Exemple #1
0
/* Subroutine */ int stpcon_(char *norm, char *uplo, char *diag, integer *n, 
	real *ap, real *rcond, real *work, integer *iwork, integer *info, 
	ftnlen norm_len, ftnlen uplo_len, ftnlen diag_len)
{
    /* System generated locals */
    integer i__1;
    real r__1;

    /* Local variables */
    static integer ix, kase, kase1;
    static real scale;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    static real anorm;
    extern /* Subroutine */ int srscl_(integer *, real *, real *, integer *);
    static logical upper;
    static real xnorm;
    extern doublereal slamch_(char *, ftnlen);
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slacon_(
	    integer *, real *, real *, integer *, real *, integer *);
    extern integer isamax_(integer *, real *, integer *);
    static real ainvnm;
    static logical onenrm;
    extern doublereal slantp_(char *, char *, char *, integer *, real *, real 
	    *, ftnlen, ftnlen, ftnlen);
    static char normin[1];
    extern /* Subroutine */ int slatps_(char *, char *, char *, char *, 
	    integer *, real *, real *, real *, real *, integer *, ftnlen, 
	    ftnlen, ftnlen, ftnlen);
    static real smlnum;
    static logical nounit;


/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     March 31, 1993 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  STPCON estimates the reciprocal of the condition number of a packed */
/*  triangular matrix A, in either the 1-norm or the infinity-norm. */

/*  The norm of A is computed and an estimate is obtained for */
/*  norm(inv(A)), then the reciprocal of the condition number is */
/*  computed as */
/*     RCOND = 1 / ( norm(A) * norm(inv(A)) ). */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies whether the 1-norm condition number or the */
/*          infinity-norm condition number is required: */
/*          = '1' or 'O':  1-norm; */
/*          = 'I':         Infinity-norm. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  A is upper triangular; */
/*          = 'L':  A is lower triangular. */

/*  DIAG    (input) CHARACTER*1 */
/*          = 'N':  A is non-unit triangular; */
/*          = 'U':  A is unit triangular. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  AP      (input) REAL array, dimension (N*(N+1)/2) */
/*          The upper or lower triangular matrix A, packed columnwise in */
/*          a linear array.  The j-th column of A is stored in the array */
/*          AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/*          If DIAG = 'U', the diagonal elements of A are not referenced */
/*          and are assumed to be 1. */

/*  RCOND   (output) REAL */
/*          The reciprocal of the condition number of the matrix A, */
/*          computed as RCOND = 1/(norm(A) * norm(inv(A))). */

/*  WORK    (workspace) REAL array, dimension (3*N) */

/*  IWORK   (workspace) INTEGER array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --iwork;
    --work;
    --ap;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1);
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O", (ftnlen)1, (
	    ftnlen)1);
    nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);

    if (! onenrm && ! lsame_(norm, "I", (ftnlen)1, (ftnlen)1)) {
	*info = -1;
    } else if (! upper && ! lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
	*info = -2;
    } else if (! nounit && ! lsame_(diag, "U", (ftnlen)1, (ftnlen)1)) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("STPCON", &i__1, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	*rcond = 1.f;
	return 0;
    }

    *rcond = 0.f;
    smlnum = slamch_("Safe minimum", (ftnlen)12) * (real) max(1,*n);

/*     Compute the norm of the triangular matrix A. */

    anorm = slantp_(norm, uplo, diag, n, &ap[1], &work[1], (ftnlen)1, (ftnlen)
	    1, (ftnlen)1);

/*     Continue only if ANORM > 0. */

    if (anorm > 0.f) {

/*        Estimate the norm of the inverse of A. */

	ainvnm = 0.f;
	*(unsigned char *)normin = 'N';
	if (onenrm) {
	    kase1 = 1;
	} else {
	    kase1 = 2;
	}
	kase = 0;
L10:
	slacon_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase);
	if (kase != 0) {
	    if (kase == kase1) {

/*              Multiply by inv(A). */

		slatps_(uplo, "No transpose", diag, normin, n, &ap[1], &work[
			1], &scale, &work[(*n << 1) + 1], info, (ftnlen)1, (
			ftnlen)12, (ftnlen)1, (ftnlen)1);
	    } else {

/*              Multiply by inv(A'). */

		slatps_(uplo, "Transpose", diag, normin, n, &ap[1], &work[1], 
			&scale, &work[(*n << 1) + 1], info, (ftnlen)1, (
			ftnlen)9, (ftnlen)1, (ftnlen)1);
	    }
	    *(unsigned char *)normin = 'Y';

/*           Multiply by 1/SCALE if doing so will not cause overflow. */

	    if (scale != 1.f) {
		ix = isamax_(n, &work[1], &c__1);
		xnorm = (r__1 = work[ix], dabs(r__1));
		if (scale < xnorm * smlnum || scale == 0.f) {
		    goto L20;
		}
		srscl_(n, &scale, &work[1], &c__1);
	    }
	    goto L10;
	}

/*        Compute the estimate of the reciprocal condition number. */

	if (ainvnm != 0.f) {
	    *rcond = 1.f / anorm / ainvnm;
	}
    }

L20:
    return 0;

/*     End of STPCON */

} /* stpcon_ */
/* Subroutine */ int schktp_(logical *dotype, integer *nn, integer *nval, 
	integer *nns, integer *nsval, real *thresh, logical *tsterr, integer *
	nmax, real *ap, real *ainvp, real *b, real *x, real *xact, real *work, 
	 real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO='\002,a1,\002', DIAG='\002,a1,\002'"
	    ", N=\002,i5,\002, type \002,i2,\002, test(\002,i2,\002)= \002,g1"
	    "2.5)";
    static char fmt_9998[] = "(\002 UPLO='\002,a1,\002', TRANS='\002,a1,\002"
	    "', DIAG='\002,a1,\002', N=\002,i5,\002', NRHS=\002,i5,\002, type "
	    "\002,i2,\002, test(\002,i2,\002)= \002,g12.5)";
    static char fmt_9997[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002', "
	    "'\002,a1,\002',\002,i5,\002, ... ), type \002,i2,\002, test(\002"
	    ",i2,\002)=\002,g12.5)";
    static char fmt_9996[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002', "
	    "'\002,a1,\002', '\002,a1,\002',\002,i5,\002, ... ), type \002,i2,"
	    "\002, test(\002,i2,\002)=\002,g12.5)";

    /* System generated locals */
    address a__1[2], a__2[3], a__3[4];
    integer i__1, i__2[2], i__3, i__4[3], i__5[4];
    char ch__1[2], ch__2[3], ch__3[4];

    /* Local variables */
    integer i__, k, n, in, lda, lap;
    char diag[1];
    integer imat, info;
    char path[3];
    integer irhs, nrhs;
    char norm[1], uplo[1];
    integer nrun;
    integer idiag;
    real scale;
    integer nfail, iseed[4];
    real rcond;
    real anorm;
    integer itran;
    char trans[1];
    integer iuplo, nerrs;
    char xtype[1];
    real rcondc, rcondi;
    real rcondo, ainvnm;
    real result[9];

    /* Fortran I/O blocks */
    static cilist io___26 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___34 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___36 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___38 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___39 = { 0, 0, 0, fmt_9996, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKTP tests STPTRI, -TRS, -RFS, and -CON, and SLATPS */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The leading dimension of the work arrays.  NMAX >= the */
/*          maximumm value of N in NVAL. */

/*  AP      (workspace) REAL array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AINVP   (workspace) REAL array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  B       (workspace) REAL array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NSMAX)) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NSMAX)) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainvp;
    --ap;
    --nsval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "TP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrtr_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL */

	n = nval[in];
	lda = max(1,n);
	lap = lda * (lda + 1) / 2;
	*(unsigned char *)xtype = 'N';

	for (imat = 1; imat <= 10; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L70;
	    }

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {

/*              Do first for UPLO = 'U', then for UPLO = 'L' */

		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];

/*              Call SLATTP to generate a triangular test matrix. */

		s_copy(srnamc_1.srnamt, "SLATTP", (ftnlen)32, (ftnlen)6);
		slattp_(&imat, uplo, "No transpose", diag, iseed, &n, &ap[1], 
			&x[1], &work[1], &info);

/*              Set IDIAG = 1 for non-unit matrices, 2 for unit. */

		if (lsame_(diag, "N")) {
		    idiag = 1;
		} else {
		    idiag = 2;
		}

/* +    TEST 1 */
/*              Form the inverse of A. */

		if (n > 0) {
		    scopy_(&lap, &ap[1], &c__1, &ainvp[1], &c__1);
		}
		s_copy(srnamc_1.srnamt, "STPTRI", (ftnlen)32, (ftnlen)6);
		stptri_(uplo, diag, &n, &ainvp[1], &info);

/*              Check error code from STPTRI. */

		if (info != 0) {
/* Writing concatenation */
		    i__2[0] = 1, a__1[0] = uplo;
		    i__2[1] = 1, a__1[1] = diag;
		    s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2);
		    alaerh_(path, "STPTRI", &info, &c__0, ch__1, &n, &n, &
			    c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

/*              Compute the infinity-norm condition number of A. */

		anorm = slantp_("I", uplo, diag, &n, &ap[1], &rwork[1]);
		ainvnm = slantp_("I", uplo, diag, &n, &ainvp[1], &rwork[1]);
		if (anorm <= 0.f || ainvnm <= 0.f) {
		    rcondi = 1.f;
		} else {
		    rcondi = 1.f / anorm / ainvnm;
		}

/*              Compute the residual for the triangular matrix times its */
/*              inverse.  Also compute the 1-norm condition number of A. */

		stpt01_(uplo, diag, &n, &ap[1], &ainvp[1], &rcondo, &rwork[1], 
			 result);

/*              Print the test ratio if it is .GE. THRESH. */

		if (result[0] >= *thresh) {
		    if (nfail == 0 && nerrs == 0) {
			alahd_(nout, path);
		    }
		    io___26.ciunit = *nout;
		    s_wsfe(&io___26);
		    do_fio(&c__1, uplo, (ftnlen)1);
		    do_fio(&c__1, diag, (ftnlen)1);
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real));
		    e_wsfe();
		    ++nfail;
		}
		++nrun;

		i__3 = *nns;
		for (irhs = 1; irhs <= i__3; ++irhs) {
		    nrhs = nsval[irhs];
		    *(unsigned char *)xtype = 'N';

		    for (itran = 1; itran <= 3; ++itran) {

/*                 Do for op(A) = A, A**T, or A**H. */

			*(unsigned char *)trans = *(unsigned char *)&transs[
				itran - 1];
			if (itran == 1) {
			    *(unsigned char *)norm = 'O';
			    rcondc = rcondo;
			} else {
			    *(unsigned char *)norm = 'I';
			    rcondc = rcondi;
			}

/* +    TEST 2 */
/*                 Solve and compute residual for op(A)*x = b. */

			s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, (ftnlen)
				6);
			slarhs_(path, xtype, uplo, trans, &n, &n, &c__0, &
				idiag, &nrhs, &ap[1], &lap, &xact[1], &lda, &
				b[1], &lda, iseed, &info);
			*(unsigned char *)xtype = 'C';
			slacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);

			s_copy(srnamc_1.srnamt, "STPTRS", (ftnlen)32, (ftnlen)
				6);
			stptrs_(uplo, trans, diag, &n, &nrhs, &ap[1], &x[1], &
				lda, &info);

/*                 Check error code from STPTRS. */

			if (info != 0) {
/* Writing concatenation */
			    i__4[0] = 1, a__2[0] = uplo;
			    i__4[1] = 1, a__2[1] = trans;
			    i__4[2] = 1, a__2[2] = diag;
			    s_cat(ch__2, a__2, i__4, &c__3, (ftnlen)3);
			    alaerh_(path, "STPTRS", &info, &c__0, ch__2, &n, &
				    n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &
				    nerrs, nout);
			}

			stpt02_(uplo, trans, diag, &n, &nrhs, &ap[1], &x[1], &
				lda, &b[1], &lda, &work[1], &result[1]);

/* +    TEST 3 */
/*                 Check solution from generated exact solution. */

			sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/* +    TESTS 4, 5, and 6 */
/*                 Use iterative refinement to improve the solution and */
/*                 compute error bounds. */

			s_copy(srnamc_1.srnamt, "STPRFS", (ftnlen)32, (ftnlen)
				6);
			stprfs_(uplo, trans, diag, &n, &nrhs, &ap[1], &b[1], &
				lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], 
				 &work[1], &iwork[1], &info);

/*                 Check error code from STPRFS. */

			if (info != 0) {
/* Writing concatenation */
			    i__4[0] = 1, a__2[0] = uplo;
			    i__4[1] = 1, a__2[1] = trans;
			    i__4[2] = 1, a__2[2] = diag;
			    s_cat(ch__2, a__2, i__4, &c__3, (ftnlen)3);
			    alaerh_(path, "STPRFS", &info, &c__0, ch__2, &n, &
				    n, &c_n1, &c_n1, &nrhs, &imat, &nfail, &
				    nerrs, nout);
			}

			sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[3]);
			stpt05_(uplo, trans, diag, &n, &nrhs, &ap[1], &b[1], &
				lda, &x[1], &lda, &xact[1], &lda, &rwork[1], &
				rwork[nrhs + 1], &result[4]);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			for (k = 2; k <= 6; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___34.ciunit = *nout;
				s_wsfe(&io___34);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, trans, (ftnlen)1);
				do_fio(&c__1, diag, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(real));
				e_wsfe();
				++nfail;
			    }
/* L20: */
			}
			nrun += 5;
/* L30: */
		    }
/* L40: */
		}

/* +    TEST 7 */
/*                 Get an estimate of RCOND = 1/CNDNUM. */

		for (itran = 1; itran <= 2; ++itran) {
		    if (itran == 1) {
			*(unsigned char *)norm = 'O';
			rcondc = rcondo;
		    } else {
			*(unsigned char *)norm = 'I';
			rcondc = rcondi;
		    }

		    s_copy(srnamc_1.srnamt, "STPCON", (ftnlen)32, (ftnlen)6);
		    stpcon_(norm, uplo, diag, &n, &ap[1], &rcond, &work[1], &
			    iwork[1], &info);

/*                 Check error code from STPCON. */

		    if (info != 0) {
/* Writing concatenation */
			i__4[0] = 1, a__2[0] = norm;
			i__4[1] = 1, a__2[1] = uplo;
			i__4[2] = 1, a__2[2] = diag;
			s_cat(ch__2, a__2, i__4, &c__3, (ftnlen)3);
			alaerh_(path, "STPCON", &info, &c__0, ch__2, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    stpt06_(&rcond, &rcondc, uplo, diag, &n, &ap[1], &rwork[1]
, &result[6]);

/*                 Print the test ratio if it is .GE. THRESH. */

		    if (result[6] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___36.ciunit = *nout;
			s_wsfe(&io___36);
			do_fio(&c__1, "STPCON", (ftnlen)6);
			do_fio(&c__1, norm, (ftnlen)1);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, diag, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(real)
				);
			e_wsfe();
			++nfail;
		    }
		    ++nrun;
/* L50: */
		}
/* L60: */
	    }
L70:
	    ;
	}

/*        Use pathological test matrices to test SLATPS. */

	for (imat = 11; imat <= 18; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L100;
	    }

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {

/*              Do first for UPLO = 'U', then for UPLO = 'L' */

		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
		for (itran = 1; itran <= 3; ++itran) {

/*                 Do for op(A) = A, A**T, or A**H. */

		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];

/*                 Call SLATTP to generate a triangular test matrix. */

		    s_copy(srnamc_1.srnamt, "SLATTP", (ftnlen)32, (ftnlen)6);
		    slattp_(&imat, uplo, trans, diag, iseed, &n, &ap[1], &x[1]
, &work[1], &info);

/* +    TEST 8 */
/*                 Solve the system op(A)*x = b. */

		    s_copy(srnamc_1.srnamt, "SLATPS", (ftnlen)32, (ftnlen)6);
		    scopy_(&n, &x[1], &c__1, &b[1], &c__1);
		    slatps_(uplo, trans, diag, "N", &n, &ap[1], &b[1], &scale, 
			     &rwork[1], &info);

/*                 Check error code from SLATPS. */

		    if (info != 0) {
/* Writing concatenation */
			i__5[0] = 1, a__3[0] = uplo;
			i__5[1] = 1, a__3[1] = trans;
			i__5[2] = 1, a__3[2] = diag;
			i__5[3] = 1, a__3[3] = "N";
			s_cat(ch__3, a__3, i__5, &c__4, (ftnlen)4);
			alaerh_(path, "SLATPS", &info, &c__0, ch__3, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    stpt03_(uplo, trans, diag, &n, &c__1, &ap[1], &scale, &
			    rwork[1], &c_b103, &b[1], &lda, &x[1], &lda, &
			    work[1], &result[7]);

/* +    TEST 9 */
/*                 Solve op(A)*x = b again with NORMIN = 'Y'. */

		    scopy_(&n, &x[1], &c__1, &b[n + 1], &c__1);
		    slatps_(uplo, trans, diag, "Y", &n, &ap[1], &b[n + 1], &
			    scale, &rwork[1], &info);

/*                 Check error code from SLATPS. */

		    if (info != 0) {
/* Writing concatenation */
			i__5[0] = 1, a__3[0] = uplo;
			i__5[1] = 1, a__3[1] = trans;
			i__5[2] = 1, a__3[2] = diag;
			i__5[3] = 1, a__3[3] = "Y";
			s_cat(ch__3, a__3, i__5, &c__4, (ftnlen)4);
			alaerh_(path, "SLATPS", &info, &c__0, ch__3, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    stpt03_(uplo, trans, diag, &n, &c__1, &ap[1], &scale, &
			    rwork[1], &c_b103, &b[n + 1], &lda, &x[1], &lda, &
			    work[1], &result[8]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    if (result[7] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___38.ciunit = *nout;
			s_wsfe(&io___38);
			do_fio(&c__1, "SLATPS", (ftnlen)6);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, trans, (ftnlen)1);
			do_fio(&c__1, diag, (ftnlen)1);
			do_fio(&c__1, "N", (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(real)
				);
			e_wsfe();
			++nfail;
		    }
		    if (result[8] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___39.ciunit = *nout;
			s_wsfe(&io___39);
			do_fio(&c__1, "SLATPS", (ftnlen)6);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, trans, (ftnlen)1);
			do_fio(&c__1, diag, (ftnlen)1);
			do_fio(&c__1, "Y", (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&c__9, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[8], (ftnlen)sizeof(real)
				);
			e_wsfe();
			++nfail;
		    }
		    nrun += 2;
/* L80: */
		}
/* L90: */
	    }
L100:
	    ;
	}
/* L110: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SCHKTP */

} /* schktp_ */
Exemple #3
0
/* Subroutine */ int stpcon_(char *norm, char *uplo, char *diag, integer *n, 
	real *ap, real *rcond, real *work, integer *iwork, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    STPCON estimates the reciprocal of the condition number of a packed   
    triangular matrix A, in either the 1-norm or the infinity-norm.   

    The norm of A is computed and an estimate is obtained for   
    norm(inv(A)), then the reciprocal of the condition number is   
    computed as   
       RCOND = 1 / ( norm(A) * norm(inv(A)) ).   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies whether the 1-norm condition number or the   
            infinity-norm condition number is required:   
            = '1' or 'O':  1-norm;   
            = 'I':         Infinity-norm.   

    UPLO    (input) CHARACTER*1   
            = 'U':  A is upper triangular;   
            = 'L':  A is lower triangular.   

    DIAG    (input) CHARACTER*1   
            = 'N':  A is non-unit triangular;   
            = 'U':  A is unit triangular.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    AP      (input) REAL array, dimension (N*(N+1)/2)   
            The upper or lower triangular matrix A, packed columnwise in 
  
            a linear array.  The j-th column of A is stored in the array 
  
            AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.   
            If DIAG = 'U', the diagonal elements of A are not referenced 
  
            and are assumed to be 1.   

    RCOND   (output) REAL   
            The reciprocal of the condition number of the matrix A,   
            computed as RCOND = 1/(norm(A) * norm(inv(A))).   

    WORK    (workspace) REAL array, dimension (3*N)   

    IWORK   (workspace) INTEGER array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer i__1;
    real r__1;
    /* Local variables */
    static integer kase, kase1;
    static real scale;
    extern logical lsame_(char *, char *);
    static real anorm;
    extern /* Subroutine */ int srscl_(integer *, real *, real *, integer *);
    static logical upper;
    static real xnorm;
    static integer ix;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *), slacon_(
	    integer *, real *, real *, integer *, real *, integer *);
    extern integer isamax_(integer *, real *, integer *);
    static real ainvnm;
    static logical onenrm;
    extern doublereal slantp_(char *, char *, char *, integer *, real *, real 
	    *);
    static char normin[1];
    extern /* Subroutine */ int slatps_(char *, char *, char *, char *, 
	    integer *, real *, real *, real *, real *, integer *);
    static real smlnum;
    static logical nounit;



#define IWORK(I) iwork[(I)-1]
#define WORK(I) work[(I)-1]
#define AP(I) ap[(I)-1]


    *info = 0;
    upper = lsame_(uplo, "U");
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
    nounit = lsame_(diag, "N");

    if (! onenrm && ! lsame_(norm, "I")) {
	*info = -1;
    } else if (! upper && ! lsame_(uplo, "L")) {
	*info = -2;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("STPCON", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	*rcond = 1.f;
	return 0;
    }

    *rcond = 0.f;
    smlnum = slamch_("Safe minimum") * (real) max(1,*n);

/*     Compute the norm of the triangular matrix A. */

    anorm = slantp_(norm, uplo, diag, n, &AP(1), &WORK(1));

/*     Continue only if ANORM > 0. */

    if (anorm > 0.f) {

/*        Estimate the norm of the inverse of A. */

	ainvnm = 0.f;
	*(unsigned char *)normin = 'N';
	if (onenrm) {
	    kase1 = 1;
	} else {
	    kase1 = 2;
	}
	kase = 0;
L10:
	slacon_(n, &WORK(*n + 1), &WORK(1), &IWORK(1), &ainvnm, &kase);
	if (kase != 0) {
	    if (kase == kase1) {

/*              Multiply by inv(A). */

		slatps_(uplo, "No transpose", diag, normin, n, &AP(1), &WORK(
			1), &scale, &WORK((*n << 1) + 1), info);
	    } else {

/*              Multiply by inv(A'). */

		slatps_(uplo, "Transpose", diag, normin, n, &AP(1), &WORK(1), 
			&scale, &WORK((*n << 1) + 1), info);
	    }
	    *(unsigned char *)normin = 'Y';

/*           Multiply by 1/SCALE if doing so will not cause overfl
ow. */

	    if (scale != 1.f) {
		ix = isamax_(n, &WORK(1), &c__1);
		xnorm = (r__1 = WORK(ix), dabs(r__1));
		if (scale < xnorm * smlnum || scale == 0.f) {
		    goto L20;
		}
		srscl_(n, &scale, &WORK(1), &c__1);
	    }
	    goto L10;
	}

/*        Compute the estimate of the reciprocal condition number. */

	if (ainvnm != 0.f) {
	    *rcond = 1.f / anorm / ainvnm;
	}
    }

L20:
    return 0;

/*     End of STPCON */

} /* stpcon_ */
Exemple #4
0
/* Subroutine */ int stpt01_(char *uplo, char *diag, integer *n, real *ap, 
	real *ainvp, real *rcond, real *work, real *resid)
{
    /* System generated locals */
    integer i__1, i__2;

    /* Local variables */
    static integer j;
    extern logical lsame_(char *, char *);
    static real anorm;
    static logical unitd;
    extern /* Subroutine */ int stpmv_(char *, char *, char *, integer *, 
	    real *, real *, integer *);
    static integer jc;
    extern doublereal slamch_(char *);
    static real ainvnm;
    extern doublereal slantp_(char *, char *, char *, integer *, real *, real 
	    *);
    static real eps;


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    STPT01 computes the residual for a triangular matrix A times its   
    inverse when A is stored in packed format:   
       RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ),   
    where EPS is the machine epsilon.   

    Arguments   
    ==========   

    UPLO    (input) CHARACTER*1   
            Specifies whether the matrix A is upper or lower triangular.   
            = 'U':  Upper triangular   
            = 'L':  Lower triangular   

    DIAG    (input) CHARACTER*1   
            Specifies whether or not the matrix A is unit triangular.   
            = 'N':  Non-unit triangular   
            = 'U':  Unit triangular   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    AP      (input) REAL array, dimension (N*(N+1)/2)   
            The original upper or lower triangular matrix A, packed   
            columnwise in a linear array.  The j-th column of A is stored   
            in the array AP as follows:   
            if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L',   
               AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.   

    AINVP   (input/output) REAL array, dimension (N*(N+1)/2)   
            On entry, the (triangular) inverse of the matrix A, packed   
            columnwise in a linear array as in AP.   
            On exit, the contents of AINVP are destroyed.   

    RCOND   (output) REAL   
            The reciprocal condition number of A, computed as   
            1/(norm(A) * norm(AINV)).   

    WORK    (workspace) REAL array, dimension (N)   

    RESID   (output) REAL   
            norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )   

    =====================================================================   


       Quick exit if N = 0.   

       Parameter adjustments */
    --work;
    --ainvp;
    --ap;

    /* Function Body */
    if (*n <= 0) {
	*rcond = 1.f;
	*resid = 0.f;
	return 0;
    }

/*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */

    eps = slamch_("Epsilon");
    anorm = slantp_("1", uplo, diag, n, &ap[1], &work[1]);
    ainvnm = slantp_("1", uplo, diag, n, &ainvp[1], &work[1]);
    if (anorm <= 0.f || ainvnm <= 0.f) {
	*rcond = 0.f;
	*resid = 1.f / eps;
	return 0;
    }
    *rcond = 1.f / anorm / ainvnm;

/*     Compute A * AINV, overwriting AINV. */

    unitd = lsame_(diag, "U");
    if (lsame_(uplo, "U")) {
	jc = 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    if (unitd) {
		ainvp[jc + j - 1] = 1.f;
	    }

/*           Form the j-th column of A*AINV */

	    stpmv_("Upper", "No transpose", diag, &j, &ap[1], &ainvp[jc], &
		    c__1);

/*           Subtract 1 from the diagonal */

	    ainvp[jc + j - 1] += -1.f;
	    jc += j;
/* L10: */
	}
    } else {
	jc = 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    if (unitd) {
		ainvp[jc] = 1.f;
	    }

/*           Form the j-th column of A*AINV */

	    i__2 = *n - j + 1;
	    stpmv_("Lower", "No transpose", diag, &i__2, &ap[jc], &ainvp[jc], 
		    &c__1);

/*           Subtract 1 from the diagonal */

	    ainvp[jc] += -1.f;
	    jc = jc + *n - j + 1;
/* L20: */
	}
    }

/*     Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS) */

    *resid = slantp_("1", uplo, "Non-unit", n, &ainvp[1], &work[1]);

    *resid = *resid * *rcond / (real) (*n) / eps;

    return 0;

/*     End of STPT01 */

} /* stpt01_ */
Exemple #5
0
/* Subroutine */ int stpt06_(real *rcond, real *rcondc, char *uplo, char *
	diag, integer *n, real *ap, real *work, real *rat)
{
    /* System generated locals */
    real r__1, r__2;

    /* Local variables */
    real eps, rmin, rmax, anorm;
    extern /* Subroutine */ int slabad_(real *, real *);
    extern doublereal slamch_(char *);
    real bignum;
    extern doublereal slantp_(char *, char *, char *, integer *, real *, real 
	    *);
    real smlnum;


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  STPT06 computes a test ratio comparing RCOND (the reciprocal */
/*  condition number of a triangular matrix A) and RCONDC, the estimate */
/*  computed by STPCON.  Information about the triangular matrix A is */
/*  used if one estimate is zero and the other is non-zero to decide if */
/*  underflow in the estimate is justified. */

/*  Arguments */
/*  ========= */

/*  RCOND   (input) REAL */
/*          The estimate of the reciprocal condition number obtained by */
/*          forming the explicit inverse of the matrix A and computing */
/*          RCOND = 1/( norm(A) * norm(inv(A)) ). */

/*  RCONDC  (input) REAL */
/*          The estimate of the reciprocal condition number computed by */
/*          STPCON. */

/*  UPLO    (input) CHARACTER */
/*          Specifies whether the matrix A is upper or lower triangular. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  DIAG    (input) CHARACTER */
/*          Specifies whether or not the matrix A is unit triangular. */
/*          = 'N':  Non-unit triangular */
/*          = 'U':  Unit triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  AP      (input) REAL array, dimension (N*(N+1)/2) */
/*          The upper or lower triangular matrix A, packed columnwise in */
/*          a linear array.  The j-th column of A is stored in the array */
/*          AP as follows: */
/*          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', */
/*             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */

/*  WORK    (workspace) REAL array, dimension (N) */

/*  RAT     (output) REAL */
/*          The test ratio.  If both RCOND and RCONDC are nonzero, */
/*             RAT = MAX( RCOND, RCONDC )/MIN( RCOND, RCONDC ) - 1. */
/*          If RAT = 0, the two estimates are exactly the same. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --work;
    --ap;

    /* Function Body */
    eps = slamch_("Epsilon");
    rmax = dmax(*rcond,*rcondc);
    rmin = dmin(*rcond,*rcondc);

/*     Do the easy cases first. */

    if (rmin < 0.f) {

/*        Invalid value for RCOND or RCONDC, return 1/EPS. */

	*rat = 1.f / eps;

    } else if (rmin > 0.f) {

/*        Both estimates are positive, return RMAX/RMIN - 1. */

	*rat = rmax / rmin - 1.f;

    } else if (rmax == 0.f) {

/*        Both estimates zero. */

	*rat = 0.f;

    } else {

/*        One estimate is zero, the other is non-zero.  If the matrix is */
/*        ill-conditioned, return the nonzero estimate multiplied by */
/*        1/EPS; if the matrix is badly scaled, return the nonzero */
/*        estimate multiplied by BIGNUM/TMAX, where TMAX is the maximum */
/*        element in absolute value in A. */

	smlnum = slamch_("Safe minimum");
	bignum = 1.f / smlnum;
	slabad_(&smlnum, &bignum);
	anorm = slantp_("M", uplo, diag, n, &ap[1], &work[1]);

/* Computing MIN */
	r__1 = bignum / dmax(1.f,anorm), r__2 = 1.f / eps;
	*rat = rmax * dmin(r__1,r__2);
    }

    return 0;

/*     End of STPT06 */

} /* stpt06_ */