// Revised from function 'svm_predict_probability' for HIK
double hik_predict_probability(const svm_model *model,Array2dC<double>& eval,const int m,const int upper_bound,svm_inode *x,double *prob_estimates)
{
	if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
	    model->probA!=NULL && model->probB!=NULL)
	{
		int i;
		int nr_class = model->nr_class;
		double *dec_values = new double[nr_class*(nr_class-1)/2];
		hik_predict_values(model, eval, m, upper_bound, x, dec_values);

		double min_prob=1e-7;
		double **pairwise_prob=new double*[nr_class];
		for(i=0;i<nr_class;i++)
			pairwise_prob[i]=new double[nr_class];
		int k=0;
		for(i=0;i<nr_class;i++)
        {
			for(int j=i+1;j<nr_class;j++)
			{
				pairwise_prob[i][j]=std::min(std::max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
				pairwise_prob[j][i]=1-pairwise_prob[i][j];
				k++;
			}
        }
		multiclass_probability(nr_class,pairwise_prob,prob_estimates);

		int prob_max_idx = 0;
		for(i=1;i<nr_class;i++)
			if(prob_estimates[i] > prob_estimates[prob_max_idx])
				prob_max_idx = i;
		for(i=0;i<nr_class;i++) delete[] pairwise_prob[i];
        delete[] pairwise_prob;
		delete[] dec_values;
		return model->label[prob_max_idx];
	}
	else 
		return hik_predict(model, eval, m, upper_bound, x);
}
void do_predict(FILE *input, FILE *output, FILE *output2)
{
	int correct = 0;
	int total = 0;
	double error = 0;
	double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
	
	int nr_class=get_nr_class(model_);
	double *dec_values = (double *) malloc(nr_class*sizeof(double));
	double prob = 0;
	double *prob_estimates=NULL;
	int j, n;
	int nr_feature=get_nr_feature(model_);
	if(model_->bias>=0)
		n=nr_feature+1;
	else
		n=nr_feature;

	if(flag_predict_probability)
	{
		int *labels;

		if(!check_probability_model(model_))
		{
			fprintf(stderr, "probability output is only supported for logistic regression\n");
			exit(1);
		}

		labels=(int *) malloc(nr_class*sizeof(int));
		get_labels(model_,labels);
		prob_estimates = (double *) malloc(nr_class*sizeof(double));
		fprintf(output,"labels");
		for(j=0;j<nr_class;j++)
			fprintf(output," %d",labels[j]);
		fprintf(output,"\n");
		free(labels);
	}

	max_line_len = 1024;
	line = (char *)malloc(max_line_len*sizeof(char));		
	
	while(readline(input) != NULL)
	{
		int i = 0;
		double target_label, predict_label;
		char *idx, *val, *label, *endptr;
		int inst_max_index = 0; // strtol gives 0 if wrong format

		label = strtok(line," \t\n");
		if(label == NULL) // empty line
			exit_input_error(total+1);

		target_label = strtod(label,&endptr);
		if(endptr == label || *endptr != '\0')
			exit_input_error(total+1);

		while(1)
		{
			if(i>=max_nr_attr-2)	// need one more for index = -1
			{
				max_nr_attr *= 2;
				x = (struct feature_node *) realloc(x,max_nr_attr*sizeof(struct feature_node));
			}

			idx = strtok(NULL,":");
			val = strtok(NULL," \t");

			if(val == NULL)
				break;
			errno = 0;
			x[i].index = (int) strtol(idx,&endptr,10);
			if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index)
				exit_input_error(total+1);
			else
				inst_max_index = x[i].index;

			errno = 0;
			x[i].value = strtod(val,&endptr);
			if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
				exit_input_error(total+1);

			// feature indices larger than those in training are not used
			if(x[i].index <= nr_feature)
				++i;
		}

		if(model_->bias>=0)
		{
			x[i].index = n;
			x[i].value = model_->bias;
			i++;
		}
		x[i].index = -1;

		if(flag_predict_probability)
		{
			int j;
			predict_label = predict_probability(model_,x,prob_estimates);
			fprintf(output,"%g",predict_label);
			for(j=0;j<model_->nr_class;j++)
				fprintf(output," %g",prob_estimates[j]);
			fprintf(output,"\n");
		}
		else
		{
			predict_label=predict_values(model_, x, dec_values);			
			fprintf(output,"%g\n",predict_label);
			//transfer the score into probability
			prob = sigmoid_predict(dec_values[0], model_->probA, model_->probB);
			fprintf(output2,"%4g\n",prob);		
		}

		if(predict_label == target_label)
			++correct;
		error += (predict_label-target_label)*(predict_label-target_label);
		sump += predict_label;
		sumt += target_label;
		sumpp += predict_label*predict_label;
		sumtt += target_label*target_label;
		sumpt += predict_label*target_label;
		++total;
	}
	if(model_->param.solver_type==L2R_L2LOSS_SVR ||
	   model_->param.solver_type==L2R_L1LOSS_SVR_DUAL ||
	   model_->param.solver_type==L2R_L2LOSS_SVR_DUAL)
	{
		info("Mean squared error = %g (regression)\n",error/total);
		info("Squared correlation coefficient = %g (regression)\n",
			((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
			((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
			);
        }
	else
		info("Accuracy = %g%% (%d/%d)\n",(double) correct/total*100,correct,total);
	if(flag_predict_probability)
		free(prob_estimates);
	free(dec_values);
}