/* Find least-squares prediction gain for one signal based on another and quantize it */ int32_t silk_stereo_find_predictor( /* O Returns predictor in Q13 */ int32_t * ratio_Q14, /* O Ratio of residual and mid energies */ const int16_t x[], /* I Basis signal */ const int16_t y[], /* I Target signal */ int32_t mid_res_amp_Q0[], /* I/O Smoothed mid, residual norms */ int length, /* I Number of samples */ int smooth_coef_Q16 /* I Smoothing coefficient */ ) { int scale, scale1, scale2; int32_t nrgx, nrgy, corr, pred_Q13, pred2_Q10; /* Find predictor */ silk_sum_sqr_shift(&nrgx, &scale1, x, length); silk_sum_sqr_shift(&nrgy, &scale2, y, length); scale = silk_max_int(scale1, scale2); scale = scale + (scale & 1); /* make even */ nrgy = silk_RSHIFT32(nrgy, scale - scale2); nrgx = silk_RSHIFT32(nrgx, scale - scale1); nrgx = silk_max_int(nrgx, 1); corr = silk_inner_prod_aligned_scale(x, y, scale, length); pred_Q13 = silk_DIV32_varQ(corr, nrgx, 13); pred_Q13 = silk_LIMIT(pred_Q13, -(1 << 14), 1 << 14); pred2_Q10 = silk_SMULWB(pred_Q13, pred_Q13); /* Faster update for signals with large prediction parameters */ smooth_coef_Q16 = (int) silk_max_int(smooth_coef_Q16, silk_abs(pred2_Q10)); /* Smoothed mid and residual norms */ assert(smooth_coef_Q16 < 32768); scale = silk_RSHIFT(scale, 1); mid_res_amp_Q0[0] = silk_SMLAWB(mid_res_amp_Q0[0], silk_LSHIFT(silk_SQRT_APPROX(nrgx), scale) - mid_res_amp_Q0[0], smooth_coef_Q16); /* Residual energy = nrgy - 2 * pred * corr + pred^2 * nrgx */ nrgy = silk_SUB_LSHIFT32(nrgy, silk_SMULWB(corr, pred_Q13), 3 + 1); nrgy = silk_ADD_LSHIFT32(nrgy, silk_SMULWB(nrgx, pred2_Q10), 6); mid_res_amp_Q0[1] = silk_SMLAWB(mid_res_amp_Q0[1], silk_LSHIFT(silk_SQRT_APPROX(nrgy), scale) - mid_res_amp_Q0[1], smooth_coef_Q16); /* Ratio of smoothed residual and mid norms */ *ratio_Q14 = silk_DIV32_varQ(mid_res_amp_Q0[1], silk_max(mid_res_amp_Q0[0], 1), 14); *ratio_Q14 = silk_LIMIT(*ratio_Q14, 0, 32767); return pred_Q13; }
/* Calculates correlation vector X'*t */ void silk_corrVector_FIX( const opus_int16 *x, /* I x vector [L + order - 1] used to form data matrix X */ const opus_int16 *t, /* I Target vector [L] */ const opus_int L, /* I Length of vectors */ const opus_int order, /* I Max lag for correlation */ opus_int32 *Xt, /* O Pointer to X'*t correlation vector [order] */ const opus_int rshifts /* I Right shifts of correlations */ ) { opus_int lag, i; const opus_int16 *ptr1, *ptr2; opus_int32 inner_prod; ptr1 = &x[ order - 1 ]; /* Points to first sample of column 0 of X: X[:,0] */ ptr2 = t; /* Calculate X'*t */ if( rshifts > 0 ) { /* Right shifting used */ for( lag = 0; lag < order; lag++ ) { inner_prod = 0; for( i = 0; i < L; i++ ) { inner_prod += silk_RSHIFT32( silk_SMULBB( ptr1[ i ], ptr2[i] ), rshifts ); } Xt[ lag ] = inner_prod; /* X[:,lag]'*t */ ptr1--; /* Go to next column of X */ } } else { silk_assert( rshifts == 0 ); for( lag = 0; lag < order; lag++ ) { Xt[ lag ] = silk_inner_prod_aligned( ptr1, ptr2, L ); /* X[:,lag]'*t */ ptr1--; /* Go to next column of X */ } } }
/* For input in Q24 domain */ opus_int32 silk_LPC_inverse_pred_gain_Q24( /* O Returns inverse prediction gain in energy domain, Q30 */ const opus_int32 *A_Q24, /* I Prediction coefficients [order] */ const opus_int order /* I Prediction order */ ) { opus_int k; opus_int32 Atmp_QA[ SILK_MAX_ORDER_LPC ]; /* Increase Q domain of the AR coefficients */ for( k = 0; k < order; k++ ) { Atmp_QA[ k ] = silk_RSHIFT32( A_Q24[ k ], 24 - QA ); } return LPC_inverse_pred_gain_QA( Atmp_QA, order ); }
/* Convert int32 coefficients to int16 coefs and make sure there's no wrap-around */ void silk_LPC_fit( opus_int16 *a_QOUT, /* O Output signal */ opus_int32 *a_QIN, /* I/O Input signal */ const opus_int QOUT, /* I Input Q domain */ const opus_int QIN, /* I Input Q domain */ const opus_int d /* I Filter order */ ) { opus_int i, k, idx = 0; opus_int32 maxabs, absval, chirp_Q16; /* Limit the maximum absolute value of the prediction coefficients, so that they'll fit in int16 */ for( i = 0; i < 10; i++ ) { /* Find maximum absolute value and its index */ maxabs = 0; for( k = 0; k < d; k++ ) { absval = silk_abs( a_QIN[k] ); if( absval > maxabs ) { maxabs = absval; idx = k; } } maxabs = silk_RSHIFT_ROUND( maxabs, QIN - QOUT ); if( maxabs > silk_int16_MAX ) { /* Reduce magnitude of prediction coefficients */ maxabs = silk_min( maxabs, 163838 ); /* ( silk_int32_MAX >> 14 ) + silk_int16_MAX = 163838 */ chirp_Q16 = SILK_FIX_CONST( 0.999, 16 ) - silk_DIV32( silk_LSHIFT( maxabs - silk_int16_MAX, 14 ), silk_RSHIFT32( silk_MUL( maxabs, idx + 1), 2 ) ); silk_bwexpander_32( a_QIN, d, chirp_Q16 ); } else { break; } } if( i == 10 ) { /* Reached the last iteration, clip the coefficients */ for( k = 0; k < d; k++ ) { a_QOUT[ k ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( a_QIN[ k ], QIN - QOUT ) ); a_QIN[ k ] = silk_LSHIFT( (opus_int32)a_QOUT[ k ], QIN - QOUT ); } } else { for( k = 0; k < d; k++ ) { a_QOUT[ k ] = (opus_int16)silk_RSHIFT_ROUND( a_QIN[ k ], QIN - QOUT ); } } }
/* For input in Q24 domain */ int32_t silk_LPC_inverse_pred_gain_Q24( /* O Returns inverse prediction gain in energy domain, Q30 */ const int32_t * A_Q24, /* I Prediction coefficients [order] */ const int order /* I Prediction order */ ) { int k; int32_t Atmp_QA[2][SILK_MAX_ORDER_LPC]; int32_t *Anew_QA; memzero(Atmp_QA, (2 * SILK_MAX_ORDER_LPC) * sizeof(int32_t)); Anew_QA = Atmp_QA[order & 1]; /* Increase Q domain of the AR coefficients */ for (k = 0; k < order; k++) { Anew_QA[k] = silk_RSHIFT32(A_Q24[k], 24 - QA); } return LPC_inverse_pred_gain_QA(Atmp_QA, order); }
/* Calculates correlation matrix X'*X */ void silk_corrMatrix_FIX( const opus_int16 *x, /* I x vector [L + order - 1] used to form data matrix X */ const opus_int L, /* I Length of vectors */ const opus_int order, /* I Max lag for correlation */ const opus_int head_room, /* I Desired headroom */ opus_int32 *XX, /* O Pointer to X'*X correlation matrix [ order x order ] */ opus_int *rshifts /* I/O Right shifts of correlations */ ) { opus_int i, j, lag, rshifts_local, head_room_rshifts; opus_int32 energy; const opus_int16 *ptr1, *ptr2; /* Calculate energy to find shift used to fit in 32 bits */ silk_sum_sqr_shift( &energy, &rshifts_local, x, L + order - 1 ); /* Add shifts to get the desired head room */ head_room_rshifts = silk_max( head_room - silk_CLZ32( energy ), 0 ); energy = silk_RSHIFT32( energy, head_room_rshifts ); rshifts_local += head_room_rshifts; /* Calculate energy of first column (0) of X: X[:,0]'*X[:,0] */ /* Remove contribution of first order - 1 samples */ for( i = 0; i < order - 1; i++ ) { energy -= silk_RSHIFT32( silk_SMULBB( x[ i ], x[ i ] ), rshifts_local ); } if( rshifts_local < *rshifts ) { /* Adjust energy */ energy = silk_RSHIFT32( energy, *rshifts - rshifts_local ); rshifts_local = *rshifts; } /* Calculate energy of remaining columns of X: X[:,j]'*X[:,j] */ /* Fill out the diagonal of the correlation matrix */ matrix_ptr( XX, 0, 0, order ) = energy; ptr1 = &x[ order - 1 ]; /* First sample of column 0 of X */ for( j = 1; j < order; j++ ) { energy = silk_SUB32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ L - j ], ptr1[ L - j ] ), rshifts_local ) ); energy = silk_ADD32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ -j ], ptr1[ -j ] ), rshifts_local ) ); matrix_ptr( XX, j, j, order ) = energy; } ptr2 = &x[ order - 2 ]; /* First sample of column 1 of X */ /* Calculate the remaining elements of the correlation matrix */ if( rshifts_local > 0 ) { /* Right shifting used */ for( lag = 1; lag < order; lag++ ) { /* Inner product of column 0 and column lag: X[:,0]'*X[:,lag] */ energy = 0; for( i = 0; i < L; i++ ) { energy += silk_RSHIFT32( silk_SMULBB( ptr1[ i ], ptr2[i] ), rshifts_local ); } /* Calculate remaining off diagonal: X[:,j]'*X[:,j + lag] */ matrix_ptr( XX, lag, 0, order ) = energy; matrix_ptr( XX, 0, lag, order ) = energy; for( j = 1; j < ( order - lag ); j++ ) { energy = silk_SUB32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ L - j ], ptr2[ L - j ] ), rshifts_local ) ); energy = silk_ADD32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ -j ], ptr2[ -j ] ), rshifts_local ) ); matrix_ptr( XX, lag + j, j, order ) = energy; matrix_ptr( XX, j, lag + j, order ) = energy; } ptr2--; /* Update pointer to first sample of next column (lag) in X */ } } else { for( lag = 1; lag < order; lag++ ) { /* Inner product of column 0 and column lag: X[:,0]'*X[:,lag] */ energy = silk_inner_prod_aligned( ptr1, ptr2, L ); matrix_ptr( XX, lag, 0, order ) = energy; matrix_ptr( XX, 0, lag, order ) = energy; /* Calculate remaining off diagonal: X[:,j]'*X[:,j + lag] */ for( j = 1; j < ( order - lag ); j++ ) { energy = silk_SUB32( energy, silk_SMULBB( ptr1[ L - j ], ptr2[ L - j ] ) ); energy = silk_SMLABB( energy, ptr1[ -j ], ptr2[ -j ] ); matrix_ptr( XX, lag + j, j, order ) = energy; matrix_ptr( XX, j, lag + j, order ) = energy; } ptr2--;/* Update pointer to first sample of next column (lag) in X */ } } *rshifts = rshifts_local; }
/* Compute reflection coefficients from input signal */ void silk_burg_modified( opus_int32 *res_nrg, /* O Residual energy */ opus_int *res_nrg_Q, /* O Residual energy Q value */ opus_int32 A_Q16[], /* O Prediction coefficients (length order) */ const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */ const opus_int subfr_length, /* I Input signal subframe length (incl. D preceeding samples) */ const opus_int nb_subfr, /* I Number of subframes stacked in x */ const opus_int32 WhiteNoiseFrac_Q32, /* I Fraction added to zero-lag autocorrelation */ const opus_int D /* I Order */ ) { opus_int k, n, s, lz, rshifts, rshifts_extra; opus_int32 C0, num, nrg, rc_Q31, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2; const opus_int16 *x_ptr; opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ]; opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ]; opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ]; opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ]; opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ]; silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); silk_assert( nb_subfr <= MAX_NB_SUBFR ); /* Compute autocorrelations, added over subframes */ silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length ); if( rshifts > MAX_RSHIFTS ) { C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS ); silk_assert( C0 > 0 ); rshifts = MAX_RSHIFTS; } else { lz = silk_CLZ32( C0 ) - 1; rshifts_extra = N_BITS_HEAD_ROOM - lz; if( rshifts_extra > 0 ) { rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts ); C0 = silk_RSHIFT32( C0, rshifts_extra ); } else { rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts ); C0 = silk_LSHIFT32( C0, -rshifts_extra ); } rshifts += rshifts_extra; } silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); if( rshifts > 0 ) { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; for( n = 1; n < D + 1; n++ ) { C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts ); } } } else { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; for( n = 1; n < D + 1; n++ ) { C_first_row[ n - 1 ] += silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr + n, subfr_length - n ), -rshifts ); } } } silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); /* Initialize */ CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( WhiteNoiseFrac_Q32, C0 ) + 1; /* Q(-rshifts)*/ for( n = 0; n < D; n++ ) { /* Update first row of correlation matrix (without first element) */ /* Update last row of correlation matrix (without last element, stored in reversed order) */ /* Update C * Af */ /* Update C * flipud(Af) (stored in reversed order) */ if( rshifts > -2 ) { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts)*/ x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts)*/ tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16)*/ tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16)*/ for( k = 0; k < n; k++ ) { C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts )*/ C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts )*/ Atmp_QA = Af_QA[ k ]; tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16)*/ tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16)*/ } tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts)*/ tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts)*/ for( k = 0; k <= n; k++ ) { CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift )*/ CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift )*/ } } } else { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts )*/ x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts )*/ tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17*/ tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17*/ for( k = 0; k < n; k++ ) { C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts )*/ C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts )*/ Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17*/ tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17*/ tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17*/ } tmp1 = -tmp1; /* Q17*/ tmp2 = -tmp2; /* Q17*/ for( k = 0; k <= n; k++ ) { CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1, silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift )*/ CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2, silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift )*/ } } } /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ tmp1 = C_first_row[ n ]; /* Q( -rshifts )*/ tmp2 = C_last_row[ n ]; /* Q( -rshifts )*/ num = 0; /* Q( -rshifts )*/ nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts )*/ for( k = 0; k < n; k++ ) { Atmp_QA = Af_QA[ k ]; lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1; lz = silk_min( 32 - QA, lz ); Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz )*/ tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts )*/ tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts )*/ num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts )*/ nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ), Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts )*/ } CAf[ n + 1 ] = tmp1; /* Q( -rshifts )*/ CAb[ n + 1 ] = tmp2; /* Q( -rshifts )*/ num = silk_ADD32( num, tmp2 ); /* Q( -rshifts )*/ num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts )*/ /* Calculate the next order reflection (parcor) coefficient */ if( silk_abs( num ) < nrg ) { rc_Q31 = silk_DIV32_varQ( num, nrg, 31 ); } else { /* Negative energy or ratio too high; set remaining coefficients to zero and exit loop */ silk_memset( &Af_QA[ n ], 0, ( D - n ) * sizeof( opus_int32 ) ); silk_assert( 0 ); break; } /* Update the AR coefficients */ for( k = 0; k < (n + 1) >> 1; k++ ) { tmp1 = Af_QA[ k ]; /* QA*/ tmp2 = Af_QA[ n - k - 1 ]; /* QA*/ Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA*/ Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA*/ } Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA*/ /* Update C * Af and C * Ab */ for( k = 0; k <= n + 1; k++ ) { tmp1 = CAf[ k ]; /* Q( -rshifts )*/ tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts )*/ CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts )*/ CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts )*/ } } /* Return residual energy */ nrg = CAf[ 0 ]; /* Q( -rshifts )*/ tmp1 = 1 << 16; /* Q16*/ for( k = 0; k < D; k++ ) { Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16*/ nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts )*/ tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16*/ A_Q16[ k ] = -Atmp1; } *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( WhiteNoiseFrac_Q32, C0 ), -tmp1 ); /* Q( -rshifts )*/ *res_nrg_Q = -rshifts; }
/* compute whitening filter coefficients from normalized line spectral frequencies */ void silk_NLSF2A( opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */ const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */ const opus_int d /* I filter order (should be even) */ ) { /* This ordering was found to maximize quality. It improves numerical accuracy of silk_NLSF2A_find_poly() compared to "standard" ordering. */ static const unsigned char ordering16[16] = { 0, 15, 8, 7, 4, 11, 12, 3, 2, 13, 10, 5, 6, 9, 14, 1 }; static const unsigned char ordering10[10] = { 0, 9, 6, 3, 4, 5, 8, 1, 2, 7 }; const unsigned char *ordering; opus_int k, i, dd; opus_int32 cos_LSF_QA[ SILK_MAX_ORDER_LPC ]; opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ], Q[ SILK_MAX_ORDER_LPC / 2 + 1 ]; opus_int32 Ptmp, Qtmp, f_int, f_frac, cos_val, delta; opus_int32 a32_QA1[ SILK_MAX_ORDER_LPC ]; opus_int32 maxabs, absval, idx=0, sc_Q16; silk_assert( LSF_COS_TAB_SZ_FIX == 128 ); silk_assert( d==10||d==16 ); /* convert LSFs to 2*cos(LSF), using piecewise linear curve from table */ ordering = d == 16 ? ordering16 : ordering10; for( k = 0; k < d; k++ ) { silk_assert(NLSF[k] >= 0 ); /* f_int on a scale 0-127 (rounded down) */ f_int = silk_RSHIFT( NLSF[k], 15 - 7 ); /* f_frac, range: 0..255 */ f_frac = NLSF[k] - silk_LSHIFT( f_int, 15 - 7 ); silk_assert(f_int >= 0); silk_assert(f_int < LSF_COS_TAB_SZ_FIX ); /* Read start and end value from table */ cos_val = silk_LSFCosTab_FIX_Q12[ f_int ]; /* Q12 */ delta = silk_LSFCosTab_FIX_Q12[ f_int + 1 ] - cos_val; /* Q12, with a range of 0..200 */ /* Linear interpolation */ cos_LSF_QA[ordering[k]] = silk_RSHIFT_ROUND( silk_LSHIFT( cos_val, 8 ) + silk_MUL( delta, f_frac ), 20 - QA ); /* QA */ } dd = silk_RSHIFT( d, 1 ); /* generate even and odd polynomials using convolution */ silk_NLSF2A_find_poly( P, &cos_LSF_QA[ 0 ], dd ); silk_NLSF2A_find_poly( Q, &cos_LSF_QA[ 1 ], dd ); /* convert even and odd polynomials to opus_int32 Q12 filter coefs */ for( k = 0; k < dd; k++ ) { Ptmp = P[ k+1 ] + P[ k ]; Qtmp = Q[ k+1 ] - Q[ k ]; /* the Ptmp and Qtmp values at this stage need to fit in int32 */ a32_QA1[ k ] = -Qtmp - Ptmp; /* QA+1 */ a32_QA1[ d-k-1 ] = Qtmp - Ptmp; /* QA+1 */ } /* Limit the maximum absolute value of the prediction coefficients, so that they'll fit in int16 */ for( i = 0; i < 10; i++ ) { /* Find maximum absolute value and its index */ maxabs = 0; for( k = 0; k < d; k++ ) { absval = silk_abs( a32_QA1[k] ); if( absval > maxabs ) { maxabs = absval; idx = k; } } maxabs = silk_RSHIFT_ROUND( maxabs, QA + 1 - 12 ); /* QA+1 -> Q12 */ if( maxabs > silk_int16_MAX ) { /* Reduce magnitude of prediction coefficients */ maxabs = silk_min( maxabs, 163838 ); /* ( silk_int32_MAX >> 14 ) + silk_int16_MAX = 163838 */ sc_Q16 = SILK_FIX_CONST( 0.999, 16 ) - silk_DIV32( silk_LSHIFT( maxabs - silk_int16_MAX, 14 ), silk_RSHIFT32( silk_MUL( maxabs, idx + 1), 2 ) ); silk_bwexpander_32( a32_QA1, d, sc_Q16 ); } else { break; } } if( i == 10 ) { /* Reached the last iteration, clip the coefficients */ for( k = 0; k < d; k++ ) { a_Q12[ k ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ) ); /* QA+1 -> Q12 */ a32_QA1[ k ] = silk_LSHIFT( (opus_int32)a_Q12[ k ], QA + 1 - 12 ); } } else { for( k = 0; k < d; k++ ) { a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */ } } for( i = 0; i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) { if( silk_LPC_inverse_pred_gain( a_Q12, d ) < SILK_FIX_CONST( 1.0 / MAX_PREDICTION_POWER_GAIN, 30 ) ) { /* Prediction coefficients are (too close to) unstable; apply bandwidth expansion */ /* on the unscaled coefficients, convert to Q12 and measure again */ silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) ); for( k = 0; k < d; k++ ) { a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */ } } else { break; } } }
/* Compute reflection coefficients from input signal */ void silk_burg_modified_sse4_1( opus_int32 *res_nrg, /* O Residual energy */ opus_int *res_nrg_Q, /* O Residual energy Q value */ opus_int32 A_Q16[], /* O Prediction coefficients (length order) */ const opus_int16 x[], /* I Input signal, length: nb_subfr * (D + subfr_length) */ const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */ const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */ const opus_int nb_subfr, /* I Number of subframes stacked in x */ const opus_int D, /* I Order */ int arch /* I Run-time architecture */ ) { opus_int k, n, s, lz, rshifts, rshifts_extra, reached_max_gain; opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2; const opus_int16 *x_ptr; opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ]; opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ]; opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ]; opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ]; opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ]; opus_int32 xcorr[ SILK_MAX_ORDER_LPC ]; __m128i FIRST_3210, LAST_3210, ATMP_3210, TMP1_3210, TMP2_3210, T1_3210, T2_3210, PTR_3210, SUBFR_3210, X1_3210, X2_3210; __m128i CONST1 = _mm_set1_epi32(1); silk_assert(subfr_length * nb_subfr <= MAX_FRAME_SIZE); /* Compute autocorrelations, added over subframes */ silk_sum_sqr_shift(&C0, &rshifts, x, nb_subfr * subfr_length); if(rshifts > MAX_RSHIFTS) { C0 = silk_LSHIFT32(C0, rshifts - MAX_RSHIFTS); silk_assert(C0 > 0); rshifts = MAX_RSHIFTS; } else { lz = silk_CLZ32(C0) - 1; rshifts_extra = N_BITS_HEAD_ROOM - lz; if(rshifts_extra > 0) { rshifts_extra = silk_min(rshifts_extra, MAX_RSHIFTS - rshifts); C0 = silk_RSHIFT32(C0, rshifts_extra); } else { rshifts_extra = silk_max(rshifts_extra, MIN_RSHIFTS - rshifts); C0 = silk_LSHIFT32(C0, -rshifts_extra); } rshifts += rshifts_extra; } CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL(SILK_FIX_CONST(FIND_LPC_COND_FAC, 32), C0) + 1; /* Q(-rshifts) */ silk_memset(C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof(opus_int32)); if(rshifts > 0) { for(s = 0; s < nb_subfr; s++) { x_ptr = x + s * subfr_length; for(n = 1; n < D + 1; n++) { C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64(x_ptr, x_ptr + n, subfr_length - n, arch), rshifts); } } } else { for(s = 0; s < nb_subfr; s++) { int i; opus_int32 d; x_ptr = x + s * subfr_length; celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch); for(n = 1; n < D + 1; n++) { for (i = n + subfr_length - D, d = 0; i < subfr_length; i++) d = MAC16_16(d, x_ptr[ i ], x_ptr[ i - n ]); xcorr[ n - 1 ] += d; } for(n = 1; n < D + 1; n++) { C_first_row[ n - 1 ] += silk_LSHIFT32(xcorr[ n - 1 ], -rshifts); } } } silk_memcpy(C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof(opus_int32)); /* Initialize */ CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL(SILK_FIX_CONST(FIND_LPC_COND_FAC, 32), C0) + 1; /* Q(-rshifts) */ invGain_Q30 = (opus_int32)1 << 30; reached_max_gain = 0; for(n = 0; n < D; n++) { /* Update first row of correlation matrix (without first element) */ /* Update last row of correlation matrix (without last element, stored in reversed order) */ /* Update C * Af */ /* Update C * flipud(Af) (stored in reversed order) */ if(rshifts > -2) { for(s = 0; s < nb_subfr; s++) { x_ptr = x + s * subfr_length; x1 = -silk_LSHIFT32((opus_int32)x_ptr[ n ], 16 - rshifts); /* Q(16-rshifts) */ x2 = -silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts); /* Q(16-rshifts) */ tmp1 = silk_LSHIFT32((opus_int32)x_ptr[ n ], QA - 16); /* Q(QA-16) */ tmp2 = silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16); /* Q(QA-16) */ for(k = 0; k < n; k++) { C_first_row[ k ] = silk_SMLAWB(C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q(-rshifts) */ C_last_row[ k ] = silk_SMLAWB(C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ]); /* Q(-rshifts) */ Atmp_QA = Af_QA[ k ]; tmp1 = silk_SMLAWB(tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */ tmp2 = silk_SMLAWB(tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ]); /* Q(QA-16) */ } tmp1 = silk_LSHIFT32(-tmp1, 32 - QA - rshifts); /* Q(16-rshifts) */ tmp2 = silk_LSHIFT32(-tmp2, 32 - QA - rshifts); /* Q(16-rshifts) */ for(k = 0; k <= n; k++) { CAf[ k ] = silk_SMLAWB(CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q(-rshift) */ CAb[ k ] = silk_SMLAWB(CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ]); /* Q(-rshift) */ } } } else { for(s = 0; s < nb_subfr; s++) { x_ptr = x + s * subfr_length; x1 = -silk_LSHIFT32((opus_int32)x_ptr[ n ], -rshifts); /* Q(-rshifts) */ x2 = -silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts); /* Q(-rshifts) */ tmp1 = silk_LSHIFT32((opus_int32)x_ptr[ n ], 17); /* Q17 */ tmp2 = silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n - 1 ], 17); /* Q17 */ X1_3210 = _mm_set1_epi32(x1); X2_3210 = _mm_set1_epi32(x2); TMP1_3210 = _mm_setzero_si128(); TMP2_3210 = _mm_setzero_si128(); for(k = 0; k < n - 3; k += 4) { PTR_3210 = OP_CVTEPI16_EPI32_M64(&x_ptr[ n - k - 1 - 3 ]); SUBFR_3210 = OP_CVTEPI16_EPI32_M64(&x_ptr[ subfr_length - n + k ]); FIRST_3210 = _mm_loadu_si128((__m128i *)&C_first_row[ k ]); PTR_3210 = _mm_shuffle_epi32(PTR_3210, _MM_SHUFFLE(0, 1, 2, 3)); LAST_3210 = _mm_loadu_si128((__m128i *)&C_last_row[ k ]); ATMP_3210 = _mm_loadu_si128((__m128i *)&Af_QA[ k ]); T1_3210 = _mm_mullo_epi32(PTR_3210, X1_3210); T2_3210 = _mm_mullo_epi32(SUBFR_3210, X2_3210); ATMP_3210 = _mm_srai_epi32(ATMP_3210, 7); ATMP_3210 = _mm_add_epi32(ATMP_3210, CONST1); ATMP_3210 = _mm_srai_epi32(ATMP_3210, 1); FIRST_3210 = _mm_add_epi32(FIRST_3210, T1_3210); LAST_3210 = _mm_add_epi32(LAST_3210, T2_3210); PTR_3210 = _mm_mullo_epi32(ATMP_3210, PTR_3210); SUBFR_3210 = _mm_mullo_epi32(ATMP_3210, SUBFR_3210); _mm_storeu_si128((__m128i *)&C_first_row[ k ], FIRST_3210); _mm_storeu_si128((__m128i *)&C_last_row[ k ], LAST_3210); TMP1_3210 = _mm_add_epi32(TMP1_3210, PTR_3210); TMP2_3210 = _mm_add_epi32(TMP2_3210, SUBFR_3210); } TMP1_3210 = _mm_add_epi32(TMP1_3210, _mm_unpackhi_epi64(TMP1_3210, TMP1_3210)); TMP2_3210 = _mm_add_epi32(TMP2_3210, _mm_unpackhi_epi64(TMP2_3210, TMP2_3210)); TMP1_3210 = _mm_add_epi32(TMP1_3210, _mm_shufflelo_epi16(TMP1_3210, 0x0E)); TMP2_3210 = _mm_add_epi32(TMP2_3210, _mm_shufflelo_epi16(TMP2_3210, 0x0E)); tmp1 += _mm_cvtsi128_si32(TMP1_3210); tmp2 += _mm_cvtsi128_si32(TMP2_3210); for(; k < n; k++) { C_first_row[ k ] = silk_MLA(C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q(-rshifts) */ C_last_row[ k ] = silk_MLA(C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ]); /* Q(-rshifts) */ Atmp1 = silk_RSHIFT_ROUND(Af_QA[ k ], QA - 17); /* Q17 */ tmp1 = silk_MLA(tmp1, x_ptr[ n - k - 1 ], Atmp1); /* Q17 */ tmp2 = silk_MLA(tmp2, x_ptr[ subfr_length - n + k ], Atmp1); /* Q17 */ } tmp1 = -tmp1; /* Q17 */ tmp2 = -tmp2; /* Q17 */ { __m128i xmm_tmp1, xmm_tmp2; __m128i xmm_x_ptr_n_k_x2x0, xmm_x_ptr_n_k_x3x1; __m128i xmm_x_ptr_sub_x2x0, xmm_x_ptr_sub_x3x1; xmm_tmp1 = _mm_set1_epi32(tmp1); xmm_tmp2 = _mm_set1_epi32(tmp2); for(k = 0; k <= n - 3; k += 4) { xmm_x_ptr_n_k_x2x0 = OP_CVTEPI16_EPI32_M64(&x_ptr[ n - k - 3 ]); xmm_x_ptr_sub_x2x0 = OP_CVTEPI16_EPI32_M64(&x_ptr[ subfr_length - n + k - 1 ]); xmm_x_ptr_n_k_x2x0 = _mm_shuffle_epi32(xmm_x_ptr_n_k_x2x0, _MM_SHUFFLE(0, 1, 2, 3)); xmm_x_ptr_n_k_x2x0 = _mm_slli_epi32(xmm_x_ptr_n_k_x2x0, -rshifts - 1); xmm_x_ptr_sub_x2x0 = _mm_slli_epi32(xmm_x_ptr_sub_x2x0, -rshifts - 1); /* equal shift right 4 bytes, xmm_x_ptr_n_k_x3x1 = _mm_srli_si128(xmm_x_ptr_n_k_x2x0, 4)*/ xmm_x_ptr_n_k_x3x1 = _mm_shuffle_epi32(xmm_x_ptr_n_k_x2x0, _MM_SHUFFLE(0, 3, 2, 1)); xmm_x_ptr_sub_x3x1 = _mm_shuffle_epi32(xmm_x_ptr_sub_x2x0, _MM_SHUFFLE(0, 3, 2, 1)); xmm_x_ptr_n_k_x2x0 = _mm_mul_epi32(xmm_x_ptr_n_k_x2x0, xmm_tmp1); xmm_x_ptr_n_k_x3x1 = _mm_mul_epi32(xmm_x_ptr_n_k_x3x1, xmm_tmp1); xmm_x_ptr_sub_x2x0 = _mm_mul_epi32(xmm_x_ptr_sub_x2x0, xmm_tmp2); xmm_x_ptr_sub_x3x1 = _mm_mul_epi32(xmm_x_ptr_sub_x3x1, xmm_tmp2); xmm_x_ptr_n_k_x2x0 = _mm_srli_epi64(xmm_x_ptr_n_k_x2x0, 16); xmm_x_ptr_n_k_x3x1 = _mm_slli_epi64(xmm_x_ptr_n_k_x3x1, 16); xmm_x_ptr_sub_x2x0 = _mm_srli_epi64(xmm_x_ptr_sub_x2x0, 16); xmm_x_ptr_sub_x3x1 = _mm_slli_epi64(xmm_x_ptr_sub_x3x1, 16); xmm_x_ptr_n_k_x2x0 = _mm_blend_epi16(xmm_x_ptr_n_k_x2x0, xmm_x_ptr_n_k_x3x1, 0xCC); xmm_x_ptr_sub_x2x0 = _mm_blend_epi16(xmm_x_ptr_sub_x2x0, xmm_x_ptr_sub_x3x1, 0xCC); X1_3210 = _mm_loadu_si128((__m128i *)&CAf[ k ]); PTR_3210 = _mm_loadu_si128((__m128i *)&CAb[ k ]); X1_3210 = _mm_add_epi32(X1_3210, xmm_x_ptr_n_k_x2x0); PTR_3210 = _mm_add_epi32(PTR_3210, xmm_x_ptr_sub_x2x0); _mm_storeu_si128((__m128i *)&CAf[ k ], X1_3210); _mm_storeu_si128((__m128i *)&CAb[ k ], PTR_3210); } for(; k <= n; k++) { CAf[ k ] = silk_SMLAWW(CAf[ k ], tmp1, silk_LSHIFT32((opus_int32)x_ptr[ n - k ], -rshifts - 1)); /* Q(-rshift) */ CAb[ k ] = silk_SMLAWW(CAb[ k ], tmp2, silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1)); /* Q(-rshift) */ } } } } /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ tmp1 = C_first_row[ n ]; /* Q(-rshifts) */ tmp2 = C_last_row[ n ]; /* Q(-rshifts) */ num = 0; /* Q(-rshifts) */ nrg = silk_ADD32(CAb[ 0 ], CAf[ 0 ]); /* Q(1-rshifts) */ for(k = 0; k < n; k++) { Atmp_QA = Af_QA[ k ]; lz = silk_CLZ32(silk_abs(Atmp_QA)) - 1; lz = silk_min(32 - QA, lz); Atmp1 = silk_LSHIFT32(Atmp_QA, lz); /* Q(QA + lz) */ tmp1 = silk_ADD_LSHIFT32(tmp1, silk_SMMUL(C_last_row[ n - k - 1 ], Atmp1), 32 - QA - lz); /* Q(-rshifts) */ tmp2 = silk_ADD_LSHIFT32(tmp2, silk_SMMUL(C_first_row[ n - k - 1 ], Atmp1), 32 - QA - lz); /* Q(-rshifts) */ num = silk_ADD_LSHIFT32(num, silk_SMMUL(CAb[ n - k ], Atmp1), 32 - QA - lz); /* Q(-rshifts) */ nrg = silk_ADD_LSHIFT32(nrg, silk_SMMUL(silk_ADD32(CAb[ k + 1 ], CAf[ k + 1 ]), Atmp1), 32 - QA - lz); /* Q(1-rshifts) */ } CAf[ n + 1 ] = tmp1; /* Q(-rshifts) */ CAb[ n + 1 ] = tmp2; /* Q(-rshifts) */ num = silk_ADD32(num, tmp2); /* Q(-rshifts) */ num = silk_LSHIFT32(-num, 1); /* Q(1-rshifts) */ /* Calculate the next order reflection (parcor) coefficient */ if(silk_abs(num) < nrg) { rc_Q31 = silk_DIV32_varQ(num, nrg, 31); } else { rc_Q31 = (num > 0) ? silk_int32_MAX : silk_int32_MIN; } /* Update inverse prediction gain */ tmp1 = ((opus_int32)1 << 30) - silk_SMMUL(rc_Q31, rc_Q31); tmp1 = silk_LSHIFT(silk_SMMUL(invGain_Q30, tmp1), 2); if(tmp1 <= minInvGain_Q30) { /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */ tmp2 = ((opus_int32)1 << 30) - silk_DIV32_varQ(minInvGain_Q30, invGain_Q30, 30); /* Q30 */ rc_Q31 = silk_SQRT_APPROX(tmp2); /* Q15 */ /* Newton-Raphson iteration */ rc_Q31 = silk_RSHIFT32(rc_Q31 + silk_DIV32(tmp2, rc_Q31), 1); /* Q15 */ rc_Q31 = silk_LSHIFT32(rc_Q31, 16); /* Q31 */ if(num < 0) { /* Ensure adjusted reflection coefficients has the original sign */ rc_Q31 = -rc_Q31; } invGain_Q30 = minInvGain_Q30; reached_max_gain = 1; } else { invGain_Q30 = tmp1; } /* Update the AR coefficients */ for(k = 0; k < (n + 1) >> 1; k++) { tmp1 = Af_QA[ k ]; /* QA */ tmp2 = Af_QA[ n - k - 1 ]; /* QA */ Af_QA[ k ] = silk_ADD_LSHIFT32(tmp1, silk_SMMUL(tmp2, rc_Q31), 1); /* QA */ Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32(tmp2, silk_SMMUL(tmp1, rc_Q31), 1); /* QA */ } Af_QA[ n ] = silk_RSHIFT32(rc_Q31, 31 - QA); /* QA */ if(reached_max_gain) { /* Reached max prediction gain; set remaining coefficients to zero and exit loop */ for(k = n + 1; k < D; k++) { Af_QA[ k ] = 0; } break; } /* Update C * Af and C * Ab */ for(k = 0; k <= n + 1; k++) { tmp1 = CAf[ k ]; /* Q(-rshifts) */ tmp2 = CAb[ n - k + 1 ]; /* Q(-rshifts) */ CAf[ k ] = silk_ADD_LSHIFT32(tmp1, silk_SMMUL(tmp2, rc_Q31), 1); /* Q(-rshifts) */ CAb[ n - k + 1 ] = silk_ADD_LSHIFT32(tmp2, silk_SMMUL(tmp1, rc_Q31), 1); /* Q(-rshifts) */ } } if(reached_max_gain) { for(k = 0; k < D; k++) { /* Scale coefficients */ A_Q16[ k ] = -silk_RSHIFT_ROUND(Af_QA[ k ], QA - 16); } /* Subtract energy of preceding samples from C0 */ if(rshifts > 0) { for(s = 0; s < nb_subfr; s++) { x_ptr = x + s * subfr_length; C0 -= (opus_int32)silk_RSHIFT64(silk_inner_prod16_aligned_64(x_ptr, x_ptr, D, arch), rshifts); } } else { for(s = 0; s < nb_subfr; s++) { x_ptr = x + s * subfr_length; C0 -= silk_LSHIFT32(silk_inner_prod_aligned(x_ptr, x_ptr, D, arch), -rshifts); } } /* Approximate residual energy */ *res_nrg = silk_LSHIFT(silk_SMMUL(invGain_Q30, C0), 2); *res_nrg_Q = -rshifts; } else { /* Return residual energy */ nrg = CAf[ 0 ]; /* Q(-rshifts) */ tmp1 = (opus_int32)1 << 16; /* Q16 */ for(k = 0; k < D; k++) { Atmp1 = silk_RSHIFT_ROUND(Af_QA[ k ], QA - 16); /* Q16 */ nrg = silk_SMLAWW(nrg, CAf[ k + 1 ], Atmp1); /* Q(-rshifts) */ tmp1 = silk_SMLAWW(tmp1, Atmp1, Atmp1); /* Q16 */ A_Q16[ k ] = -Atmp1; } *res_nrg = silk_SMLAWW(nrg, silk_SMMUL(SILK_FIX_CONST(FIND_LPC_COND_FAC, 32), C0), -tmp1);/* Q(-rshifts) */ *res_nrg_Q = -rshifts; } }
/* Compute reflection coefficients from input signal */ void silk_burg_modified( opus_int32 *res_nrg, /* O Residual energy */ opus_int *res_nrg_Q, /* O Residual energy Q value */ opus_int32 A_Q16[], /* O Prediction coefficients (length order) */ const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */ const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */ const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */ const opus_int nb_subfr, /* I Number of subframes stacked in x */ const opus_int D /* I Order */ ) { opus_int k, n, s, lz, rshifts, rshifts_extra, reached_max_gain; opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2; const opus_int16 *x_ptr; opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ]; opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ]; opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ]; opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ]; opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ]; silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); /* Compute autocorrelations, added over subframes */ silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length ); if( rshifts > MAX_RSHIFTS ) { C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS ); silk_assert( C0 > 0 ); rshifts = MAX_RSHIFTS; } else { lz = silk_CLZ32( C0 ) - 1; rshifts_extra = N_BITS_HEAD_ROOM - lz; if( rshifts_extra > 0 ) { rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts ); C0 = silk_RSHIFT32( C0, rshifts_extra ); } else { rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts ); C0 = silk_LSHIFT32( C0, -rshifts_extra ); } rshifts += rshifts_extra; } CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */ silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); if( rshifts > 0 ) { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; for( n = 1; n < D + 1; n++ ) { C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts ); } } } else { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; for( n = 1; n < D + 1; n++ ) { C_first_row[ n - 1 ] += silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr + n, subfr_length - n ), -rshifts ); } } } silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); /* Initialize */ CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */ invGain_Q30 = (opus_int32)1 << 30; reached_max_gain = 0; for( n = 0; n < D; n++ ) { /* Update first row of correlation matrix (without first element) */ /* Update last row of correlation matrix (without last element, stored in reversed order) */ /* Update C * Af */ /* Update C * flipud(Af) (stored in reversed order) */ if( rshifts > -2 ) { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */ x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */ tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */ tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */ for( k = 0; k < n; k++ ) { C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */ C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */ Atmp_QA = Af_QA[ k ]; tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */ tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */ } tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */ tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */ for( k = 0; k <= n; k++ ) { CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */ CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */ } } } else { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */ x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */ tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */ tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */ for( k = 0; k < n; k++ ) { C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */ C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */ Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */ tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */ tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */ } tmp1 = -tmp1; /* Q17 */ tmp2 = -tmp2; /* Q17 */ for( k = 0; k <= n; k++ ) { CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1, silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */ CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2, silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */ } } } /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */ tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */ num = 0; /* Q( -rshifts ) */ nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */ for( k = 0; k < n; k++ ) { Atmp_QA = Af_QA[ k ]; lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1; lz = silk_min( 32 - QA, lz ); Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */ tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ), Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */ } CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */ CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */ num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */ num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */ /* Calculate the next order reflection (parcor) coefficient */ if( silk_abs( num ) < nrg ) { rc_Q31 = silk_DIV32_varQ( num, nrg, 31 ); } else { rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN; } /* Update inverse prediction gain */ tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 ); tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 ); if( tmp1 <= minInvGain_Q30 ) { /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */ tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */ rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */ /* Newton-Raphson iteration */ rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */ rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */ if( num < 0 ) { /* Ensure adjusted reflection coefficients has the original sign */ rc_Q31 = -rc_Q31; } invGain_Q30 = minInvGain_Q30; reached_max_gain = 1; } else { invGain_Q30 = tmp1; } /* Update the AR coefficients */ for( k = 0; k < (n + 1) >> 1; k++ ) { tmp1 = Af_QA[ k ]; /* QA */ tmp2 = Af_QA[ n - k - 1 ]; /* QA */ Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */ Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */ } Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */ if( reached_max_gain ) { /* Reached max prediction gain; set remaining coefficients to zero and exit loop */ for( k = n + 1; k < D; k++ ) { Af_QA[ k ] = 0; } break; } /* Update C * Af and C * Ab */ for( k = 0; k <= n + 1; k++ ) { tmp1 = CAf[ k ]; /* Q( -rshifts ) */ tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */ CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */ CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */ } } if( reached_max_gain ) { for( k = 0; k < D; k++ ) { /* Scale coefficients */ A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); } /* Subtract energy of preceding samples from C0 */ if( rshifts > 0 ) { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D ), rshifts ); } } else { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D ), -rshifts ); } } /* Approximate residual energy */ *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 ); *res_nrg_Q = -rshifts; } else { /* Return residual energy */ nrg = CAf[ 0 ]; /* Q( -rshifts ) */ tmp1 = (opus_int32)1 << 16; /* Q16 */ for( k = 0; k < D; k++ ) { Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */ nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */ tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */ A_Q16[ k ] = -Atmp1; } *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( FIND_LPC_COND_FAC, C0 ), -tmp1 ); /* Q( -rshifts ) */ *res_nrg_Q = -rshifts; } }
/* encControl->payloadSize_ms is set to */ opus_int silk_Encode( /* O Returns error code */ void *encState, /* I/O State */ silk_EncControlStruct *encControl, /* I Control status */ const opus_int16 *samplesIn, /* I Speech sample input vector */ opus_int nSamplesIn, /* I Number of samples in input vector */ ec_enc *psRangeEnc, /* I/O Compressor data structure */ opus_int32 *nBytesOut, /* I/O Number of bytes in payload (input: Max bytes) */ const opus_int prefillFlag /* I Flag to indicate prefilling buffers no coding */ ) { opus_int n, i, nBits, flags, tmp_payloadSize_ms = 0, tmp_complexity = 0, ret = 0; opus_int nSamplesToBuffer, nSamplesToBufferMax, nBlocksOf10ms; opus_int nSamplesFromInput = 0, nSamplesFromInputMax; opus_int speech_act_thr_for_switch_Q8; opus_int32 TargetRate_bps, MStargetRates_bps[ 2 ], channelRate_bps, LBRR_symbol, sum; silk_encoder *psEnc = ( silk_encoder * )encState; VARDECL( opus_int16, buf ); opus_int transition, curr_block, tot_blocks; SAVE_STACK; if (encControl->reducedDependency) { psEnc->state_Fxx[0].sCmn.first_frame_after_reset = 1; psEnc->state_Fxx[1].sCmn.first_frame_after_reset = 1; } psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded = psEnc->state_Fxx[ 1 ].sCmn.nFramesEncoded = 0; /* Check values in encoder control structure */ if( ( ret = check_control_input( encControl ) ) != 0 ) { silk_assert( 0 ); RESTORE_STACK; return ret; } encControl->switchReady = 0; if( encControl->nChannelsInternal > psEnc->nChannelsInternal ) { /* Mono -> Stereo transition: init state of second channel and stereo state */ ret += silk_init_encoder( &psEnc->state_Fxx[ 1 ], psEnc->state_Fxx[ 0 ].sCmn.arch ); silk_memset( psEnc->sStereo.pred_prev_Q13, 0, sizeof( psEnc->sStereo.pred_prev_Q13 ) ); silk_memset( psEnc->sStereo.sSide, 0, sizeof( psEnc->sStereo.sSide ) ); psEnc->sStereo.mid_side_amp_Q0[ 0 ] = 0; psEnc->sStereo.mid_side_amp_Q0[ 1 ] = 1; psEnc->sStereo.mid_side_amp_Q0[ 2 ] = 0; psEnc->sStereo.mid_side_amp_Q0[ 3 ] = 1; psEnc->sStereo.width_prev_Q14 = 0; psEnc->sStereo.smth_width_Q14 = SILK_FIX_CONST( 1, 14 ); if( psEnc->nChannelsAPI == 2 ) { silk_memcpy( &psEnc->state_Fxx[ 1 ].sCmn.resampler_state, &psEnc->state_Fxx[ 0 ].sCmn.resampler_state, sizeof( silk_resampler_state_struct ) ); silk_memcpy( &psEnc->state_Fxx[ 1 ].sCmn.In_HP_State, &psEnc->state_Fxx[ 0 ].sCmn.In_HP_State, sizeof( psEnc->state_Fxx[ 1 ].sCmn.In_HP_State ) ); } } transition = (encControl->payloadSize_ms != psEnc->state_Fxx[ 0 ].sCmn.PacketSize_ms) || (psEnc->nChannelsInternal != encControl->nChannelsInternal); psEnc->nChannelsAPI = encControl->nChannelsAPI; psEnc->nChannelsInternal = encControl->nChannelsInternal; nBlocksOf10ms = silk_DIV32( 100 * nSamplesIn, encControl->API_sampleRate ); tot_blocks = ( nBlocksOf10ms > 1 ) ? nBlocksOf10ms >> 1 : 1; curr_block = 0; if( prefillFlag ) { /* Only accept input length of 10 ms */ if( nBlocksOf10ms != 1 ) { silk_assert( 0 ); RESTORE_STACK; return SILK_ENC_INPUT_INVALID_NO_OF_SAMPLES; } /* Reset Encoder */ for( n = 0; n < encControl->nChannelsInternal; n++ ) { ret = silk_init_encoder( &psEnc->state_Fxx[ n ], psEnc->state_Fxx[ n ].sCmn.arch ); silk_assert( !ret ); } tmp_payloadSize_ms = encControl->payloadSize_ms; encControl->payloadSize_ms = 10; tmp_complexity = encControl->complexity; encControl->complexity = 0; for( n = 0; n < encControl->nChannelsInternal; n++ ) { psEnc->state_Fxx[ n ].sCmn.controlled_since_last_payload = 0; psEnc->state_Fxx[ n ].sCmn.prefillFlag = 1; } } else { /* Only accept input lengths that are a multiple of 10 ms */ if( nBlocksOf10ms * encControl->API_sampleRate != 100 * nSamplesIn || nSamplesIn < 0 ) { silk_assert( 0 ); RESTORE_STACK; return SILK_ENC_INPUT_INVALID_NO_OF_SAMPLES; } /* Make sure no more than one packet can be produced */ if( 1000 * (opus_int32)nSamplesIn > encControl->payloadSize_ms * encControl->API_sampleRate ) { silk_assert( 0 ); RESTORE_STACK; return SILK_ENC_INPUT_INVALID_NO_OF_SAMPLES; } } TargetRate_bps = silk_RSHIFT32( encControl->bitRate, encControl->nChannelsInternal - 1 ); for( n = 0; n < encControl->nChannelsInternal; n++ ) { /* Force the side channel to the same rate as the mid */ opus_int force_fs_kHz = (n==1) ? psEnc->state_Fxx[0].sCmn.fs_kHz : 0; if( ( ret = silk_control_encoder( &psEnc->state_Fxx[ n ], encControl, TargetRate_bps, psEnc->allowBandwidthSwitch, n, force_fs_kHz ) ) != 0 ) { silk_assert( 0 ); RESTORE_STACK; return ret; } if( psEnc->state_Fxx[n].sCmn.first_frame_after_reset || transition ) { for( i = 0; i < psEnc->state_Fxx[ 0 ].sCmn.nFramesPerPacket; i++ ) { psEnc->state_Fxx[ n ].sCmn.LBRR_flags[ i ] = 0; } } psEnc->state_Fxx[ n ].sCmn.inDTX = psEnc->state_Fxx[ n ].sCmn.useDTX; } silk_assert( encControl->nChannelsInternal == 1 || psEnc->state_Fxx[ 0 ].sCmn.fs_kHz == psEnc->state_Fxx[ 1 ].sCmn.fs_kHz ); /* Input buffering/resampling and encoding */ nSamplesToBufferMax = 10 * nBlocksOf10ms * psEnc->state_Fxx[ 0 ].sCmn.fs_kHz; nSamplesFromInputMax = silk_DIV32_16( nSamplesToBufferMax * psEnc->state_Fxx[ 0 ].sCmn.API_fs_Hz, psEnc->state_Fxx[ 0 ].sCmn.fs_kHz * 1000 ); ALLOC( buf, nSamplesFromInputMax, opus_int16 ); while( 1 ) { nSamplesToBuffer = psEnc->state_Fxx[ 0 ].sCmn.frame_length - psEnc->state_Fxx[ 0 ].sCmn.inputBufIx; nSamplesToBuffer = silk_min( nSamplesToBuffer, nSamplesToBufferMax ); nSamplesFromInput = silk_DIV32_16( nSamplesToBuffer * psEnc->state_Fxx[ 0 ].sCmn.API_fs_Hz, psEnc->state_Fxx[ 0 ].sCmn.fs_kHz * 1000 ); /* Resample and write to buffer */ if( encControl->nChannelsAPI == 2 && encControl->nChannelsInternal == 2 ) { opus_int id = psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded; for( n = 0; n < nSamplesFromInput; n++ ) { buf[ n ] = samplesIn[ 2 * n ]; } /* Making sure to start both resamplers from the same state when switching from mono to stereo */ if( psEnc->nPrevChannelsInternal == 1 && id==0 ) { silk_memcpy( &psEnc->state_Fxx[ 1 ].sCmn.resampler_state, &psEnc->state_Fxx[ 0 ].sCmn.resampler_state, sizeof(psEnc->state_Fxx[ 1 ].sCmn.resampler_state)); } ret += silk_resampler( &psEnc->state_Fxx[ 0 ].sCmn.resampler_state, &psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.inputBufIx + 2 ], buf, nSamplesFromInput ); psEnc->state_Fxx[ 0 ].sCmn.inputBufIx += nSamplesToBuffer; nSamplesToBuffer = psEnc->state_Fxx[ 1 ].sCmn.frame_length - psEnc->state_Fxx[ 1 ].sCmn.inputBufIx; nSamplesToBuffer = silk_min( nSamplesToBuffer, 10 * nBlocksOf10ms * psEnc->state_Fxx[ 1 ].sCmn.fs_kHz ); for( n = 0; n < nSamplesFromInput; n++ ) { buf[ n ] = samplesIn[ 2 * n + 1 ]; } ret += silk_resampler( &psEnc->state_Fxx[ 1 ].sCmn.resampler_state, &psEnc->state_Fxx[ 1 ].sCmn.inputBuf[ psEnc->state_Fxx[ 1 ].sCmn.inputBufIx + 2 ], buf, nSamplesFromInput ); psEnc->state_Fxx[ 1 ].sCmn.inputBufIx += nSamplesToBuffer; } else if( encControl->nChannelsAPI == 2 && encControl->nChannelsInternal == 1 ) { /* Combine left and right channels before resampling */ for( n = 0; n < nSamplesFromInput; n++ ) { sum = samplesIn[ 2 * n ] + samplesIn[ 2 * n + 1 ]; buf[ n ] = (opus_int16)silk_RSHIFT_ROUND( sum, 1 ); } ret += silk_resampler( &psEnc->state_Fxx[ 0 ].sCmn.resampler_state, &psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.inputBufIx + 2 ], buf, nSamplesFromInput ); /* On the first mono frame, average the results for the two resampler states */ if( psEnc->nPrevChannelsInternal == 2 && psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded == 0 ) { ret += silk_resampler( &psEnc->state_Fxx[ 1 ].sCmn.resampler_state, &psEnc->state_Fxx[ 1 ].sCmn.inputBuf[ psEnc->state_Fxx[ 1 ].sCmn.inputBufIx + 2 ], buf, nSamplesFromInput ); for( n = 0; n < psEnc->state_Fxx[ 0 ].sCmn.frame_length; n++ ) { psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.inputBufIx+n+2 ] = silk_RSHIFT(psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.inputBufIx+n+2 ] + psEnc->state_Fxx[ 1 ].sCmn.inputBuf[ psEnc->state_Fxx[ 1 ].sCmn.inputBufIx+n+2 ], 1); } } psEnc->state_Fxx[ 0 ].sCmn.inputBufIx += nSamplesToBuffer; } else { silk_assert( encControl->nChannelsAPI == 1 && encControl->nChannelsInternal == 1 ); silk_memcpy(buf, samplesIn, nSamplesFromInput*sizeof(opus_int16)); ret += silk_resampler( &psEnc->state_Fxx[ 0 ].sCmn.resampler_state, &psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.inputBufIx + 2 ], buf, nSamplesFromInput ); psEnc->state_Fxx[ 0 ].sCmn.inputBufIx += nSamplesToBuffer; } samplesIn += nSamplesFromInput * encControl->nChannelsAPI; nSamplesIn -= nSamplesFromInput; /* Default */ psEnc->allowBandwidthSwitch = 0; /* Silk encoder */ if( psEnc->state_Fxx[ 0 ].sCmn.inputBufIx >= psEnc->state_Fxx[ 0 ].sCmn.frame_length ) { /* Enough data in input buffer, so encode */ silk_assert( psEnc->state_Fxx[ 0 ].sCmn.inputBufIx == psEnc->state_Fxx[ 0 ].sCmn.frame_length ); silk_assert( encControl->nChannelsInternal == 1 || psEnc->state_Fxx[ 1 ].sCmn.inputBufIx == psEnc->state_Fxx[ 1 ].sCmn.frame_length ); /* Deal with LBRR data */ if( psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded == 0 && !prefillFlag ) { /* Create space at start of payload for VAD and FEC flags */ opus_uint8 iCDF[ 2 ] = { 0, 0 }; iCDF[ 0 ] = 256 - silk_RSHIFT( 256, ( psEnc->state_Fxx[ 0 ].sCmn.nFramesPerPacket + 1 ) * encControl->nChannelsInternal ); ec_enc_icdf( psRangeEnc, 0, iCDF, 8 ); /* Encode any LBRR data from previous packet */ /* Encode LBRR flags */ for( n = 0; n < encControl->nChannelsInternal; n++ ) { LBRR_symbol = 0; for( i = 0; i < psEnc->state_Fxx[ n ].sCmn.nFramesPerPacket; i++ ) { LBRR_symbol |= silk_LSHIFT( psEnc->state_Fxx[ n ].sCmn.LBRR_flags[ i ], i ); } psEnc->state_Fxx[ n ].sCmn.LBRR_flag = LBRR_symbol > 0 ? 1 : 0; if( LBRR_symbol && psEnc->state_Fxx[ n ].sCmn.nFramesPerPacket > 1 ) { ec_enc_icdf( psRangeEnc, LBRR_symbol - 1, silk_LBRR_flags_iCDF_ptr[ psEnc->state_Fxx[ n ].sCmn.nFramesPerPacket - 2 ], 8 ); } } /* Code LBRR indices and excitation signals */ for( i = 0; i < psEnc->state_Fxx[ 0 ].sCmn.nFramesPerPacket; i++ ) { for( n = 0; n < encControl->nChannelsInternal; n++ ) { if( psEnc->state_Fxx[ n ].sCmn.LBRR_flags[ i ] ) { opus_int condCoding; if( encControl->nChannelsInternal == 2 && n == 0 ) { silk_stereo_encode_pred( psRangeEnc, psEnc->sStereo.predIx[ i ] ); /* For LBRR data there's no need to code the mid-only flag if the side-channel LBRR flag is set */ if( psEnc->state_Fxx[ 1 ].sCmn.LBRR_flags[ i ] == 0 ) { silk_stereo_encode_mid_only( psRangeEnc, psEnc->sStereo.mid_only_flags[ i ] ); } } /* Use conditional coding if previous frame available */ if( i > 0 && psEnc->state_Fxx[ n ].sCmn.LBRR_flags[ i - 1 ] ) { condCoding = CODE_CONDITIONALLY; } else { condCoding = CODE_INDEPENDENTLY; } silk_encode_indices( &psEnc->state_Fxx[ n ].sCmn, psRangeEnc, i, 1, condCoding ); silk_encode_pulses( psRangeEnc, psEnc->state_Fxx[ n ].sCmn.indices_LBRR[i].signalType, psEnc->state_Fxx[ n ].sCmn.indices_LBRR[i].quantOffsetType, psEnc->state_Fxx[ n ].sCmn.pulses_LBRR[ i ], psEnc->state_Fxx[ n ].sCmn.frame_length ); } } } /* Reset LBRR flags */ for( n = 0; n < encControl->nChannelsInternal; n++ ) { silk_memset( psEnc->state_Fxx[ n ].sCmn.LBRR_flags, 0, sizeof( psEnc->state_Fxx[ n ].sCmn.LBRR_flags ) ); } psEnc->nBitsUsedLBRR = ec_tell( psRangeEnc ); } silk_HP_variable_cutoff( psEnc->state_Fxx ); /* Total target bits for packet */ nBits = silk_DIV32_16( silk_MUL( encControl->bitRate, encControl->payloadSize_ms ), 1000 ); /* Subtract bits used for LBRR */ if( !prefillFlag ) { nBits -= psEnc->nBitsUsedLBRR; } /* Divide by number of uncoded frames left in packet */ nBits = silk_DIV32_16( nBits, psEnc->state_Fxx[ 0 ].sCmn.nFramesPerPacket ); /* Convert to bits/second */ if( encControl->payloadSize_ms == 10 ) { TargetRate_bps = silk_SMULBB( nBits, 100 ); } else { TargetRate_bps = silk_SMULBB( nBits, 50 ); } /* Subtract fraction of bits in excess of target in previous frames and packets */ TargetRate_bps -= silk_DIV32_16( silk_MUL( psEnc->nBitsExceeded, 1000 ), BITRESERVOIR_DECAY_TIME_MS ); if( !prefillFlag && psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded > 0 ) { /* Compare actual vs target bits so far in this packet */ opus_int32 bitsBalance = ec_tell( psRangeEnc ) - psEnc->nBitsUsedLBRR - nBits * psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded; TargetRate_bps -= silk_DIV32_16( silk_MUL( bitsBalance, 1000 ), BITRESERVOIR_DECAY_TIME_MS ); } /* Never exceed input bitrate */ TargetRate_bps = silk_LIMIT( TargetRate_bps, encControl->bitRate, 5000 ); /* Convert Left/Right to Mid/Side */ if( encControl->nChannelsInternal == 2 ) { silk_stereo_LR_to_MS( &psEnc->sStereo, &psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ 2 ], &psEnc->state_Fxx[ 1 ].sCmn.inputBuf[ 2 ], psEnc->sStereo.predIx[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ], &psEnc->sStereo.mid_only_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ], MStargetRates_bps, TargetRate_bps, psEnc->state_Fxx[ 0 ].sCmn.speech_activity_Q8, encControl->toMono, psEnc->state_Fxx[ 0 ].sCmn.fs_kHz, psEnc->state_Fxx[ 0 ].sCmn.frame_length ); if( psEnc->sStereo.mid_only_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ] == 0 ) { /* Reset side channel encoder memory for first frame with side coding */ if( psEnc->prev_decode_only_middle == 1 ) { silk_memset( &psEnc->state_Fxx[ 1 ].sShape, 0, sizeof( psEnc->state_Fxx[ 1 ].sShape ) ); silk_memset( &psEnc->state_Fxx[ 1 ].sPrefilt, 0, sizeof( psEnc->state_Fxx[ 1 ].sPrefilt ) ); silk_memset( &psEnc->state_Fxx[ 1 ].sCmn.sNSQ, 0, sizeof( psEnc->state_Fxx[ 1 ].sCmn.sNSQ ) ); silk_memset( psEnc->state_Fxx[ 1 ].sCmn.prev_NLSFq_Q15, 0, sizeof( psEnc->state_Fxx[ 1 ].sCmn.prev_NLSFq_Q15 ) ); silk_memset( &psEnc->state_Fxx[ 1 ].sCmn.sLP.In_LP_State, 0, sizeof( psEnc->state_Fxx[ 1 ].sCmn.sLP.In_LP_State ) ); psEnc->state_Fxx[ 1 ].sCmn.prevLag = 100; psEnc->state_Fxx[ 1 ].sCmn.sNSQ.lagPrev = 100; psEnc->state_Fxx[ 1 ].sShape.LastGainIndex = 10; psEnc->state_Fxx[ 1 ].sCmn.prevSignalType = TYPE_NO_VOICE_ACTIVITY; psEnc->state_Fxx[ 1 ].sCmn.sNSQ.prev_gain_Q16 = 65536; psEnc->state_Fxx[ 1 ].sCmn.first_frame_after_reset = 1; } silk_encode_do_VAD_Fxx( &psEnc->state_Fxx[ 1 ] ); } else { psEnc->state_Fxx[ 1 ].sCmn.VAD_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ] = 0; } if( !prefillFlag ) { silk_stereo_encode_pred( psRangeEnc, psEnc->sStereo.predIx[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ] ); if( psEnc->state_Fxx[ 1 ].sCmn.VAD_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ] == 0 ) { silk_stereo_encode_mid_only( psRangeEnc, psEnc->sStereo.mid_only_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ] ); } } } else { /* Buffering */ silk_memcpy( psEnc->state_Fxx[ 0 ].sCmn.inputBuf, psEnc->sStereo.sMid, 2 * sizeof( opus_int16 ) ); silk_memcpy( psEnc->sStereo.sMid, &psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.frame_length ], 2 * sizeof( opus_int16 ) ); } silk_encode_do_VAD_Fxx( &psEnc->state_Fxx[ 0 ] ); /* Encode */ for( n = 0; n < encControl->nChannelsInternal; n++ ) { opus_int maxBits, useCBR; /* Handling rate constraints */ maxBits = encControl->maxBits; if( tot_blocks == 2 && curr_block == 0 ) { maxBits = maxBits * 3 / 5; } else if( tot_blocks == 3 ) { if( curr_block == 0 ) { maxBits = maxBits * 2 / 5; } else if( curr_block == 1 ) { maxBits = maxBits * 3 / 4; } } useCBR = encControl->useCBR && curr_block == tot_blocks - 1; if( encControl->nChannelsInternal == 1 ) { channelRate_bps = TargetRate_bps; } else { channelRate_bps = MStargetRates_bps[ n ]; if( n == 0 && MStargetRates_bps[ 1 ] > 0 ) { useCBR = 0; /* Give mid up to 1/2 of the max bits for that frame */ maxBits -= encControl->maxBits / ( tot_blocks * 2 ); } } if( channelRate_bps > 0 ) { opus_int condCoding; silk_control_SNR( &psEnc->state_Fxx[ n ].sCmn, channelRate_bps ); /* Use independent coding if no previous frame available */ if( psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded - n <= 0 ) { condCoding = CODE_INDEPENDENTLY; } else if( n > 0 && psEnc->prev_decode_only_middle ) { /* If we skipped a side frame in this packet, we don't need LTP scaling; the LTP state is well-defined. */ condCoding = CODE_INDEPENDENTLY_NO_LTP_SCALING; } else { condCoding = CODE_CONDITIONALLY; } if( ( ret = silk_encode_frame_Fxx( &psEnc->state_Fxx[ n ], nBytesOut, psRangeEnc, condCoding, maxBits, useCBR ) ) != 0 ) { silk_assert( 0 ); } } psEnc->state_Fxx[ n ].sCmn.controlled_since_last_payload = 0; psEnc->state_Fxx[ n ].sCmn.inputBufIx = 0; psEnc->state_Fxx[ n ].sCmn.nFramesEncoded++; } psEnc->prev_decode_only_middle = psEnc->sStereo.mid_only_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded - 1 ]; /* Insert VAD and FEC flags at beginning of bitstream */ if( *nBytesOut > 0 && psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded == psEnc->state_Fxx[ 0 ].sCmn.nFramesPerPacket) { flags = 0; for( n = 0; n < encControl->nChannelsInternal; n++ ) { for( i = 0; i < psEnc->state_Fxx[ n ].sCmn.nFramesPerPacket; i++ ) { flags = silk_LSHIFT( flags, 1 ); flags |= psEnc->state_Fxx[ n ].sCmn.VAD_flags[ i ]; } flags = silk_LSHIFT( flags, 1 ); flags |= psEnc->state_Fxx[ n ].sCmn.LBRR_flag; } if( !prefillFlag ) { ec_enc_patch_initial_bits( psRangeEnc, flags, ( psEnc->state_Fxx[ 0 ].sCmn.nFramesPerPacket + 1 ) * encControl->nChannelsInternal ); } /* Return zero bytes if all channels DTXed */ if( psEnc->state_Fxx[ 0 ].sCmn.inDTX && ( encControl->nChannelsInternal == 1 || psEnc->state_Fxx[ 1 ].sCmn.inDTX ) ) { *nBytesOut = 0; } psEnc->nBitsExceeded += *nBytesOut * 8; psEnc->nBitsExceeded -= silk_DIV32_16( silk_MUL( encControl->bitRate, encControl->payloadSize_ms ), 1000 ); psEnc->nBitsExceeded = silk_LIMIT( psEnc->nBitsExceeded, 0, 10000 ); /* Update flag indicating if bandwidth switching is allowed */ speech_act_thr_for_switch_Q8 = (opus_int) silk_SMLAWB( SILK_FIX_CONST( SPEECH_ACTIVITY_DTX_THRES, 8 ), SILK_FIX_CONST( ( 1 - SPEECH_ACTIVITY_DTX_THRES ) / MAX_BANDWIDTH_SWITCH_DELAY_MS, 16 + 8 ), psEnc->timeSinceSwitchAllowed_ms ); if( psEnc->state_Fxx[ 0 ].sCmn.speech_activity_Q8 < speech_act_thr_for_switch_Q8 ) { psEnc->allowBandwidthSwitch = 1; psEnc->timeSinceSwitchAllowed_ms = 0; } else { psEnc->allowBandwidthSwitch = 0; psEnc->timeSinceSwitchAllowed_ms += encControl->payloadSize_ms; } } if( nSamplesIn == 0 ) { break; } } else { break; } curr_block++; } psEnc->nPrevChannelsInternal = encControl->nChannelsInternal; encControl->allowBandwidthSwitch = psEnc->allowBandwidthSwitch; encControl->inWBmodeWithoutVariableLP = psEnc->state_Fxx[ 0 ].sCmn.fs_kHz == 16 && psEnc->state_Fxx[ 0 ].sCmn.sLP.mode == 0; encControl->internalSampleRate = silk_SMULBB( psEnc->state_Fxx[ 0 ].sCmn.fs_kHz, 1000 ); encControl->stereoWidth_Q14 = encControl->toMono ? 0 : psEnc->sStereo.smth_width_Q14; if( prefillFlag ) { encControl->payloadSize_ms = tmp_payloadSize_ms; encControl->complexity = tmp_complexity; for( n = 0; n < encControl->nChannelsInternal; n++ ) { psEnc->state_Fxx[ n ].sCmn.controlled_since_last_payload = 0; psEnc->state_Fxx[ n ].sCmn.prefillFlag = 0; } } RESTORE_STACK; return ret; }
void silk_find_LTP_FIX( opus_int32 XXLTP_Q17[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Correlation matrix */ opus_int32 xXLTP_Q17[ MAX_NB_SUBFR * LTP_ORDER ], /* O Correlation vector */ const opus_int16 r_ptr[], /* I Residual signal after LPC */ const opus_int lag[ MAX_NB_SUBFR ], /* I LTP lags */ const opus_int subfr_length, /* I Subframe length */ const opus_int nb_subfr, /* I Number of subframes */ int arch /* I Run-time architecture */ ) { opus_int i, k, extra_shifts; opus_int xx_shifts, xX_shifts, XX_shifts; const opus_int16 *lag_ptr; opus_int32 *XXLTP_Q17_ptr, *xXLTP_Q17_ptr; opus_int32 xx, nrg, temp; xXLTP_Q17_ptr = xXLTP_Q17; XXLTP_Q17_ptr = XXLTP_Q17; for( k = 0; k < nb_subfr; k++ ) { lag_ptr = r_ptr - ( lag[ k ] + LTP_ORDER / 2 ); silk_sum_sqr_shift( &xx, &xx_shifts, r_ptr, subfr_length + LTP_ORDER ); /* xx in Q( -xx_shifts ) */ silk_corrMatrix_FIX( lag_ptr, subfr_length, LTP_ORDER, XXLTP_Q17_ptr, &nrg, &XX_shifts, arch ); /* XXLTP_Q17_ptr and nrg in Q( -XX_shifts ) */ extra_shifts = xx_shifts - XX_shifts; if( extra_shifts > 0 ) { /* Shift XX */ xX_shifts = xx_shifts; for( i = 0; i < LTP_ORDER * LTP_ORDER; i++ ) { XXLTP_Q17_ptr[ i ] = silk_RSHIFT32( XXLTP_Q17_ptr[ i ], extra_shifts ); /* Q( -xX_shifts ) */ } nrg = silk_RSHIFT32( nrg, extra_shifts ); /* Q( -xX_shifts ) */ } else if( extra_shifts < 0 ) { /* Shift xx */ xX_shifts = XX_shifts; xx = silk_RSHIFT32( xx, -extra_shifts ); /* Q( -xX_shifts ) */ } else { xX_shifts = xx_shifts; } silk_corrVector_FIX( lag_ptr, r_ptr, subfr_length, LTP_ORDER, xXLTP_Q17_ptr, xX_shifts, arch ); /* xXLTP_Q17_ptr in Q( -xX_shifts ) */ /* At this point all correlations are in Q(-xX_shifts) */ temp = silk_SMLAWB( 1, nrg, SILK_FIX_CONST( LTP_CORR_INV_MAX, 16 ) ); temp = silk_max( temp, xx ); TIC(div) #if 0 for( i = 0; i < LTP_ORDER * LTP_ORDER; i++ ) { XXLTP_Q17_ptr[ i ] = silk_DIV32_varQ( XXLTP_Q17_ptr[ i ], temp, 17 ); } for( i = 0; i < LTP_ORDER; i++ ) { xXLTP_Q17_ptr[ i ] = silk_DIV32_varQ( xXLTP_Q17_ptr[ i ], temp, 17 ); } #else for( i = 0; i < LTP_ORDER * LTP_ORDER; i++ ) { XXLTP_Q17_ptr[ i ] = (opus_int32)( silk_LSHIFT64( (opus_int64)XXLTP_Q17_ptr[ i ], 17 ) / temp ); } for( i = 0; i < LTP_ORDER; i++ ) { xXLTP_Q17_ptr[ i ] = (opus_int32)( silk_LSHIFT64( (opus_int64)xXLTP_Q17_ptr[ i ], 17 ) / temp ); } #endif TOC(div) r_ptr += subfr_length; XXLTP_Q17_ptr += LTP_ORDER * LTP_ORDER; xXLTP_Q17_ptr += LTP_ORDER; } }