/* Subroutine */ int stpcon_(char *norm, char *uplo, char *diag, integer *n, real *ap, real *rcond, real *work, integer *iwork, integer *info, ftnlen norm_len, ftnlen uplo_len, ftnlen diag_len) { /* System generated locals */ integer i__1; real r__1; /* Local variables */ static integer ix, kase, kase1; static real scale; extern logical lsame_(char *, char *, ftnlen, ftnlen); static real anorm; extern /* Subroutine */ int srscl_(integer *, real *, real *, integer *); static logical upper; static real xnorm; extern doublereal slamch_(char *, ftnlen); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slacon_( integer *, real *, real *, integer *, real *, integer *); extern integer isamax_(integer *, real *, integer *); static real ainvnm; static logical onenrm; extern doublereal slantp_(char *, char *, char *, integer *, real *, real *, ftnlen, ftnlen, ftnlen); static char normin[1]; extern /* Subroutine */ int slatps_(char *, char *, char *, char *, integer *, real *, real *, real *, real *, integer *, ftnlen, ftnlen, ftnlen, ftnlen); static real smlnum; static logical nounit; /* -- LAPACK routine (version 3.0) -- */ /* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */ /* Courant Institute, Argonne National Lab, and Rice University */ /* March 31, 1993 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* STPCON estimates the reciprocal of the condition number of a packed */ /* triangular matrix A, in either the 1-norm or the infinity-norm. */ /* The norm of A is computed and an estimate is obtained for */ /* norm(inv(A)), then the reciprocal of the condition number is */ /* computed as */ /* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* DIAG (input) CHARACTER*1 */ /* = 'N': A is non-unit triangular; */ /* = 'U': A is unit triangular. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input) REAL array, dimension (N*(N+1)/2) */ /* The upper or lower triangular matrix A, packed columnwise in */ /* a linear array. The j-th column of A is stored in the array */ /* AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ /* If DIAG = 'U', the diagonal elements of A are not referenced */ /* and are assumed to be 1. */ /* RCOND (output) REAL */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(norm(A) * norm(inv(A))). */ /* WORK (workspace) REAL array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --iwork; --work; --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1); onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O", (ftnlen)1, ( ftnlen)1); nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1); if (! onenrm && ! lsame_(norm, "I", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (! upper && ! lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) { *info = -2; } else if (! nounit && ! lsame_(diag, "U", (ftnlen)1, (ftnlen)1)) { *info = -3; } else if (*n < 0) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("STPCON", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n == 0) { *rcond = 1.f; return 0; } *rcond = 0.f; smlnum = slamch_("Safe minimum", (ftnlen)12) * (real) max(1,*n); /* Compute the norm of the triangular matrix A. */ anorm = slantp_(norm, uplo, diag, n, &ap[1], &work[1], (ftnlen)1, (ftnlen) 1, (ftnlen)1); /* Continue only if ANORM > 0. */ if (anorm > 0.f) { /* Estimate the norm of the inverse of A. */ ainvnm = 0.f; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L10: slacon_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(A). */ slatps_(uplo, "No transpose", diag, normin, n, &ap[1], &work[ 1], &scale, &work[(*n << 1) + 1], info, (ftnlen)1, ( ftnlen)12, (ftnlen)1, (ftnlen)1); } else { /* Multiply by inv(A'). */ slatps_(uplo, "Transpose", diag, normin, n, &ap[1], &work[1], &scale, &work[(*n << 1) + 1], info, (ftnlen)1, ( ftnlen)9, (ftnlen)1, (ftnlen)1); } *(unsigned char *)normin = 'Y'; /* Multiply by 1/SCALE if doing so will not cause overflow. */ if (scale != 1.f) { ix = isamax_(n, &work[1], &c__1); xnorm = (r__1 = work[ix], dabs(r__1)); if (scale < xnorm * smlnum || scale == 0.f) { goto L20; } srscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.f) { *rcond = 1.f / anorm / ainvnm; } } L20: return 0; /* End of STPCON */ } /* stpcon_ */
/* Subroutine */ int schktp_(logical *dotype, integer *nn, integer *nval, integer *nns, integer *nsval, real *thresh, logical *tsterr, integer * nmax, real *ap, real *ainvp, real *b, real *x, real *xact, real *work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO='\002,a1,\002', DIAG='\002,a1,\002'" ", N=\002,i5,\002, type \002,i2,\002, test(\002,i2,\002)= \002,g1" "2.5)"; static char fmt_9998[] = "(\002 UPLO='\002,a1,\002', TRANS='\002,a1,\002" "', DIAG='\002,a1,\002', N=\002,i5,\002', NRHS=\002,i5,\002, type " "\002,i2,\002, test(\002,i2,\002)= \002,g12.5)"; static char fmt_9997[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002', " "'\002,a1,\002',\002,i5,\002, ... ), type \002,i2,\002, test(\002" ",i2,\002)=\002,g12.5)"; static char fmt_9996[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002', " "'\002,a1,\002', '\002,a1,\002',\002,i5,\002, ... ), type \002,i2," "\002, test(\002,i2,\002)=\002,g12.5)"; /* System generated locals */ address a__1[2], a__2[3], a__3[4]; integer i__1, i__2[2], i__3, i__4[3], i__5[4]; char ch__1[2], ch__2[3], ch__3[4]; /* Local variables */ integer i__, k, n, in, lda, lap; char diag[1]; integer imat, info; char path[3]; integer irhs, nrhs; char norm[1], uplo[1]; integer nrun; integer idiag; real scale; integer nfail, iseed[4]; real rcond; real anorm; integer itran; char trans[1]; integer iuplo, nerrs; char xtype[1]; real rcondc, rcondi; real rcondo, ainvnm; real result[9]; /* Fortran I/O blocks */ static cilist io___26 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___34 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___36 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___39 = { 0, 0, 0, fmt_9996, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SCHKTP tests STPTRI, -TRS, -RFS, and -CON, and SLATPS */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The leading dimension of the work arrays. NMAX >= the */ /* maximumm value of N in NVAL. */ /* AP (workspace) REAL array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* AINVP (workspace) REAL array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* B (workspace) REAL array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) REAL array, dimension (NMAX*NSMAX) */ /* XACT (workspace) REAL array, dimension (NMAX*NSMAX) */ /* WORK (workspace) REAL array, dimension */ /* (NMAX*max(3,NSMAX)) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* RWORK (workspace) REAL array, dimension */ /* (max(NMAX,2*NSMAX)) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainvp; --ap; --nsval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "TP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { serrtr_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL */ n = nval[in]; lda = max(1,n); lap = lda * (lda + 1) / 2; *(unsigned char *)xtype = 'N'; for (imat = 1; imat <= 10; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L70; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Call SLATTP to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "SLATTP", (ftnlen)32, (ftnlen)6); slattp_(&imat, uplo, "No transpose", diag, iseed, &n, &ap[1], &x[1], &work[1], &info); /* Set IDIAG = 1 for non-unit matrices, 2 for unit. */ if (lsame_(diag, "N")) { idiag = 1; } else { idiag = 2; } /* + TEST 1 */ /* Form the inverse of A. */ if (n > 0) { scopy_(&lap, &ap[1], &c__1, &ainvp[1], &c__1); } s_copy(srnamc_1.srnamt, "STPTRI", (ftnlen)32, (ftnlen)6); stptri_(uplo, diag, &n, &ainvp[1], &info); /* Check error code from STPTRI. */ if (info != 0) { /* Writing concatenation */ i__2[0] = 1, a__1[0] = uplo; i__2[1] = 1, a__1[1] = diag; s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2); alaerh_(path, "STPTRI", &info, &c__0, ch__1, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } /* Compute the infinity-norm condition number of A. */ anorm = slantp_("I", uplo, diag, &n, &ap[1], &rwork[1]); ainvnm = slantp_("I", uplo, diag, &n, &ainvp[1], &rwork[1]); if (anorm <= 0.f || ainvnm <= 0.f) { rcondi = 1.f; } else { rcondi = 1.f / anorm / ainvnm; } /* Compute the residual for the triangular matrix times its */ /* inverse. Also compute the 1-norm condition number of A. */ stpt01_(uplo, diag, &n, &ap[1], &ainvp[1], &rcondo, &rwork[1], result); /* Print the test ratio if it is .GE. THRESH. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real)); e_wsfe(); ++nfail; } ++nrun; i__3 = *nns; for (irhs = 1; irhs <= i__3; ++irhs) { nrhs = nsval[irhs]; *(unsigned char *)xtype = 'N'; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, or A**H. */ *(unsigned char *)trans = *(unsigned char *)&transs[ itran - 1]; if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } /* + TEST 2 */ /* Solve and compute residual for op(A)*x = b. */ s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, (ftnlen) 6); slarhs_(path, xtype, uplo, trans, &n, &n, &c__0, & idiag, &nrhs, &ap[1], &lap, &xact[1], &lda, & b[1], &lda, iseed, &info); *(unsigned char *)xtype = 'C'; slacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "STPTRS", (ftnlen)32, (ftnlen) 6); stptrs_(uplo, trans, diag, &n, &nrhs, &ap[1], &x[1], & lda, &info); /* Check error code from STPTRS. */ if (info != 0) { /* Writing concatenation */ i__4[0] = 1, a__2[0] = uplo; i__4[1] = 1, a__2[1] = trans; i__4[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__4, &c__3, (ftnlen)3); alaerh_(path, "STPTRS", &info, &c__0, ch__2, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); } stpt02_(uplo, trans, diag, &n, &nrhs, &ap[1], &x[1], & lda, &b[1], &lda, &work[1], &result[1]); /* + TEST 3 */ /* Check solution from generated exact solution. */ sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* + TESTS 4, 5, and 6 */ /* Use iterative refinement to improve the solution and */ /* compute error bounds. */ s_copy(srnamc_1.srnamt, "STPRFS", (ftnlen)32, (ftnlen) 6); stprfs_(uplo, trans, diag, &n, &nrhs, &ap[1], &b[1], & lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], &work[1], &iwork[1], &info); /* Check error code from STPRFS. */ if (info != 0) { /* Writing concatenation */ i__4[0] = 1, a__2[0] = uplo; i__4[1] = 1, a__2[1] = trans; i__4[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__4, &c__3, (ftnlen)3); alaerh_(path, "STPRFS", &info, &c__0, ch__2, &n, & n, &c_n1, &c_n1, &nrhs, &imat, &nfail, & nerrs, nout); } sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); stpt05_(uplo, trans, diag, &n, &nrhs, &ap[1], &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[1], & rwork[nrhs + 1], &result[4]); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___34.ciunit = *nout; s_wsfe(&io___34); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L20: */ } nrun += 5; /* L30: */ } /* L40: */ } /* + TEST 7 */ /* Get an estimate of RCOND = 1/CNDNUM. */ for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } s_copy(srnamc_1.srnamt, "STPCON", (ftnlen)32, (ftnlen)6); stpcon_(norm, uplo, diag, &n, &ap[1], &rcond, &work[1], & iwork[1], &info); /* Check error code from STPCON. */ if (info != 0) { /* Writing concatenation */ i__4[0] = 1, a__2[0] = norm; i__4[1] = 1, a__2[1] = uplo; i__4[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__4, &c__3, (ftnlen)3); alaerh_(path, "STPCON", &info, &c__0, ch__2, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } stpt06_(&rcond, &rcondc, uplo, diag, &n, &ap[1], &rwork[1] , &result[6]); /* Print the test ratio if it is .GE. THRESH. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___36.ciunit = *nout; s_wsfe(&io___36); do_fio(&c__1, "STPCON", (ftnlen)6); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(real) ); e_wsfe(); ++nfail; } ++nrun; /* L50: */ } /* L60: */ } L70: ; } /* Use pathological test matrices to test SLATPS. */ for (imat = 11; imat <= 18; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L100; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, or A**H. */ *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; /* Call SLATTP to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "SLATTP", (ftnlen)32, (ftnlen)6); slattp_(&imat, uplo, trans, diag, iseed, &n, &ap[1], &x[1] , &work[1], &info); /* + TEST 8 */ /* Solve the system op(A)*x = b. */ s_copy(srnamc_1.srnamt, "SLATPS", (ftnlen)32, (ftnlen)6); scopy_(&n, &x[1], &c__1, &b[1], &c__1); slatps_(uplo, trans, diag, "N", &n, &ap[1], &b[1], &scale, &rwork[1], &info); /* Check error code from SLATPS. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__3[0] = uplo; i__5[1] = 1, a__3[1] = trans; i__5[2] = 1, a__3[2] = diag; i__5[3] = 1, a__3[3] = "N"; s_cat(ch__3, a__3, i__5, &c__4, (ftnlen)4); alaerh_(path, "SLATPS", &info, &c__0, ch__3, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } stpt03_(uplo, trans, diag, &n, &c__1, &ap[1], &scale, & rwork[1], &c_b103, &b[1], &lda, &x[1], &lda, & work[1], &result[7]); /* + TEST 9 */ /* Solve op(A)*x = b again with NORMIN = 'Y'. */ scopy_(&n, &x[1], &c__1, &b[n + 1], &c__1); slatps_(uplo, trans, diag, "Y", &n, &ap[1], &b[n + 1], & scale, &rwork[1], &info); /* Check error code from SLATPS. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__3[0] = uplo; i__5[1] = 1, a__3[1] = trans; i__5[2] = 1, a__3[2] = diag; i__5[3] = 1, a__3[3] = "Y"; s_cat(ch__3, a__3, i__5, &c__4, (ftnlen)4); alaerh_(path, "SLATPS", &info, &c__0, ch__3, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } stpt03_(uplo, trans, diag, &n, &c__1, &ap[1], &scale, & rwork[1], &c_b103, &b[n + 1], &lda, &x[1], &lda, & work[1], &result[8]); /* Print information about the tests that did not pass */ /* the threshold. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, "SLATPS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "N", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(real) ); e_wsfe(); ++nfail; } if (result[8] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, "SLATPS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "Y", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__9, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[8], (ftnlen)sizeof(real) ); e_wsfe(); ++nfail; } nrun += 2; /* L80: */ } /* L90: */ } L100: ; } /* L110: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of SCHKTP */ } /* schktp_ */
/* Subroutine */ int stpcon_(char *norm, char *uplo, char *diag, integer *n, real *ap, real *rcond, real *work, integer *iwork, integer *info) { /* -- LAPACK routine (version 2.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= STPCON estimates the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm or the infinity-norm. The norm of A is computed and an estimate is obtained for norm(inv(A)), then the reciprocal of the condition number is computed as RCOND = 1 / ( norm(A) * norm(inv(A)) ). Arguments ========= NORM (input) CHARACTER*1 Specifies whether the 1-norm condition number or the infinity-norm condition number is required: = '1' or 'O': 1-norm; = 'I': Infinity-norm. UPLO (input) CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular. DIAG (input) CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular. N (input) INTEGER The order of the matrix A. N >= 0. AP (input) REAL array, dimension (N*(N+1)/2) The upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. If DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be 1. RCOND (output) REAL The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(norm(A) * norm(inv(A))). WORK (workspace) REAL array, dimension (3*N) IWORK (workspace) INTEGER array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input parameters. Parameter adjustments Function Body */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer i__1; real r__1; /* Local variables */ static integer kase, kase1; static real scale; extern logical lsame_(char *, char *); static real anorm; extern /* Subroutine */ int srscl_(integer *, real *, real *, integer *); static logical upper; static real xnorm; static integer ix; extern doublereal slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *), slacon_( integer *, real *, real *, integer *, real *, integer *); extern integer isamax_(integer *, real *, integer *); static real ainvnm; static logical onenrm; extern doublereal slantp_(char *, char *, char *, integer *, real *, real *); static char normin[1]; extern /* Subroutine */ int slatps_(char *, char *, char *, char *, integer *, real *, real *, real *, real *, integer *); static real smlnum; static logical nounit; #define IWORK(I) iwork[(I)-1] #define WORK(I) work[(I)-1] #define AP(I) ap[(I)-1] *info = 0; upper = lsame_(uplo, "U"); onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); nounit = lsame_(diag, "N"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (! nounit && ! lsame_(diag, "U")) { *info = -3; } else if (*n < 0) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("STPCON", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { *rcond = 1.f; return 0; } *rcond = 0.f; smlnum = slamch_("Safe minimum") * (real) max(1,*n); /* Compute the norm of the triangular matrix A. */ anorm = slantp_(norm, uplo, diag, n, &AP(1), &WORK(1)); /* Continue only if ANORM > 0. */ if (anorm > 0.f) { /* Estimate the norm of the inverse of A. */ ainvnm = 0.f; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L10: slacon_(n, &WORK(*n + 1), &WORK(1), &IWORK(1), &ainvnm, &kase); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(A). */ slatps_(uplo, "No transpose", diag, normin, n, &AP(1), &WORK( 1), &scale, &WORK((*n << 1) + 1), info); } else { /* Multiply by inv(A'). */ slatps_(uplo, "Transpose", diag, normin, n, &AP(1), &WORK(1), &scale, &WORK((*n << 1) + 1), info); } *(unsigned char *)normin = 'Y'; /* Multiply by 1/SCALE if doing so will not cause overfl ow. */ if (scale != 1.f) { ix = isamax_(n, &WORK(1), &c__1); xnorm = (r__1 = WORK(ix), dabs(r__1)); if (scale < xnorm * smlnum || scale == 0.f) { goto L20; } srscl_(n, &scale, &WORK(1), &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.f) { *rcond = 1.f / anorm / ainvnm; } } L20: return 0; /* End of STPCON */ } /* stpcon_ */
/* Subroutine */ int stpt01_(char *uplo, char *diag, integer *n, real *ap, real *ainvp, real *rcond, real *work, real *resid) { /* System generated locals */ integer i__1, i__2; /* Local variables */ static integer j; extern logical lsame_(char *, char *); static real anorm; static logical unitd; extern /* Subroutine */ int stpmv_(char *, char *, char *, integer *, real *, real *, integer *); static integer jc; extern doublereal slamch_(char *); static real ainvnm; extern doublereal slantp_(char *, char *, char *, integer *, real *, real *); static real eps; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= STPT01 computes the residual for a triangular matrix A times its inverse when A is stored in packed format: RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ), where EPS is the machine epsilon. Arguments ========== UPLO (input) CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular DIAG (input) CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular N (input) INTEGER The order of the matrix A. N >= 0. AP (input) REAL array, dimension (N*(N+1)/2) The original upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. AINVP (input/output) REAL array, dimension (N*(N+1)/2) On entry, the (triangular) inverse of the matrix A, packed columnwise in a linear array as in AP. On exit, the contents of AINVP are destroyed. RCOND (output) REAL The reciprocal condition number of A, computed as 1/(norm(A) * norm(AINV)). WORK (workspace) REAL array, dimension (N) RESID (output) REAL norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ) ===================================================================== Quick exit if N = 0. Parameter adjustments */ --work; --ainvp; --ap; /* Function Body */ if (*n <= 0) { *rcond = 1.f; *resid = 0.f; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */ eps = slamch_("Epsilon"); anorm = slantp_("1", uplo, diag, n, &ap[1], &work[1]); ainvnm = slantp_("1", uplo, diag, n, &ainvp[1], &work[1]); if (anorm <= 0.f || ainvnm <= 0.f) { *rcond = 0.f; *resid = 1.f / eps; return 0; } *rcond = 1.f / anorm / ainvnm; /* Compute A * AINV, overwriting AINV. */ unitd = lsame_(diag, "U"); if (lsame_(uplo, "U")) { jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (unitd) { ainvp[jc + j - 1] = 1.f; } /* Form the j-th column of A*AINV */ stpmv_("Upper", "No transpose", diag, &j, &ap[1], &ainvp[jc], & c__1); /* Subtract 1 from the diagonal */ ainvp[jc + j - 1] += -1.f; jc += j; /* L10: */ } } else { jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (unitd) { ainvp[jc] = 1.f; } /* Form the j-th column of A*AINV */ i__2 = *n - j + 1; stpmv_("Lower", "No transpose", diag, &i__2, &ap[jc], &ainvp[jc], &c__1); /* Subtract 1 from the diagonal */ ainvp[jc] += -1.f; jc = jc + *n - j + 1; /* L20: */ } } /* Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS) */ *resid = slantp_("1", uplo, "Non-unit", n, &ainvp[1], &work[1]); *resid = *resid * *rcond / (real) (*n) / eps; return 0; /* End of STPT01 */ } /* stpt01_ */
/* Subroutine */ int stpt06_(real *rcond, real *rcondc, char *uplo, char * diag, integer *n, real *ap, real *work, real *rat) { /* System generated locals */ real r__1, r__2; /* Local variables */ real eps, rmin, rmax, anorm; extern /* Subroutine */ int slabad_(real *, real *); extern doublereal slamch_(char *); real bignum; extern doublereal slantp_(char *, char *, char *, integer *, real *, real *); real smlnum; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* STPT06 computes a test ratio comparing RCOND (the reciprocal */ /* condition number of a triangular matrix A) and RCONDC, the estimate */ /* computed by STPCON. Information about the triangular matrix A is */ /* used if one estimate is zero and the other is non-zero to decide if */ /* underflow in the estimate is justified. */ /* Arguments */ /* ========= */ /* RCOND (input) REAL */ /* The estimate of the reciprocal condition number obtained by */ /* forming the explicit inverse of the matrix A and computing */ /* RCOND = 1/( norm(A) * norm(inv(A)) ). */ /* RCONDC (input) REAL */ /* The estimate of the reciprocal condition number computed by */ /* STPCON. */ /* UPLO (input) CHARACTER */ /* Specifies whether the matrix A is upper or lower triangular. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* DIAG (input) CHARACTER */ /* Specifies whether or not the matrix A is unit triangular. */ /* = 'N': Non-unit triangular */ /* = 'U': Unit triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input) REAL array, dimension (N*(N+1)/2) */ /* The upper or lower triangular matrix A, packed columnwise in */ /* a linear array. The j-th column of A is stored in the array */ /* AP as follows: */ /* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', */ /* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */ /* WORK (workspace) REAL array, dimension (N) */ /* RAT (output) REAL */ /* The test ratio. If both RCOND and RCONDC are nonzero, */ /* RAT = MAX( RCOND, RCONDC )/MIN( RCOND, RCONDC ) - 1. */ /* If RAT = 0, the two estimates are exactly the same. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --work; --ap; /* Function Body */ eps = slamch_("Epsilon"); rmax = dmax(*rcond,*rcondc); rmin = dmin(*rcond,*rcondc); /* Do the easy cases first. */ if (rmin < 0.f) { /* Invalid value for RCOND or RCONDC, return 1/EPS. */ *rat = 1.f / eps; } else if (rmin > 0.f) { /* Both estimates are positive, return RMAX/RMIN - 1. */ *rat = rmax / rmin - 1.f; } else if (rmax == 0.f) { /* Both estimates zero. */ *rat = 0.f; } else { /* One estimate is zero, the other is non-zero. If the matrix is */ /* ill-conditioned, return the nonzero estimate multiplied by */ /* 1/EPS; if the matrix is badly scaled, return the nonzero */ /* estimate multiplied by BIGNUM/TMAX, where TMAX is the maximum */ /* element in absolute value in A. */ smlnum = slamch_("Safe minimum"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); anorm = slantp_("M", uplo, diag, n, &ap[1], &work[1]); /* Computing MIN */ r__1 = bignum / dmax(1.f,anorm), r__2 = 1.f / eps; *rat = rmax * dmin(r__1,r__2); } return 0; /* End of STPT06 */ } /* stpt06_ */