0; i <= npoints-1; i++)
    {
        ap::vmove(&xyi(i, 0), &xy(i, 0), ap::vlen(0,nvars-1));
        xyi(i,nvars) = 1;
        xyi(i,nvars+1) = xy(i,nvars);
    }
    
    //
    // Standartization
    //
    x.setbounds(0, npoints-1);
    means.setbounds(0, nvars-1);
    sigmas.setbounds(0, nvars-1);
    for(j = 0; j <= nvars-1; j++)
    {
        ap::vmove(x.getvector(0, npoints-1), xy.getcolumn(j, 0, npoints-1));
        calculatemoments(x, npoints, mean, variance, skewness, kurtosis);
        means(j) = mean;
        sigmas(j) = sqrt(variance);
        if( ap::fp_eq(sigmas(j),0) )
        {
            sigmas(j) = 1;
        }
        for(i = 0; i <= npoints-1; i++)
        {
            xyi(i,j) = (xyi(i,j)-means(j))/sigmas(j);
        }
    }
    
    //
    // Internal processing
    //
    lrinternal(xyi, s, npoints, nvars+1, info, lm, ar);
    if( info<0 )
    {
        return;
    }
    
    //
    // Un-standartization
    //
    offs = ap::round(lm.w(3));
    for(j = 0; j <= nvars-1; j++)
    {
        
        //
        // Constant term is updated (and its covariance too,
        // since it gets some variance from J-th component)
        //
        lm.w(offs+nvars) = lm.w(offs+nvars)-lm.w(offs+j)*means(j)/sigmas(j);
        v = means(j)/sigmas(j);
        ap::vsub(&ar.c(nvars, 0), &ar.c(j, 0), ap::vlen(0,nvars), v);
        ap::vsub(ar.c.getcolumn(nvars, 0, nvars), ar.c.getcolumn(j, 0, nvars), v);
        
        //
        // J-th term is updated
        //
        lm.w(offs+j) = lm.w(offs+j)/sigmas(j);
        v = 1/sigmas(j);
        ap::vmul(&ar.c(j, 0), ap::vlen(0,nvars), v);
        ap::vmul(ar.c.getcolumn(j, 0, nvars), v);
    }
}
Exemple #8
0
  void pelt(Dataloader &dload, const CageParams& params) {

    // Copy parameters for convenience
    int start = params.dataloader_params.start;
    int end = params.dataloader_params.end;
    int step = params.dataloader_params.step;
    double beta = params.beta;
    double K = 0;
    bool verbose = params.dataloader_params.verbose;
    string output_file = params.output_file;

    // Allocate vector for storing subproblem results
    vector<double> f((end - start) / step + 1, 0);

    f[0] = -1.0 * beta;

    // Store last prior changepoint positions for subproblems
    vector<int> cps((end - start) / step + 1, 0);
    cps[0] = start;

    vector<int> R(1);
    R[0] = start;

    int i;
    if (verbose) 
      cout << "Progress:\n";

    /*
       Note on indexing:
       i is in genome coordinates
       R stores numbers as genome coordinates
       */

    int maxcosts = 0;
    int maxlength = 0;
    long long int total_length = 0;

    // Spawn the data loading thread
    thread t(&Dataloader::loadfunc, &dload);

    // Loop through the data
    for (i = start; i < end + 1; i+= step) {

      if (beta == 0) {
        R[0] = i;
        continue;
      }

      maxcosts = (int)R.size() > maxcosts ? R.size() : maxcosts;
      int length_now = (i - *min_element(R.begin(), R.end()));
      maxlength = length_now > maxlength ? length_now : maxlength;

      if (verbose) {
        if ((i - start) % 100000 == 0) {
          printf("Position: %i\tMax Costs: %i\tMax Length: %i\tTotal length: %lld\n", i, maxcosts, maxlength, total_length);
          maxcosts = 0;
          maxlength = 0;
          total_length = 0;
        }
      }

      // Deal with the centromere - area of no coverage
      if ((i > start) & (i < end - 1)) {	
        if (dload.get_region(i, min(i + step, end)).empty_region()) {
          f[(i - start) / step] = f[(i - step - start) / step];
          cps[(i - start) / step] = cps[(i - step - start) / step];
          continue;
        }
      }

      vector<float> costs(R.size());
      vector<float> Fs(R.size());

      for (int j = 0; j < (int)R.size(); j++) {
        costs[j] = cost(dload.get_region(R[j], i));

        total_length += i - R[j];
        Fs[j] = f[(R[j]-start) / step];
      }

      vector<float> vals(costs.size());

      for (int j = 0; j < (int)vals.size(); j++)
        vals[j] = costs[j] + Fs[j];

      auto min_ptr = min_element(vals.begin(), vals.end());
      int idx = distance(vals.begin(), min_ptr);
      f[(i - start) / step] = *min_ptr + beta;
      cps[(i - start) / step] = R[idx];

      vector<int> R_new(0);
      for (int j = 0; j < (int)vals.size(); j++) {
        if (vals[j] + K <= f[(i - start) / step]) {
          R_new.push_back(R[j]);
        }
      }

      R_new.push_back(i);
      R = move(R_new);
    }

    i -= step;	

    vector<int> cps_n;

    if (beta != 0) {

      int pos;
      cps_n.push_back(end);
      cps_n.push_back(i);

      pos = cps[(i - start) / step];

      while (pos != start) {
        cps_n.push_back(pos);
        pos = cps[(pos - start) / step];
      }

      cps_n.push_back(start); 
      reverse(cps_n.begin(), cps_n.end());

      // Take the unique elements
      auto it = unique(cps_n.begin(), cps_n.end());
      cps_n.resize(distance(cps_n.begin(), it));

    } else {
      printf("Calling changepoints every %i bases\n", step);
      for (int k = start; k < (int)end; k += step) {
        cps_n.push_back(k);
      }
      cps_n.push_back(end);
    }

    cout << "Num of changepoints: " << cps_n.size() << endl;
    // Get the parameter values
    vector<double> lambdas(cps_n.size()-1);
    vector<double> eps(cps_n.size()-1);
    vector<double> gammas(cps_n.size()-1);
    vector<double> iotas(cps_n.size()-1);
    vector<double> zetas(cps_n.size()-1);
    vector<double> mus(cps_n.size()-1);
    vector<double> sigmas(cps_n.size()-1);
    vector<int> lengths(cps_n.size()-1);

    int row = 0;

    for (auto i = cps_n.begin(); i != cps_n.end() - 1; ++i) {
      int left = *i;
      int right = *(i+1);

      SuffStats tot_stats = dload.get_region(left, right);
      lambdas[row] = (double)tot_stats.N / tot_stats.L;
      eps[row] = (tot_stats.tot_bases == 0) ? 0 : (double)tot_stats.tot_errors / tot_stats.tot_bases;
      gammas[row] = (double)tot_stats.N_SNPs / tot_stats.L;
      iotas[row] = (tot_stats.tot_bases == 0) ? 0 : (double)tot_stats.indels / tot_stats.tot_bases;
      zetas[row] = (tot_stats.N == 0) ? 0 : (double)tot_stats.zero_mapq / tot_stats.N;
      mus[row] = (tot_stats.n_inserts == 0) ? 0 : (double)tot_stats.inserts_sum / tot_stats.n_inserts;
      sigmas[row] = (tot_stats.n_inserts > 0) ? 0 : sqrt((tot_stats.inserts_sumsq - pow((long long)tot_stats.inserts_sum,2)) / (tot_stats.n_inserts - 1));

      lengths[row] = right - left;
      row++;
    }

    if(t.joinable())
    {
      t.join();
    }

    FILE *f_out;
    if (strcmp(output_file.c_str(), "") != 0) { 
      f_out = fopen(output_file.c_str(), "w");
      if (f_out == nullptr) {
        throw runtime_error("Could not open file " + output_file); 
      }
      for (row = 0; row < (int)cps_n.size() - 2; row++) {
        if ((lengths[row] != 0)) { 
          fprintf(f_out, "%i\t%i\t%0.8f\t%0.8f\t%0.8f\t%0.8f\t%0.8f\n", cps_n[row], 
              lengths[row], lambdas[row], eps[row], gammas[row], iotas[row], zetas[row]);
        }
      }
      fclose(f_out); 
    }
  }