Exemple #1
0
/* Gains scalar dequantization, uniform on log scale */
void silk_gains_dequant(
    opus_int32                  gain_Q16[ MAX_NB_SUBFR ],       /* O    quantized gains                             */
    const opus_int8             ind[ MAX_NB_SUBFR ],            /* I    gain indices                                */
    opus_int8                   *prev_ind,                      /* I/O  last index in previous frame                */
    const opus_int              conditional,                    /* I    first gain is delta coded if 1              */
    const opus_int              nb_subfr                        /* I    number of subframes                          */
)
{
    opus_int   k, ind_tmp, double_step_size_threshold;

    for( k = 0; k < nb_subfr; k++ ) {
        if( k == 0 && conditional == 0 ) {
            /* Gain index is not allowed to go down more than 16 steps (~21.8 dB) */
            *prev_ind = silk_max_int( ind[ k ], *prev_ind - 16 );
        } else {
            /* Delta index */
            ind_tmp = ind[ k ] + MIN_DELTA_GAIN_QUANT;

            /* Accumulate deltas */
            double_step_size_threshold = 2 * MAX_DELTA_GAIN_QUANT - N_LEVELS_QGAIN + *prev_ind;
            if( ind_tmp > double_step_size_threshold ) {
                *prev_ind += silk_LSHIFT( ind_tmp, 1 ) - double_step_size_threshold;
            } else {
                *prev_ind += ind_tmp;
            }
        }
        *prev_ind = silk_LIMIT_int( *prev_ind, 0, N_LEVELS_QGAIN - 1 );

        /* Scale and convert to linear scale */
        gain_Q16[ k ] = silk_log2lin( silk_min_32( silk_SMULWB( INV_SCALE_Q16, *prev_ind ) + OFFSET, 3967 ) ); /* 3967 = 31 in Q7 */
    }
}
Exemple #2
0
/* Gain scalar quantization with hysteresis, uniform on log scale */
void silk_gains_quant(
    opus_int8                   ind[ MAX_NB_SUBFR ],            /* O    gain indices                                */
    opus_int32                  gain_Q16[ MAX_NB_SUBFR ],       /* I/O  gains (quantized out)                       */
    opus_int8                   *prev_ind,                      /* I/O  last index in previous frame                */
    const opus_int              conditional,                    /* I    first gain is delta coded if 1              */
    const opus_int              nb_subfr                        /* I    number of subframes                         */
)
{
    opus_int k, double_step_size_threshold;

    for( k = 0; k < nb_subfr; k++ ) {
        /* Convert to log scale, scale, floor() */
        ind[ k ] = silk_SMULWB( SCALE_Q16, silk_lin2log( gain_Q16[ k ] ) - OFFSET );

        /* Round towards previous quantized gain (hysteresis) */
        if( ind[ k ] < *prev_ind ) {
            ind[ k ]++;
        }
        ind[ k ] = silk_LIMIT_int( ind[ k ], 0, N_LEVELS_QGAIN - 1 );

        /* Compute delta indices and limit */
        if( k == 0 && conditional == 0 ) {
            /* Full index */
            ind[ k ] = silk_LIMIT_int( ind[ k ], *prev_ind + MIN_DELTA_GAIN_QUANT, N_LEVELS_QGAIN - 1 );
            *prev_ind = ind[ k ];
        } else {
            /* Delta index */
            ind[ k ] = ind[ k ] - *prev_ind;

            /* Double the quantization step size for large gain increases, so that the max gain level can be reached */
            double_step_size_threshold = 2 * MAX_DELTA_GAIN_QUANT - N_LEVELS_QGAIN + *prev_ind;
            if( ind[ k ] > double_step_size_threshold ) {
                ind[ k ] = double_step_size_threshold + silk_RSHIFT( ind[ k ] - double_step_size_threshold + 1, 1 );
            }

            ind[ k ] = silk_LIMIT_int( ind[ k ], MIN_DELTA_GAIN_QUANT, MAX_DELTA_GAIN_QUANT );

            /* Accumulate deltas */
            if( ind[ k ] > double_step_size_threshold ) {
                *prev_ind += silk_LSHIFT( ind[ k ], 1 ) - double_step_size_threshold;
                *prev_ind = silk_min_int( *prev_ind, N_LEVELS_QGAIN - 1 );
            } else {
                *prev_ind += ind[ k ];
            }

            /* Shift to make non-negative */
            ind[ k ] -= MIN_DELTA_GAIN_QUANT;
        }

        /* Scale and convert to linear scale */
        gain_Q16[ k ] = silk_log2lin( silk_min_32( silk_SMULWB( INV_SCALE_Q16, *prev_ind ) + OFFSET, 3967 ) ); /* 3967 = 31 in Q7 */
    }
}
/* Processing of gains */
void silk_process_gains_FIX(
    silk_encoder_state_FIX          *psEnc,                                 /* I/O  Encoder state                                                               */
    silk_encoder_control_FIX        *psEncCtrl,                             /* I/O  Encoder control                                                             */
    opus_int                        condCoding                              /* I    The type of conditional coding to use                                       */
)
{
    silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
    opus_int     k;
    opus_int32   s_Q16, InvMaxSqrVal_Q16, gain, gain_squared, ResNrg, ResNrgPart, quant_offset_Q10;

    /* Gain reduction when LTP coding gain is high */
    if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
        /*s = -0.5f * silk_sigmoid( 0.25f * ( psEncCtrl->LTPredCodGain - 12.0f ) ); */
        s_Q16 = -silk_sigm_Q15( silk_RSHIFT_ROUND( psEncCtrl->LTPredCodGain_Q7 - SILK_FIX_CONST( 12.0, 7 ), 4 ) );
        for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
            psEncCtrl->Gains_Q16[ k ] = silk_SMLAWB( psEncCtrl->Gains_Q16[ k ], psEncCtrl->Gains_Q16[ k ], s_Q16 );
        }
    }

    /* Limit the quantized signal */
    /* InvMaxSqrVal = pow( 2.0f, 0.33f * ( 21.0f - SNR_dB ) ) / subfr_length; */
    InvMaxSqrVal_Q16 = silk_DIV32_16( silk_log2lin(
        silk_SMULWB( SILK_FIX_CONST( 21 + 16 / 0.33, 7 ) - psEnc->sCmn.SNR_dB_Q7, SILK_FIX_CONST( 0.33, 16 ) ) ), psEnc->sCmn.subfr_length );

    for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
        /* Soft limit on ratio residual energy and squared gains */
        ResNrg     = psEncCtrl->ResNrg[ k ];
        ResNrgPart = silk_SMULWW( ResNrg, InvMaxSqrVal_Q16 );
        if( psEncCtrl->ResNrgQ[ k ] > 0 ) {
            ResNrgPart = silk_RSHIFT_ROUND( ResNrgPart, psEncCtrl->ResNrgQ[ k ] );
        } else {
            if( ResNrgPart >= silk_RSHIFT( silk_int32_MAX, -psEncCtrl->ResNrgQ[ k ] ) ) {
                ResNrgPart = silk_int32_MAX;
            } else {
                ResNrgPart = silk_LSHIFT( ResNrgPart, -psEncCtrl->ResNrgQ[ k ] );
            }
        }
        gain = psEncCtrl->Gains_Q16[ k ];
        gain_squared = silk_ADD_SAT32( ResNrgPart, silk_SMMUL( gain, gain ) );
        if( gain_squared < silk_int16_MAX ) {
            /* recalculate with higher precision */
            gain_squared = silk_SMLAWW( silk_LSHIFT( ResNrgPart, 16 ), gain, gain );
            silk_assert( gain_squared > 0 );
            gain = silk_SQRT_APPROX( gain_squared );                    /* Q8   */
            gain = silk_min( gain, silk_int32_MAX >> 8 );
            psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( gain, 8 );   /* Q16  */
        } else {
void silk_quant_LTP_gains(
    opus_int16                  B_Q14[ MAX_NB_SUBFR * LTP_ORDER ],          /* I/O  (un)quantized LTP gains         */
    opus_int8                   cbk_index[ MAX_NB_SUBFR ],                  /* O    Codebook Index                  */
    opus_int8                   *periodicity_index,                         /* O    Periodicity Index               */
    opus_int32                  *sum_log_gain_Q7,                           /* I/O  Cumulative max prediction gain  */
    const opus_int32            W_Q18[ MAX_NB_SUBFR*LTP_ORDER*LTP_ORDER ],  /* I    Error Weights in Q18            */
    opus_int                    mu_Q9,                                      /* I    Mu value (R/D tradeoff)         */
    opus_int                    lowComplexity,                              /* I    Flag for low complexity         */
    const opus_int              nb_subfr,                                   /* I    number of subframes             */
    int                         arch                                        /* I    Run-time architecture           */
)
{
    opus_int             j, k, cbk_size;
    opus_int8            temp_idx[ MAX_NB_SUBFR ];
    const opus_uint8     *cl_ptr_Q5;
    const opus_int8      *cbk_ptr_Q7;
    const opus_uint8     *cbk_gain_ptr_Q7;
    const opus_int16     *b_Q14_ptr;
    const opus_int32     *W_Q18_ptr;
    opus_int32           rate_dist_Q14_subfr, rate_dist_Q14, min_rate_dist_Q14;
    opus_int32           sum_log_gain_tmp_Q7, best_sum_log_gain_Q7, max_gain_Q7, gain_Q7;

    /***************************************************/
    /* iterate over different codebooks with different */
    /* rates/distortions, and choose best */
    /***************************************************/
    min_rate_dist_Q14 = silk_int32_MAX;
    best_sum_log_gain_Q7 = 0;
    for(k = 0; k < 3; k++) {
        /* Safety margin for pitch gain control, to take into account factors
           such as state rescaling/rewhitening. */
        opus_int32 gain_safety = SILK_FIX_CONST(0.4, 7);

        cl_ptr_Q5  = silk_LTP_gain_BITS_Q5_ptrs[ k ];
        cbk_ptr_Q7 = silk_LTP_vq_ptrs_Q7[        k ];
        cbk_gain_ptr_Q7 = silk_LTP_vq_gain_ptrs_Q7[ k ];
        cbk_size   = silk_LTP_vq_sizes[          k ];

        /* Set up pointer to first subframe */
        W_Q18_ptr = W_Q18;
        b_Q14_ptr = B_Q14;

        rate_dist_Q14 = 0;
        sum_log_gain_tmp_Q7 = *sum_log_gain_Q7;
        for(j = 0; j < nb_subfr; j++) {
            max_gain_Q7 = silk_log2lin((SILK_FIX_CONST(MAX_SUM_LOG_GAIN_DB / 6.0, 7) - sum_log_gain_tmp_Q7)
                                        + SILK_FIX_CONST(7, 7)) - gain_safety;

            silk_VQ_WMat_EC(
                &temp_idx[ j ],         /* O    index of best codebook vector                           */
                &rate_dist_Q14_subfr,   /* O    best weighted quantization error + mu * rate            */
                &gain_Q7,               /* O    sum of absolute LTP coefficients                        */
                b_Q14_ptr,              /* I    input vector to be quantized                            */
                W_Q18_ptr,              /* I    weighting matrix                                        */
                cbk_ptr_Q7,             /* I    codebook                                                */
                cbk_gain_ptr_Q7,        /* I    codebook effective gains                                */
                cl_ptr_Q5,              /* I    code length for each codebook vector                    */
                mu_Q9,                  /* I    tradeoff between weighted error and rate                */
                max_gain_Q7,            /* I    maximum sum of absolute LTP coefficients                */
                cbk_size,               /* I    number of vectors in codebook                           */
                arch                    /* I    Run-time architecture                                   */
           );

            rate_dist_Q14 = silk_ADD_POS_SAT32(rate_dist_Q14, rate_dist_Q14_subfr);
            sum_log_gain_tmp_Q7 = silk_max(0, sum_log_gain_tmp_Q7
                                + silk_lin2log(gain_safety + gain_Q7) - SILK_FIX_CONST(7, 7));

            b_Q14_ptr += LTP_ORDER;
            W_Q18_ptr += LTP_ORDER * LTP_ORDER;
        }

        /* Avoid never finding a codebook */
        rate_dist_Q14 = silk_min(silk_int32_MAX - 1, rate_dist_Q14);

        if(rate_dist_Q14 < min_rate_dist_Q14) {
            min_rate_dist_Q14 = rate_dist_Q14;
            *periodicity_index = (opus_int8)k;
            silk_memcpy(cbk_index, temp_idx, nb_subfr * sizeof(opus_int8));
            best_sum_log_gain_Q7 = sum_log_gain_tmp_Q7;
        }

        /* Break early in low-complexity mode if rate distortion is below threshold */
        if(lowComplexity && (rate_dist_Q14 < silk_LTP_gain_middle_avg_RD_Q14)) {
            break;
        }
    }

    cbk_ptr_Q7 = silk_LTP_vq_ptrs_Q7[ *periodicity_index ];
    for(j = 0; j < nb_subfr; j++) {
        for(k = 0; k < LTP_ORDER; k++) {
            B_Q14[ j * LTP_ORDER + k ] = silk_LSHIFT(cbk_ptr_Q7[ cbk_index[ j ] * LTP_ORDER + k ], 7);
        }
    }
    *sum_log_gain_Q7 = best_sum_log_gain_Q7;
}
Exemple #5
0
opus_int silk_encode_frame_FLP(
    silk_encoder_state_FLP          *psEnc,                             /* I/O  Encoder state FLP                           */
    opus_int32                      *pnBytesOut,                        /* O    Number of payload bytes;                    */
    ec_enc                          *psRangeEnc,                        /* I/O  compressor data structure                   */
    opus_int                        condCoding,                         /* I    The type of conditional coding to use       */
    opus_int                        maxBits,                            /* I    If > 0: maximum number of output bits       */
    opus_int                        useCBR                              /* I    Flag to force constant-bitrate operation    */
)
{
    silk_encoder_control_FLP sEncCtrl;
    opus_int     i, iter, maxIter, found_upper, found_lower, ret = 0;
    silk_float   *x_frame, *res_pitch_frame;
    silk_float   xfw[ MAX_FRAME_LENGTH ];
    silk_float   res_pitch[ 2 * MAX_FRAME_LENGTH + LA_PITCH_MAX ];
    ec_enc       sRangeEnc_copy, sRangeEnc_copy2;
    silk_nsq_state sNSQ_copy, sNSQ_copy2;
    opus_int32   seed_copy, nBits, nBits_lower, nBits_upper, gainMult_lower, gainMult_upper;
    opus_int32   gainsID, gainsID_lower, gainsID_upper;
    opus_int16   gainMult_Q8;
    opus_int16   ec_prevLagIndex_copy;
    opus_int     ec_prevSignalType_copy;
    opus_int8    LastGainIndex_copy2;
    opus_int32   pGains_Q16[ MAX_NB_SUBFR ];
    opus_uint8   ec_buf_copy[ 1275 ];

    /* This is totally unnecessary but many compilers (including gcc) are too dumb to realise it */
    LastGainIndex_copy2 = nBits_lower = nBits_upper = gainMult_lower = gainMult_upper = 0;

    psEnc->sCmn.indices.Seed = psEnc->sCmn.frameCounter++ & 3;

    /**************************************************************/
    /* Set up Input Pointers, and insert frame in input buffer    */
    /**************************************************************/
    /* pointers aligned with start of frame to encode */
    x_frame         = psEnc->x_buf + psEnc->sCmn.ltp_mem_length;    /* start of frame to encode */
    res_pitch_frame = res_pitch    + psEnc->sCmn.ltp_mem_length;    /* start of pitch LPC residual frame */

    /***************************************/
    /* Ensure smooth bandwidth transitions */
    /***************************************/
    silk_LP_variable_cutoff( &psEnc->sCmn.sLP, psEnc->sCmn.inputBuf + 1, psEnc->sCmn.frame_length );

    /*******************************************/
    /* Copy new frame to front of input buffer */
    /*******************************************/
    silk_short2float_array( x_frame + LA_SHAPE_MS * psEnc->sCmn.fs_kHz, psEnc->sCmn.inputBuf + 1, psEnc->sCmn.frame_length );

    /* Add tiny signal to avoid high CPU load from denormalized floating point numbers */
    for( i = 0; i < 8; i++ ) {
        x_frame[ LA_SHAPE_MS * psEnc->sCmn.fs_kHz + i * ( psEnc->sCmn.frame_length >> 3 ) ] += ( 1 - ( i & 2 ) ) * 1e-6f;
    }

    if( !psEnc->sCmn.prefillFlag ) {
        /*****************************************/
        /* Find pitch lags, initial LPC analysis */
        /*****************************************/
        silk_find_pitch_lags_FLP( psEnc, &sEncCtrl, res_pitch, x_frame );

        /************************/
        /* Noise shape analysis */
        /************************/
        silk_noise_shape_analysis_FLP( psEnc, &sEncCtrl, res_pitch_frame, x_frame );

        /***************************************************/
        /* Find linear prediction coefficients (LPC + LTP) */
        /***************************************************/
        silk_find_pred_coefs_FLP( psEnc, &sEncCtrl, res_pitch, x_frame, condCoding );

        /****************************************/
        /* Process gains                        */
        /****************************************/
        silk_process_gains_FLP( psEnc, &sEncCtrl, condCoding );

        /*****************************************/
        /* Prefiltering for noise shaper         */
        /*****************************************/
        silk_prefilter_FLP( psEnc, &sEncCtrl, xfw, x_frame );

        /****************************************/
        /* Low Bitrate Redundant Encoding       */
        /****************************************/
        silk_LBRR_encode_FLP( psEnc, &sEncCtrl, xfw, condCoding );

        /* Loop over quantizer and entroy coding to control bitrate */
        maxIter = 6;
        gainMult_Q8 = SILK_FIX_CONST( 1, 8 );
        found_lower = 0;
        found_upper = 0;
        gainsID = silk_gains_ID( psEnc->sCmn.indices.GainsIndices, psEnc->sCmn.nb_subfr );
        gainsID_lower = -1;
        gainsID_upper = -1;
        /* Copy part of the input state */
        silk_memcpy( &sRangeEnc_copy, psRangeEnc, sizeof( ec_enc ) );
        silk_memcpy( &sNSQ_copy, &psEnc->sCmn.sNSQ, sizeof( silk_nsq_state ) );
        seed_copy = psEnc->sCmn.indices.Seed;
        ec_prevLagIndex_copy = psEnc->sCmn.ec_prevLagIndex;
        ec_prevSignalType_copy = psEnc->sCmn.ec_prevSignalType;
        for( iter = 0; ; iter++ ) {
            if( gainsID == gainsID_lower ) {
                nBits = nBits_lower;
            } else if( gainsID == gainsID_upper ) {
                nBits = nBits_upper;
            } else {
                /* Restore part of the input state */
                if( iter > 0 ) {
                    silk_memcpy( psRangeEnc, &sRangeEnc_copy, sizeof( ec_enc ) );
                    silk_memcpy( &psEnc->sCmn.sNSQ, &sNSQ_copy, sizeof( silk_nsq_state ) );
                    psEnc->sCmn.indices.Seed = seed_copy;
                    psEnc->sCmn.ec_prevLagIndex = ec_prevLagIndex_copy;
                    psEnc->sCmn.ec_prevSignalType = ec_prevSignalType_copy;
                }

                /*****************************************/
                /* Noise shaping quantization            */
                /*****************************************/
                silk_NSQ_wrapper_FLP( psEnc, &sEncCtrl, &psEnc->sCmn.indices, &psEnc->sCmn.sNSQ, psEnc->sCmn.pulses, xfw );

                /****************************************/
                /* Encode Parameters                    */
                /****************************************/
                silk_encode_indices( &psEnc->sCmn, psRangeEnc, psEnc->sCmn.nFramesEncoded, 0, condCoding );

                /****************************************/
                /* Encode Excitation Signal             */
                /****************************************/
                silk_encode_pulses( psRangeEnc, psEnc->sCmn.indices.signalType, psEnc->sCmn.indices.quantOffsetType,
                      psEnc->sCmn.pulses, psEnc->sCmn.frame_length );

                nBits = ec_tell( psRangeEnc );

                if( useCBR == 0 && iter == 0 && nBits <= maxBits ) {
                    break;
                }
            }

            if( iter == maxIter ) {
                if( found_lower && ( gainsID == gainsID_lower || nBits > maxBits ) ) {
                    /* Restore output state from earlier iteration that did meet the bitrate budget */
                    silk_memcpy( psRangeEnc, &sRangeEnc_copy2, sizeof( ec_enc ) );
                    silk_assert( sRangeEnc_copy2.offs <= 1275 );
                    silk_memcpy( psRangeEnc->buf, ec_buf_copy, sRangeEnc_copy2.offs );
                    silk_memcpy( &psEnc->sCmn.sNSQ, &sNSQ_copy2, sizeof( silk_nsq_state ) );
                    psEnc->sShape.LastGainIndex = LastGainIndex_copy2;
                }
                break;
            }

            if( nBits > maxBits ) {
                if( found_lower == 0 && iter >= 2 ) {
                    /* Adjust the quantizer's rate/distortion tradeoff and discard previous "upper" results */
                    sEncCtrl.Lambda *= 1.5f;
                    found_upper = 0;
                    gainsID_upper = -1;
                } else {
                    found_upper = 1;
                    nBits_upper = nBits;
                    gainMult_upper = gainMult_Q8;
                    gainsID_upper = gainsID;
                }
            } else if( nBits < maxBits - 5 ) {
                found_lower = 1;
                nBits_lower = nBits;
                gainMult_lower = gainMult_Q8;
                if( gainsID != gainsID_lower ) {
                    gainsID_lower = gainsID;
                    /* Copy part of the output state */
                    silk_memcpy( &sRangeEnc_copy2, psRangeEnc, sizeof( ec_enc ) );
                    silk_assert( psRangeEnc->offs <= 1275 );
                    silk_memcpy( ec_buf_copy, psRangeEnc->buf, psRangeEnc->offs );
                    silk_memcpy( &sNSQ_copy2, &psEnc->sCmn.sNSQ, sizeof( silk_nsq_state ) );
                    LastGainIndex_copy2 = psEnc->sShape.LastGainIndex;
                }
            } else {
                /* Within 5 bits of budget: close enough */
                break;
            }

            if( ( found_lower & found_upper ) == 0 ) {
                /* Adjust gain according to high-rate rate/distortion curve */
                opus_int32 gain_factor_Q16;
                gain_factor_Q16 = silk_log2lin( silk_LSHIFT( nBits - maxBits, 7 ) / psEnc->sCmn.frame_length + SILK_FIX_CONST( 16, 7 ) );
                gain_factor_Q16 = silk_min_32( gain_factor_Q16, SILK_FIX_CONST( 2, 16 ) );
                if( nBits > maxBits ) {
                    gain_factor_Q16 = silk_max_32( gain_factor_Q16, SILK_FIX_CONST( 1.3, 16 ) );
                }
                gainMult_Q8 = silk_SMULWB( gain_factor_Q16, gainMult_Q8 );
            } else {
                /* Adjust gain by interpolating */
                gainMult_Q8 = gainMult_lower + ( ( gainMult_upper - gainMult_lower ) * ( maxBits - nBits_lower ) ) / ( nBits_upper - nBits_lower );
                /* New gain multplier must be between 25% and 75% of old range (note that gainMult_upper < gainMult_lower) */
                if( gainMult_Q8 > silk_ADD_RSHIFT32( gainMult_lower, gainMult_upper - gainMult_lower, 2 ) ) {
                    gainMult_Q8 = silk_ADD_RSHIFT32( gainMult_lower, gainMult_upper - gainMult_lower, 2 );
                } else
                if( gainMult_Q8 < silk_SUB_RSHIFT32( gainMult_upper, gainMult_upper - gainMult_lower, 2 ) ) {
                    gainMult_Q8 = silk_SUB_RSHIFT32( gainMult_upper, gainMult_upper - gainMult_lower, 2 );
                }
            }

            for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
                pGains_Q16[ i ] = silk_LSHIFT_SAT32( silk_SMULWB( sEncCtrl.GainsUnq_Q16[ i ], gainMult_Q8 ), 8 );
            }

            /* Quantize gains */
            psEnc->sShape.LastGainIndex = sEncCtrl.lastGainIndexPrev;
            silk_gains_quant( psEnc->sCmn.indices.GainsIndices, pGains_Q16,
                  &psEnc->sShape.LastGainIndex, condCoding == CODE_CONDITIONALLY, psEnc->sCmn.nb_subfr );

            /* Unique identifier of gains vector */
            gainsID = silk_gains_ID( psEnc->sCmn.indices.GainsIndices, psEnc->sCmn.nb_subfr );

            /* Overwrite unquantized gains with quantized gains and convert back to Q0 from Q16 */
            for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
                sEncCtrl.Gains[ i ] = pGains_Q16[ i ] / 65536.0f;
            }
        }
    }

    /* Update input buffer */
    silk_memmove( psEnc->x_buf, &psEnc->x_buf[ psEnc->sCmn.frame_length ],
        ( psEnc->sCmn.ltp_mem_length + LA_SHAPE_MS * psEnc->sCmn.fs_kHz ) * sizeof( silk_float ) );

    /* Parameters needed for next frame */
    psEnc->sCmn.prevLag        = sEncCtrl.pitchL[ psEnc->sCmn.nb_subfr - 1 ];
    psEnc->sCmn.prevSignalType = psEnc->sCmn.indices.signalType;

    /* Exit without entropy coding */
    if( psEnc->sCmn.prefillFlag ) {
        /* No payload */
        *pnBytesOut = 0;
        return ret;
    }

    /****************************************/
    /* Finalize payload                     */
    /****************************************/
    psEnc->sCmn.first_frame_after_reset = 0;
    /* Payload size */
    *pnBytesOut = silk_RSHIFT( ec_tell( psRangeEnc ) + 7, 3 );

    return ret;
}
void silk_find_pred_coefs_FIX(
    silk_encoder_state_FIX          *psEnc,                                 /* I/O  encoder state                                                               */
    silk_encoder_control_FIX        *psEncCtrl,                             /* I/O  encoder control                                                             */
    const opus_int16                res_pitch[],                            /* I    Residual from pitch analysis                                                */
    const opus_int16                x[],                                    /* I    Speech signal                                                               */
    opus_int                        condCoding                              /* I    The type of conditional coding to use                                       */
)
{
    opus_int         i;
    opus_int32       invGains_Q16[ MAX_NB_SUBFR ], local_gains[ MAX_NB_SUBFR ], Wght_Q15[ MAX_NB_SUBFR ];
    opus_int16       NLSF_Q15[ MAX_LPC_ORDER ];
    const opus_int16 *x_ptr;
    opus_int16       *x_pre_ptr;
    VARDECL( opus_int16, LPC_in_pre );
    opus_int32       tmp, min_gain_Q16, minInvGain_Q30;
    opus_int         LTP_corrs_rshift[ MAX_NB_SUBFR ];
    SAVE_STACK;

    /* weighting for weighted least squares */
    min_gain_Q16 = silk_int32_MAX >> 6;
    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
        min_gain_Q16 = silk_min( min_gain_Q16, psEncCtrl->Gains_Q16[ i ] );
    }
    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
        /* Divide to Q16 */
        silk_assert( psEncCtrl->Gains_Q16[ i ] > 0 );
        /* Invert and normalize gains, and ensure that maximum invGains_Q16 is within range of a 16 bit int */
        invGains_Q16[ i ] = silk_DIV32_varQ( min_gain_Q16, psEncCtrl->Gains_Q16[ i ], 16 - 2 );

        /* Ensure Wght_Q15 a minimum value 1 */
        invGains_Q16[ i ] = silk_max( invGains_Q16[ i ], 363 );

        /* Square the inverted gains */
        silk_assert( invGains_Q16[ i ] == silk_SAT16( invGains_Q16[ i ] ) );
        tmp = silk_SMULWB( invGains_Q16[ i ], invGains_Q16[ i ] );
        Wght_Q15[ i ] = silk_RSHIFT( tmp, 1 );

        /* Invert the inverted and normalized gains */
        local_gains[ i ] = silk_DIV32( ( (opus_int32)1 << 16 ), invGains_Q16[ i ] );
    }

    ALLOC( LPC_in_pre,
           psEnc->sCmn.nb_subfr * psEnc->sCmn.predictLPCOrder
               + psEnc->sCmn.frame_length, opus_int16 );
    if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
        VARDECL( opus_int32, WLTP );

        /**********/
        /* VOICED */
        /**********/
        silk_assert( psEnc->sCmn.ltp_mem_length - psEnc->sCmn.predictLPCOrder >= psEncCtrl->pitchL[ 0 ] + LTP_ORDER / 2 );

        ALLOC( WLTP, psEnc->sCmn.nb_subfr * LTP_ORDER * LTP_ORDER, opus_int32 );

        /* LTP analysis */
        silk_find_LTP_FIX( psEncCtrl->LTPCoef_Q14, WLTP, &psEncCtrl->LTPredCodGain_Q7,
            res_pitch, psEncCtrl->pitchL, Wght_Q15, psEnc->sCmn.subfr_length,
            psEnc->sCmn.nb_subfr, psEnc->sCmn.ltp_mem_length, LTP_corrs_rshift );

        /* Quantize LTP gain parameters */
        silk_quant_LTP_gains( psEncCtrl->LTPCoef_Q14, psEnc->sCmn.indices.LTPIndex, &psEnc->sCmn.indices.PERIndex,
            &psEnc->sCmn.sum_log_gain_Q7, WLTP, psEnc->sCmn.mu_LTP_Q9, psEnc->sCmn.LTPQuantLowComplexity, psEnc->sCmn.nb_subfr);

        /* Control LTP scaling */
        silk_LTP_scale_ctrl_FIX( psEnc, psEncCtrl, condCoding );

        /* Create LTP residual */
        silk_LTP_analysis_filter_FIX( LPC_in_pre, x - psEnc->sCmn.predictLPCOrder, psEncCtrl->LTPCoef_Q14,
            psEncCtrl->pitchL, invGains_Q16, psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.predictLPCOrder );

    } else {
        /************/
        /* UNVOICED */
        /************/
        /* Create signal with prepended subframes, scaled by inverse gains */
        x_ptr     = x - psEnc->sCmn.predictLPCOrder;
        x_pre_ptr = LPC_in_pre;
        for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
            silk_scale_copy_vector16( x_pre_ptr, x_ptr, invGains_Q16[ i ],
                psEnc->sCmn.subfr_length + psEnc->sCmn.predictLPCOrder );
            x_pre_ptr += psEnc->sCmn.subfr_length + psEnc->sCmn.predictLPCOrder;
            x_ptr     += psEnc->sCmn.subfr_length;
        }

        silk_memset( psEncCtrl->LTPCoef_Q14, 0, psEnc->sCmn.nb_subfr * LTP_ORDER * sizeof( opus_int16 ) );
        psEncCtrl->LTPredCodGain_Q7 = 0;
		psEnc->sCmn.sum_log_gain_Q7 = 0;
    }

    /* Limit on total predictive coding gain */
    if( psEnc->sCmn.first_frame_after_reset ) {
        minInvGain_Q30 = SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN_AFTER_RESET, 30 );
    } else {        
        minInvGain_Q30 = silk_log2lin( silk_SMLAWB( 16 << 7, (opus_int32)psEncCtrl->LTPredCodGain_Q7, SILK_FIX_CONST( 1.0 / 3, 16 ) ) );      /* Q16 */
        minInvGain_Q30 = silk_DIV32_varQ( minInvGain_Q30, 
            silk_SMULWW( SILK_FIX_CONST( MAX_PREDICTION_POWER_GAIN, 0 ), 
                silk_SMLAWB( SILK_FIX_CONST( 0.25, 18 ), SILK_FIX_CONST( 0.75, 18 ), psEncCtrl->coding_quality_Q14 ) ), 14 );
    }

    /* LPC_in_pre contains the LTP-filtered input for voiced, and the unfiltered input for unvoiced */
    silk_find_LPC_FIX( &psEnc->sCmn, NLSF_Q15, LPC_in_pre, minInvGain_Q30 );

    /* Quantize LSFs */
    silk_process_NLSFs( &psEnc->sCmn, psEncCtrl->PredCoef_Q12, NLSF_Q15, psEnc->sCmn.prev_NLSFq_Q15 );

    /* Calculate residual energy using quantized LPC coefficients */
    silk_residual_energy_FIX( psEncCtrl->ResNrg, psEncCtrl->ResNrgQ, LPC_in_pre, psEncCtrl->PredCoef_Q12, local_gains,
        psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.predictLPCOrder );

    /* Copy to prediction struct for use in next frame for interpolation */
    silk_memcpy( psEnc->sCmn.prev_NLSFq_Q15, NLSF_Q15, sizeof( psEnc->sCmn.prev_NLSFq_Q15 ) );
    RESTORE_STACK;
}
int silk_encode_frame_FIX(silk_encoder_state_FIX * psEnc,	/* I/O  Pointer to Silk FIX encoder state                                           */
			       int32_t * pnBytesOut,	/* O    Pointer to number of payload bytes;                                         */
			       ec_enc * psRangeEnc,	/* I/O  compressor data structure                                                   */
			       int condCoding,	/* I    The type of conditional coding to use                                       */
			       int maxBits,	/* I    If > 0: maximum number of output bits                                       */
			       int useCBR	/* I    Flag to force constant-bitrate operation                                    */
    ) {
	silk_encoder_control_FIX sEncCtrl;
	int i, iter, maxIter, found_upper, found_lower, ret = 0;
	int16_t *x_frame;
	ec_enc sRangeEnc_copy, sRangeEnc_copy2;
	silk_nsq_state sNSQ_copy, sNSQ_copy2;
	int32_t seed_copy, nBits, nBits_lower, nBits_upper, gainMult_lower,
	    gainMult_upper;
	int32_t gainsID, gainsID_lower, gainsID_upper;
	int16_t gainMult_Q8;
	int16_t ec_prevLagIndex_copy;
	int ec_prevSignalType_copy;
	int8_t LastGainIndex_copy2;

	/* This is totally unnecessary but many compilers (including gcc) are too dumb to realise it */
	LastGainIndex_copy2 = nBits_lower = nBits_upper = gainMult_lower =
	    gainMult_upper = 0;

	psEnc->sCmn.indices.Seed = psEnc->sCmn.frameCounter++ & 3;

    /**************************************************************/
	/* Set up Input Pointers, and insert frame in input buffer   */
    /*************************************************************/
	/* start of frame to encode */
	x_frame = psEnc->x_buf + psEnc->sCmn.ltp_mem_length;

    /***************************************/
	/* Ensure smooth bandwidth transitions */
    /***************************************/
	silk_LP_variable_cutoff(&psEnc->sCmn.sLP, psEnc->sCmn.inputBuf + 1,
				psEnc->sCmn.frame_length);

    /*******************************************/
	/* Copy new frame to front of input buffer */
    /*******************************************/
	memcpy(x_frame + LA_SHAPE_MS * psEnc->sCmn.fs_kHz,
		    psEnc->sCmn.inputBuf + 1,
		    psEnc->sCmn.frame_length * sizeof(int16_t));

	if (!psEnc->sCmn.prefillFlag) {

		int16_t *res_pitch_frame;

		int16_t res_pitch[psEnc->sCmn.la_pitch +
				     psEnc->sCmn.frame_length +
				     psEnc->sCmn.ltp_mem_length];
		/* start of pitch LPC residual frame */
		res_pitch_frame = res_pitch + psEnc->sCmn.ltp_mem_length;

	/*****************************************/
		/* Find pitch lags, initial LPC analysis */
	/*****************************************/
		silk_find_pitch_lags_FIX(psEnc, &sEncCtrl, res_pitch, x_frame,
					 psEnc->sCmn.arch);

	/************************/
		/* Noise shape analysis */
	/************************/
		silk_noise_shape_analysis_FIX(psEnc, &sEncCtrl, res_pitch_frame,
					      x_frame, psEnc->sCmn.arch);

	/***************************************************/
		/* Find linear prediction coefficients (LPC + LTP) */
	/***************************************************/
		silk_find_pred_coefs_FIX(psEnc, &sEncCtrl, res_pitch, x_frame,
					 condCoding);

	/****************************************/
		/* Process gains                        */
	/****************************************/
		silk_process_gains_FIX(psEnc, &sEncCtrl, condCoding);

	/*****************************************/
		/* Prefiltering for noise shaper         */
	/*****************************************/
		int32_t xfw_Q3[psEnc->sCmn.frame_length];
		silk_prefilter_FIX(psEnc, &sEncCtrl, xfw_Q3, x_frame);

	/****************************************/
		/* Low Bitrate Redundant Encoding       */
	/****************************************/
		silk_LBRR_encode_FIX(psEnc, &sEncCtrl, xfw_Q3, condCoding);

		/* Loop over quantizer and entropy coding to control bitrate */
		maxIter = 6;
		gainMult_Q8 = SILK_FIX_CONST(1, 8);
		found_lower = 0;
		found_upper = 0;
		gainsID =
		    silk_gains_ID(psEnc->sCmn.indices.GainsIndices,
				  psEnc->sCmn.nb_subfr);
		gainsID_lower = -1;
		gainsID_upper = -1;
		/* Copy part of the input state */
		memcpy(&sRangeEnc_copy, psRangeEnc, sizeof(ec_enc));
		memcpy(&sNSQ_copy, &psEnc->sCmn.sNSQ,
			    sizeof(silk_nsq_state));
		seed_copy = psEnc->sCmn.indices.Seed;
		ec_prevLagIndex_copy = psEnc->sCmn.ec_prevLagIndex;
		ec_prevSignalType_copy = psEnc->sCmn.ec_prevSignalType;
		uint8_t ec_buf_copy[1275];
		for (iter = 0;; iter++) {
			if (gainsID == gainsID_lower) {
				nBits = nBits_lower;
			} else if (gainsID == gainsID_upper) {
				nBits = nBits_upper;
			} else {
				/* Restore part of the input state */
				if (iter > 0) {
					memcpy(psRangeEnc, &sRangeEnc_copy,
						    sizeof(ec_enc));
					memcpy(&psEnc->sCmn.sNSQ,
						    &sNSQ_copy,
						    sizeof(silk_nsq_state));
					psEnc->sCmn.indices.Seed = seed_copy;
					psEnc->sCmn.ec_prevLagIndex =
					    ec_prevLagIndex_copy;
					psEnc->sCmn.ec_prevSignalType =
					    ec_prevSignalType_copy;
				}

		/*****************************************/
				/* Noise shaping quantization            */
		/*****************************************/
				if (psEnc->sCmn.nStatesDelayedDecision > 1
				    || psEnc->sCmn.warping_Q16 > 0) {
					silk_NSQ_del_dec(&psEnc->sCmn,
							 &psEnc->sCmn.sNSQ,
							 &psEnc->sCmn.indices,
							 xfw_Q3,
							 psEnc->sCmn.pulses,
							 sEncCtrl.
							 PredCoef_Q12[0],
							 sEncCtrl.LTPCoef_Q14,
							 sEncCtrl.AR2_Q13,
							 sEncCtrl.
							 HarmShapeGain_Q14,
							 sEncCtrl.Tilt_Q14,
							 sEncCtrl.LF_shp_Q14,
							 sEncCtrl.Gains_Q16,
							 sEncCtrl.pitchL,
							 sEncCtrl.Lambda_Q10,
							 sEncCtrl.
							 LTP_scale_Q14);
				} else {
					silk_NSQ(&psEnc->sCmn,
						 &psEnc->sCmn.sNSQ,
						 &psEnc->sCmn.indices, xfw_Q3,
						 psEnc->sCmn.pulses,
						 sEncCtrl.PredCoef_Q12[0],
						 sEncCtrl.LTPCoef_Q14,
						 sEncCtrl.AR2_Q13,
						 sEncCtrl.HarmShapeGain_Q14,
						 sEncCtrl.Tilt_Q14,
						 sEncCtrl.LF_shp_Q14,
						 sEncCtrl.Gains_Q16,
						 sEncCtrl.pitchL,
						 sEncCtrl.Lambda_Q10,
						 sEncCtrl.LTP_scale_Q14);
				}

		/****************************************/
				/* Encode Parameters                    */
		/****************************************/
				silk_encode_indices(&psEnc->sCmn, psRangeEnc,
						    psEnc->sCmn.nFramesEncoded,
						    0, condCoding);

		/****************************************/
				/* Encode Excitation Signal             */
		/****************************************/
				silk_encode_pulses(psRangeEnc,
						   psEnc->sCmn.indices.
						   signalType,
						   psEnc->sCmn.indices.
						   quantOffsetType,
						   psEnc->sCmn.pulses,
						   psEnc->sCmn.frame_length);

				nBits = ec_tell(psRangeEnc);

				if (useCBR == 0 && iter == 0
				    && nBits <= maxBits) {
					break;
				}
			}

			if (iter == maxIter) {
				if (found_lower
				    && (gainsID == gainsID_lower
					|| nBits > maxBits)) {
					/* Restore output state from earlier iteration that did meet the bitrate budget */
					memcpy(psRangeEnc,
						    &sRangeEnc_copy2,
						    sizeof(ec_enc));
					assert(sRangeEnc_copy2.offs <=
						    1275);
					memcpy(psRangeEnc->buf,
						    ec_buf_copy,
						    sRangeEnc_copy2.offs);
					memcpy(&psEnc->sCmn.sNSQ,
						    &sNSQ_copy2,
						    sizeof(silk_nsq_state));
					psEnc->sShape.LastGainIndex =
					    LastGainIndex_copy2;
				}
				break;
			}

			if (nBits > maxBits) {
				if (found_lower == 0 && iter >= 2) {
					/* Adjust the quantizer's rate/distortion tradeoff and discard previous "upper" results */
					sEncCtrl.Lambda_Q10 =
					    silk_ADD_RSHIFT32(sEncCtrl.
							      Lambda_Q10,
							      sEncCtrl.
							      Lambda_Q10, 1);
					found_upper = 0;
					gainsID_upper = -1;
				} else {
					found_upper = 1;
					nBits_upper = nBits;
					gainMult_upper = gainMult_Q8;
					gainsID_upper = gainsID;
				}
			} else if (nBits < maxBits - 5) {
				found_lower = 1;
				nBits_lower = nBits;
				gainMult_lower = gainMult_Q8;
				if (gainsID != gainsID_lower) {
					gainsID_lower = gainsID;
					/* Copy part of the output state */
					memcpy(&sRangeEnc_copy2,
						    psRangeEnc, sizeof(ec_enc));
					assert(psRangeEnc->offs <= 1275);
					memcpy(ec_buf_copy,
						    psRangeEnc->buf,
						    psRangeEnc->offs);
					memcpy(&sNSQ_copy2,
						    &psEnc->sCmn.sNSQ,
						    sizeof(silk_nsq_state));
					LastGainIndex_copy2 =
					    psEnc->sShape.LastGainIndex;
				}
			} else {
				/* Within 5 bits of budget: close enough */
				break;
			}

			if ((found_lower & found_upper) == 0) {
				/* Adjust gain according to high-rate rate/distortion curve */
				int32_t gain_factor_Q16;
				gain_factor_Q16 =
				    silk_log2lin(silk_LSHIFT(nBits - maxBits, 7)
						 / psEnc->sCmn.frame_length +
						 SILK_FIX_CONST(16, 7));
				gain_factor_Q16 =
				    silk_min_32(gain_factor_Q16,
						SILK_FIX_CONST(2, 16));
				if (nBits > maxBits) {
					gain_factor_Q16 =
					    silk_max_32(gain_factor_Q16,
							SILK_FIX_CONST(1.3,
								       16));
				}
				gainMult_Q8 =
				    silk_SMULWB(gain_factor_Q16, gainMult_Q8);
			} else {
				/* Adjust gain by interpolating */
				assert(nBits_upper != nBits_lower);
				gainMult_Q8 =
				    gainMult_lower +
				    silk_DIV32_16(silk_MUL
						  (gainMult_upper -
						   gainMult_lower,
						   maxBits - nBits_lower),
						  nBits_upper - nBits_lower);
				/* New gain multplier must be between 25% and 75% of old range (note that gainMult_upper < gainMult_lower) */
				if (gainMult_Q8 >
				    silk_ADD_RSHIFT32(gainMult_lower,
						      gainMult_upper -
						      gainMult_lower, 2)) {
					gainMult_Q8 =
					    silk_ADD_RSHIFT32(gainMult_lower,
							      gainMult_upper -
							      gainMult_lower,
							      2);
				} else if (gainMult_Q8 <
					   silk_SUB_RSHIFT32(gainMult_upper,
							     gainMult_upper -
							     gainMult_lower,
							     2)) {
					gainMult_Q8 =
					    silk_SUB_RSHIFT32(gainMult_upper,
							      gainMult_upper -
							      gainMult_lower,
							      2);
				}
			}

			for (i = 0; i < psEnc->sCmn.nb_subfr; i++) {
				sEncCtrl.Gains_Q16[i] =
				    silk_LSHIFT_SAT32(silk_SMULWB
						      (sEncCtrl.GainsUnq_Q16[i],
						       gainMult_Q8), 8);
			}

			/* Quantize gains */
			psEnc->sShape.LastGainIndex =
			    sEncCtrl.lastGainIndexPrev;
			silk_gains_quant(psEnc->sCmn.indices.GainsIndices,
					 sEncCtrl.Gains_Q16,
					 &psEnc->sShape.LastGainIndex,
					 condCoding == CODE_CONDITIONALLY,
					 psEnc->sCmn.nb_subfr);

			/* Unique identifier of gains vector */
			gainsID =
			    silk_gains_ID(psEnc->sCmn.indices.GainsIndices,
					  psEnc->sCmn.nb_subfr);
		}
	}

	/* Update input buffer */
	memmove(psEnc->x_buf, &psEnc->x_buf[psEnc->sCmn.frame_length],
		(psEnc->sCmn.ltp_mem_length + LA_SHAPE_MS * psEnc->sCmn.fs_kHz) * sizeof(int16_t));

	/* Exit without entropy coding */
	if (psEnc->sCmn.prefillFlag) {
		/* No payload */
		*pnBytesOut = 0;

		return ret;
	}

	/* Parameters needed for next frame */
	psEnc->sCmn.prevLag = sEncCtrl.pitchL[psEnc->sCmn.nb_subfr - 1];
	psEnc->sCmn.prevSignalType = psEnc->sCmn.indices.signalType;

    /****************************************/
	/* Finalize payload                     */
    /****************************************/
	psEnc->sCmn.first_frame_after_reset = 0;
	/* Payload size */
	*pnBytesOut = silk_RSHIFT(ec_tell(psRangeEnc) + 7, 3);

	return ret;
}