/* Subroutine */ int sdrvpt_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, real *a, real *d__, 
	real *e, real *b, real *x, real *xact, real *work, real *rwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 0,0,0,1 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002"
	    ", test \002,i2,\002, ratio = \002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio = \002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    real r__1, r__2, r__3;

    /* Local variables */
    integer i__, j, k, n;
    real z__[3];
    integer k1, ia, in, kl, ku, ix, nt, lda;
    char fact[1];
    real cond;
    integer mode;
    real dmax__;
    integer imat, info;
    char path[3], dist[1], type__[1];
    integer nrun, ifact, nfail, iseed[4];
    real rcond;
    integer nimat;
    real anorm;
    integer izero, nerrs;
    logical zerot;
    real rcondc;
    real ainvnm;
    real result[6];

    /* Fortran I/O blocks */
    static cilist io___35 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___38 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVPT tests SPTSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (NMAX*2) */

/*  D       (workspace) REAL array, dimension (NMAX*2) */

/*  E       (workspace) REAL array, dimension (NMAX*2) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NRHS)) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --e;
    --d__;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "PT", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL. */

	n = nval[in];
	lda = max(1,n);
	nimat = 12;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (n > 0 && ! dotype[imat]) {
		goto L110;
	    }

/*           Set up parameters with SLATB4. */

	    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cond, dist);

	    zerot = imat >= 8 && imat <= 10;
	    if (imat <= 6) {

/*              Type 1-6:  generate a symmetric tridiagonal matrix of */
/*              known condition number in lower triangular band storage. */

		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
			&anorm, &kl, &ku, "B", &a[1], &c__2, &work[1], &info);

/*              Check the error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &kl, &
			    ku, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L110;
		}
		izero = 0;

/*              Copy the matrix to D and E. */

		ia = 1;
		i__3 = n - 1;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    d__[i__] = a[ia];
		    e[i__] = a[ia + 1];
		    ia += 2;
/* L20: */
		}
		if (n > 0) {
		    d__[n] = a[ia];
		}
	    } else {

/*              Type 7-12:  generate a diagonally dominant matrix with */
/*              unknown condition number in the vectors D and E. */

		if (! zerot || ! dotype[7]) {

/*                 Let D and E have values from [-1,1]. */

		    slarnv_(&c__2, iseed, &n, &d__[1]);
		    i__3 = n - 1;
		    slarnv_(&c__2, iseed, &i__3, &e[1]);

/*                 Make the tridiagonal matrix diagonally dominant. */

		    if (n == 1) {
			d__[1] = dabs(d__[1]);
		    } else {
			d__[1] = dabs(d__[1]) + dabs(e[1]);
			d__[n] = (r__1 = d__[n], dabs(r__1)) + (r__2 = e[n - 
				1], dabs(r__2));
			i__3 = n - 1;
			for (i__ = 2; i__ <= i__3; ++i__) {
			    d__[i__] = (r__1 = d__[i__], dabs(r__1)) + (r__2 =
				     e[i__], dabs(r__2)) + (r__3 = e[i__ - 1],
				     dabs(r__3));
/* L30: */
			}
		    }

/*                 Scale D and E so the maximum element is ANORM. */

		    ix = isamax_(&n, &d__[1], &c__1);
		    dmax__ = d__[ix];
		    r__1 = anorm / dmax__;
		    sscal_(&n, &r__1, &d__[1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			r__1 = anorm / dmax__;
			sscal_(&i__3, &r__1, &e[1], &c__1);
		    }

		} else if (izero > 0) {

/*                 Reuse the last matrix by copying back the zeroed out */
/*                 elements. */

		    if (izero == 1) {
			d__[1] = z__[1];
			if (n > 1) {
			    e[1] = z__[2];
			}
		    } else if (izero == n) {
			e[n - 1] = z__[0];
			d__[n] = z__[1];
		    } else {
			e[izero - 1] = z__[0];
			d__[izero] = z__[1];
			e[izero] = z__[2];
		    }
		}

/*              For types 8-10, set one row and column of the matrix to */
/*              zero. */

		izero = 0;
		if (imat == 8) {
		    izero = 1;
		    z__[1] = d__[1];
		    d__[1] = 0.f;
		    if (n > 1) {
			z__[2] = e[1];
			e[1] = 0.f;
		    }
		} else if (imat == 9) {
		    izero = n;
		    if (n > 1) {
			z__[0] = e[n - 1];
			e[n - 1] = 0.f;
		    }
		    z__[1] = d__[n];
		    d__[n] = 0.f;
		} else if (imat == 10) {
		    izero = (n + 1) / 2;
		    if (izero > 1) {
			z__[0] = e[izero - 1];
			z__[2] = e[izero];
			e[izero - 1] = 0.f;
			e[izero] = 0.f;
		    }
		    z__[1] = d__[izero];
		    d__[izero] = 0.f;
		}
	    }

/*           Generate NRHS random solution vectors. */

	    ix = 1;
	    i__3 = *nrhs;
	    for (j = 1; j <= i__3; ++j) {
		slarnv_(&c__2, iseed, &n, &xact[ix]);
		ix += lda;
/* L40: */
	    }

/*           Set the right hand side. */

	    slaptm_(&n, nrhs, &c_b23, &d__[1], &e[1], &xact[1], &lda, &c_b24, 
		    &b[1], &lda);

	    for (ifact = 1; ifact <= 2; ++ifact) {
		if (ifact == 1) {
		    *(unsigned char *)fact = 'F';
		} else {
		    *(unsigned char *)fact = 'N';
		}

/*              Compute the condition number for comparison with */
/*              the value returned by SPTSVX. */

		if (zerot) {
		    if (ifact == 1) {
			goto L100;
		    }
		    rcondc = 0.f;

		} else if (ifact == 1) {

/*                 Compute the 1-norm of A. */

		    anorm = slanst_("1", &n, &d__[1], &e[1]);

		    scopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			scopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1);
		    }

/*                 Factor the matrix A. */

		    spttrf_(&n, &d__[n + 1], &e[n + 1], &info);

/*                 Use SPTTRS to solve for one column at a time of */
/*                 inv(A), computing the maximum column sum as we go. */

		    ainvnm = 0.f;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    x[j] = 0.f;
/* L50: */
			}
			x[i__] = 1.f;
			spttrs_(&n, &c__1, &d__[n + 1], &e[n + 1], &x[1], &
				lda, &info);
/* Computing MAX */
			r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1);
			ainvnm = dmax(r__1,r__2);
/* L60: */
		    }

/*                 Compute the 1-norm condition number of A. */

		    if (anorm <= 0.f || ainvnm <= 0.f) {
			rcondc = 1.f;
		    } else {
			rcondc = 1.f / anorm / ainvnm;
		    }
		}

		if (ifact == 2) {

/*                 --- Test SPTSV -- */

		    scopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			scopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1);
		    }
		    slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                 Factor A as L*D*L' and solve the system A*X = B. */

		    s_copy(srnamc_1.srnamt, "SPTSV ", (ftnlen)32, (ftnlen)6);
		    sptsv_(&n, nrhs, &d__[n + 1], &e[n + 1], &x[1], &lda, &
			    info);

/*                 Check error code from SPTSV . */

		    if (info != izero) {
			alaerh_(path, "SPTSV ", &info, &izero, " ", &n, &n, &
				c__1, &c__1, nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }
		    nt = 0;
		    if (izero == 0) {

/*                    Check the factorization by computing the ratio */
/*                       norm(L*D*L' - A) / (n * norm(A) * EPS ) */

			sptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &
				work[1], result);

/*                    Compute the residual in the solution. */

			slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			sptt02_(&n, nrhs, &d__[1], &e[1], &x[1], &lda, &work[
				1], &lda, &result[1]);

/*                    Check solution from generated exact solution. */

			sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;
		    }

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    i__3 = nt;
		    for (k = 1; k <= i__3; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___35.ciunit = *nout;
			    s_wsfe(&io___35);
			    do_fio(&c__1, "SPTSV ", (ftnlen)6);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L70: */
		    }
		    nrun += nt;
		}

/*              --- Test SPTSVX --- */

		if (ifact > 1) {

/*                 Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero. */

		    i__3 = n - 1;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			d__[n + i__] = 0.f;
			e[n + i__] = 0.f;
/* L80: */
		    }
		    if (n > 0) {
			d__[n + n] = 0.f;
		    }
		}

		slaset_("Full", &n, nrhs, &c_b24, &c_b24, &x[1], &lda);

/*              Solve the system and compute the condition number and */
/*              error bounds using SPTSVX. */

		s_copy(srnamc_1.srnamt, "SPTSVX", (ftnlen)32, (ftnlen)6);
		sptsvx_(fact, &n, nrhs, &d__[1], &e[1], &d__[n + 1], &e[n + 1]
, &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &rwork[
			*nrhs + 1], &work[1], &info);

/*              Check the error code from SPTSVX. */

		if (info != izero) {
		    alaerh_(path, "SPTSVX", &info, &izero, fact, &n, &n, &
			    c__1, &c__1, nrhs, &imat, &nfail, &nerrs, nout);
		}
		if (izero == 0) {
		    if (ifact == 2) {

/*                    Check the factorization by computing the ratio */
/*                       norm(L*D*L' - A) / (n * norm(A) * EPS ) */

			k1 = 1;
			sptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &
				work[1], result);
		    } else {
			k1 = 2;
		    }

/*                 Compute the residual in the solution. */

		    slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
		    sptt02_(&n, nrhs, &d__[1], &e[1], &x[1], &lda, &work[1], &
			    lda, &result[1]);

/*                 Check solution from generated exact solution. */

		    sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[2]);

/*                 Check error bounds from iterative refinement. */

		    sptt05_(&n, nrhs, &d__[1], &e[1], &b[1], &lda, &x[1], &
			    lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs + 1], 
			     &result[3]);
		} else {
		    k1 = 6;
		}

/*              Check the reciprocal of the condition number. */

		result[5] = sget06_(&rcond, &rcondc);

/*              Print information about the tests that did not pass */
/*              the threshold. */

		for (k = k1; k <= 6; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    aladhd_(nout, path);
			}
			io___38.ciunit = *nout;
			s_wsfe(&io___38);
			do_fio(&c__1, "SPTSVX", (ftnlen)6);
			do_fio(&c__1, fact, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				real));
			e_wsfe();
			++nfail;
		    }
/* L90: */
		}
		nrun = nrun + 7 - k1;
L100:
		;
	    }
L110:
	    ;
	}
/* L120: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVPT */

} /* sdrvpt_ */
/* Subroutine */ int sdrvsy_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, integer *nmax, real *a, 
	real *afac, real *ainv, real *b, real *x, real *xact, real *work, 
	real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char facts[1*2] = "F" "N";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002,"
	    "a1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002,"
	    " ratio =\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    char ch__1[2];

    /* Local variables */
    integer i__, j, k, n, i1, i2, k1, nb, in, kl, ku, nt, lda;
    char fact[1];
    integer ioff, mode, imat, info;
    char path[3], dist[1], uplo[1], type__[1];
    integer nrun, ifact, nfail, iseed[4], nbmin;
    real rcond;
    integer nimat;
    real anorm;
    integer iuplo, izero, nerrs;
    integer lwork;
    logical zerot;
    char xtype[1];
    real rcondc;
    real cndnum, ainvnm;
    real result[6];

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVSY tests the driver routines SSYSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AINV    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(2,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension (NMAX+2*NRHS) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "SY", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
/* Computing MAX */
    i__1 = *nmax << 1, i__2 = *nmax * *nrhs;
    lwork = max(i__1,i__2);

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 10;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L170;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L170;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];

/*              Set up parameters with SLATB4 and generate a test matrix */
/*              with SLATMS. */

		slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &work[1], 
			 &info);

/*              Check error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L160;
		}

/*              For types 3-6, zero one or more rows and columns of the */
/*              matrix to test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

		    if (imat < 6) {

/*                    Set row and column IZERO to zero. */

			if (iuplo == 1) {
			    ioff = (izero - 1) * lda;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				a[ioff + i__] = 0.f;
/* L20: */
			    }
			    ioff += izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				a[ioff] = 0.f;
				ioff += lda;
/* L30: */
			    }
			} else {
			    ioff = izero;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				a[ioff] = 0.f;
				ioff += lda;
/* L40: */
			    }
			    ioff -= izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				a[ioff + i__] = 0.f;
/* L50: */
			    }
			}
		    } else {
			ioff = 0;
			if (iuplo == 1) {

/*                       Set the first IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i2 = min(j,izero);
				i__4 = i2;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    a[ioff + i__] = 0.f;
/* L60: */
				}
				ioff += lda;
/* L70: */
			    }
			} else {

/*                       Set the last IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i1 = max(j,izero);
				i__4 = n;
				for (i__ = i1; i__ <= i__4; ++i__) {
				    a[ioff + i__] = 0.f;
/* L80: */
				}
				ioff += lda;
/* L90: */
			    }
			}
		    }
		} else {
		    izero = 0;
		}

		for (ifact = 1; ifact <= 2; ++ifact) {

/*                 Do first for FACT = 'F', then for other values. */

		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];

/*                 Compute the condition number for comparison with */
/*                 the value returned by SSYSVX. */

		    if (zerot) {
			if (ifact == 1) {
			    goto L150;
			}
			rcondc = 0.f;

		    } else if (ifact == 1) {

/*                    Compute the 1-norm of A. */

			anorm = slansy_("1", uplo, &n, &a[1], &lda, &rwork[1]);

/*                    Factor the matrix A. */

			slacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda);
			ssytrf_(uplo, &n, &afac[1], &lda, &iwork[1], &work[1], 
				 &lwork, &info);

/*                    Compute inv(A) and take its norm. */

			slacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda);
			ssytri_(uplo, &n, &ainv[1], &lda, &iwork[1], &work[1], 
				 &info);
			ainvnm = slansy_("1", uplo, &n, &ainv[1], &lda, &
				rwork[1]);

/*                    Compute the 1-norm condition number of A. */

			if (anorm <= 0.f || ainvnm <= 0.f) {
			    rcondc = 1.f;
			} else {
			    rcondc = 1.f / anorm / ainvnm;
			}
		    }

/*                 Form an exact solution and set the right hand side. */

		    s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, (ftnlen)6);
		    slarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';

/*                 --- Test SSYSV  --- */

		    if (ifact == 2) {
			slacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda);
			slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                    Factor the matrix and solve the system using SSYSV. */

			s_copy(srnamc_1.srnamt, "SSYSV ", (ftnlen)32, (ftnlen)
				6);
			ssysv_(uplo, &n, nrhs, &afac[1], &lda, &iwork[1], &x[
				1], &lda, &work[1], &lwork, &info);

/*                    Adjust the expected value of INFO to account for */
/*                    pivoting. */

			k = izero;
			if (k > 0) {
L100:
			    if (iwork[k] < 0) {
				if (iwork[k] != -k) {
				    k = -iwork[k];
				    goto L100;
				}
			    } else if (iwork[k] != k) {
				k = iwork[k];
				goto L100;
			    }
			}

/*                    Check error code from SSYSV . */

			if (info != k) {
			    alaerh_(path, "SSYSV ", &info, &k, uplo, &n, &n, &
				    c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				    nout);
			    goto L120;
			} else if (info != 0) {
			    goto L120;
			}

/*                    Reconstruct matrix from factors and compute */
/*                    residual. */

			ssyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &iwork[
				1], &ainv[1], &lda, &rwork[1], result);

/*                    Compute residual of the computed solution. */

			slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			spot02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, &
				work[1], &lda, &rwork[1], &result[1]);

/*                    Check solution from generated exact solution. */

			sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			i__3 = nt;
			for (k = 1; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "SSYSV ", (ftnlen)6);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(real));
				e_wsfe();
				++nfail;
			    }
/* L110: */
			}
			nrun += nt;
L120:
			;
		    }

/*                 --- Test SSYSVX --- */

		    if (ifact == 2) {
			slaset_(uplo, &n, &n, &c_b49, &c_b49, &afac[1], &lda);
		    }
		    slaset_("Full", &n, nrhs, &c_b49, &c_b49, &x[1], &lda);

/*                 Solve the system and compute the condition number and */
/*                 error bounds using SSYSVX. */

		    s_copy(srnamc_1.srnamt, "SSYSVX", (ftnlen)32, (ftnlen)6);
		    ssysvx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], &lda, 
			     &iwork[1], &b[1], &lda, &x[1], &lda, &rcond, &
			    rwork[1], &rwork[*nrhs + 1], &work[1], &lwork, &
			    iwork[n + 1], &info);

/*                 Adjust the expected value of INFO to account for */
/*                 pivoting. */

		    k = izero;
		    if (k > 0) {
L130:
			if (iwork[k] < 0) {
			    if (iwork[k] != -k) {
				k = -iwork[k];
				goto L130;
			    }
			} else if (iwork[k] != k) {
			    k = iwork[k];
			    goto L130;
			}
		    }

/*                 Check the error code from SSYSVX. */

		    if (info != k) {
/* Writing concatenation */
			i__5[0] = 1, a__1[0] = fact;
			i__5[1] = 1, a__1[1] = uplo;
			s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			alaerh_(path, "SSYSVX", &info, &k, ch__1, &n, &n, &
				c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				nout);
			goto L150;
		    }

		    if (info == 0) {
			if (ifact >= 2) {

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    ssyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &ainv[1], &lda, &rwork[(*nrhs <<
				     1) + 1], result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

/*                    Compute residual of the computed solution. */

			slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			spot02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, &
				work[1], &lda, &rwork[(*nrhs << 1) + 1], &
				result[1]);

/*                    Check solution from generated exact solution. */

			sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			spot05_(uplo, &n, nrhs, &a[1], &lda, &b[1], &lda, &x[
				1], &lda, &xact[1], &lda, &rwork[1], &rwork[*
				nrhs + 1], &result[3]);
		    } else {
			k1 = 6;
		    }

/*                 Compare RCOND from SSYSVX with the computed value */
/*                 in RCONDC. */

		    result[5] = sget06_(&rcond, &rcondc);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = k1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___45.ciunit = *nout;
			    s_wsfe(&io___45);
			    do_fio(&c__1, "SSYSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L140: */
		    }
		    nrun = nrun + 7 - k1;

L150:
		    ;
		}

L160:
		;
	    }
L170:
	    ;
	}
/* L180: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVSY */

} /* sdrvsy_ */
/* Subroutine */ int schkgt_(logical *dotype, integer *nn, integer *nval, 
	integer *nns, integer *nsval, real *thresh, logical *tsterr, real *a, 
	real *af, real *b, real *x, real *xact, real *work, real *rwork, 
	integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 0,0,0,1 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(12x,\002N =\002,i5,\002,\002,10x,\002 type"
	    " \002,i2,\002, test(\002,i2,\002) = \002,g12.5)";
    static char fmt_9997[] = "(\002 NORM ='\002,a1,\002', N =\002,i5,\002"
	    ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) = \002,g12."
	    "5)";
    static char fmt_9998[] = "(\002 TRANS='\002,a1,\002', N =\002,i5,\002, N"
	    "RHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) = \002,g"
	    "12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    real r__1, r__2;

    /* Local variables */
    integer i__, j, k, m, n;
    real z__[3];
    integer in, kl, ku, ix, lda;
    real cond;
    integer mode, koff, imat, info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char norm[1], type__[1];
    integer nrun;
    integer nfail, iseed[4];
    real rcond;
    integer nimat;
    real anorm;
    integer itran;
    char trans[1];
    integer izero, nerrs;
    logical zerot;
    real rcondc, rcondi, rcondo;
    real ainvnm;
    logical trfcon;
    real result[7];

    /* Fortran I/O blocks */
    static cilist io___29 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___39 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKGT tests SGTTRF, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (NMAX*4) */

/*  AF      (workspace) REAL array, dimension (NMAX*4) */

/*  B       (workspace) REAL array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NSMAX)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NSMAX)) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --af;
    --a;
    --nsval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrge_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL. */

	n = nval[in];
/* Computing MAX */
	i__2 = n - 1;
	m = max(i__2,0);
	lda = max(1,n);
	nimat = 12;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L100;
	    }

/*           Set up parameters with SLATB4. */

	    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cond, dist);

	    zerot = imat >= 8 && imat <= 10;
	    if (imat <= 6) {

/*              Types 1-6:  generate matrices of known condition number. */

/* Computing MAX */
		i__3 = 2 - ku, i__4 = 3 - max(1,n);
		koff = max(i__3,i__4);
		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
			&anorm, &kl, &ku, "Z", &af[koff], &c__3, &work[1], &
			info);

/*              Check the error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &kl, &
			    ku, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L100;
		}
		izero = 0;

		if (n > 1) {
		    i__3 = n - 1;
		    scopy_(&i__3, &af[4], &c__3, &a[1], &c__1);
		    i__3 = n - 1;
		    scopy_(&i__3, &af[3], &c__3, &a[n + m + 1], &c__1);
		}
		scopy_(&n, &af[2], &c__3, &a[m + 1], &c__1);
	    } else {

/*              Types 7-12:  generate tridiagonal matrices with */
/*              unknown condition numbers. */

		if (! zerot || ! dotype[7]) {

/*                 Generate a matrix with elements from [-1,1]. */

		    i__3 = n + (m << 1);
		    slarnv_(&c__2, iseed, &i__3, &a[1]);
		    if (anorm != 1.f) {
			i__3 = n + (m << 1);
			sscal_(&i__3, &anorm, &a[1], &c__1);
		    }
		} else if (izero > 0) {

/*                 Reuse the last matrix by copying back the zeroed out */
/*                 elements. */

		    if (izero == 1) {
			a[n] = z__[1];
			if (n > 1) {
			    a[1] = z__[2];
			}
		    } else if (izero == n) {
			a[n * 3 - 2] = z__[0];
			a[(n << 1) - 1] = z__[1];
		    } else {
			a[(n << 1) - 2 + izero] = z__[0];
			a[n - 1 + izero] = z__[1];
			a[izero] = z__[2];
		    }
		}

/*              If IMAT > 7, set one column of the matrix to 0. */

		if (! zerot) {
		    izero = 0;
		} else if (imat == 8) {
		    izero = 1;
		    z__[1] = a[n];
		    a[n] = 0.f;
		    if (n > 1) {
			z__[2] = a[1];
			a[1] = 0.f;
		    }
		} else if (imat == 9) {
		    izero = n;
		    z__[0] = a[n * 3 - 2];
		    z__[1] = a[(n << 1) - 1];
		    a[n * 3 - 2] = 0.f;
		    a[(n << 1) - 1] = 0.f;
		} else {
		    izero = (n + 1) / 2;
		    i__3 = n - 1;
		    for (i__ = izero; i__ <= i__3; ++i__) {
			a[(n << 1) - 2 + i__] = 0.f;
			a[n - 1 + i__] = 0.f;
			a[i__] = 0.f;
/* L20: */
		    }
		    a[n * 3 - 2] = 0.f;
		    a[(n << 1) - 1] = 0.f;
		}
	    }

/* +    TEST 1 */
/*           Factor A as L*U and compute the ratio */
/*              norm(L*U - A) / (n * norm(A) * EPS ) */

	    i__3 = n + (m << 1);
	    scopy_(&i__3, &a[1], &c__1, &af[1], &c__1);
	    s_copy(srnamc_1.srnamt, "SGTTRF", (ftnlen)32, (ftnlen)6);
	    sgttrf_(&n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) 
		    + 1], &iwork[1], &info);

/*           Check error code from SGTTRF. */

	    if (info != izero) {
		alaerh_(path, "SGTTRF", &info, &izero, " ", &n, &n, &c__1, &
			c__1, &c_n1, &imat, &nfail, &nerrs, nout);
	    }
	    trfcon = info != 0;

	    sgtt01_(&n, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &af[m + 1], &
		    af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &work[1], 
		     &lda, &rwork[1], result);

/*           Print the test ratio if it is .GE. THRESH. */

	    if (result[0] >= *thresh) {
		if (nfail == 0 && nerrs == 0) {
		    alahd_(nout, path);
		}
		io___29.ciunit = *nout;
		s_wsfe(&io___29);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real));
		e_wsfe();
		++nfail;
	    }
	    ++nrun;

	    for (itran = 1; itran <= 2; ++itran) {
		*(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]
			;
		if (itran == 1) {
		    *(unsigned char *)norm = 'O';
		} else {
		    *(unsigned char *)norm = 'I';
		}
		anorm = slangt_(norm, &n, &a[1], &a[m + 1], &a[n + m + 1]);

		if (! trfcon) {

/*                 Use SGTTRS to solve for one column at a time of inv(A) */
/*                 or inv(A^T), computing the maximum column sum as we */
/*                 go. */

		    ainvnm = 0.f;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    x[j] = 0.f;
/* L30: */
			}
			x[i__] = 1.f;
			sgttrs_(trans, &n, &c__1, &af[1], &af[m + 1], &af[n + 
				m + 1], &af[n + (m << 1) + 1], &iwork[1], &x[
				1], &lda, &info);
/* Computing MAX */
			r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1);
			ainvnm = dmax(r__1,r__2);
/* L40: */
		    }

/*                 Compute RCONDC = 1 / (norm(A) * norm(inv(A)) */

		    if (anorm <= 0.f || ainvnm <= 0.f) {
			rcondc = 1.f;
		    } else {
			rcondc = 1.f / anorm / ainvnm;
		    }
		    if (itran == 1) {
			rcondo = rcondc;
		    } else {
			rcondi = rcondc;
		    }
		} else {
		    rcondc = 0.f;
		}

/* +    TEST 7 */
/*              Estimate the reciprocal of the condition number of the */
/*              matrix. */

		s_copy(srnamc_1.srnamt, "SGTCON", (ftnlen)32, (ftnlen)6);
		sgtcon_(norm, &n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + 
			(m << 1) + 1], &iwork[1], &anorm, &rcond, &work[1], &
			iwork[n + 1], &info);

/*              Check error code from SGTCON. */

		if (info != 0) {
		    alaerh_(path, "SGTCON", &info, &c__0, norm, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

		result[6] = sget06_(&rcond, &rcondc);

/*              Print the test ratio if it is .GE. THRESH. */

		if (result[6] >= *thresh) {
		    if (nfail == 0 && nerrs == 0) {
			alahd_(nout, path);
		    }
		    io___39.ciunit = *nout;
		    s_wsfe(&io___39);
		    do_fio(&c__1, norm, (ftnlen)1);
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(real));
		    e_wsfe();
		    ++nfail;
		}
		++nrun;
/* L50: */
	    }

/*           Skip the remaining tests if the matrix is singular. */

	    if (trfcon) {
		goto L100;
	    }

	    i__3 = *nns;
	    for (irhs = 1; irhs <= i__3; ++irhs) {
		nrhs = nsval[irhs];

/*              Generate NRHS random solution vectors. */

		ix = 1;
		i__4 = nrhs;
		for (j = 1; j <= i__4; ++j) {
		    slarnv_(&c__2, iseed, &n, &xact[ix]);
		    ix += lda;
/* L60: */
		}

		for (itran = 1; itran <= 3; ++itran) {
		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];
		    if (itran == 1) {
			rcondc = rcondo;
		    } else {
			rcondc = rcondi;
		    }

/*                 Set the right hand side. */

		    slagtm_(trans, &n, &nrhs, &c_b63, &a[1], &a[m + 1], &a[n 
			    + m + 1], &xact[1], &lda, &c_b64, &b[1], &lda);

/* +    TEST 2 */
/*                 Solve op(A) * X = B and compute the residual. */

		    slacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);
		    s_copy(srnamc_1.srnamt, "SGTTRS", (ftnlen)32, (ftnlen)6);
		    sgttrs_(trans, &n, &nrhs, &af[1], &af[m + 1], &af[n + m + 
			    1], &af[n + (m << 1) + 1], &iwork[1], &x[1], &lda, 
			     &info);

/*                 Check error code from SGTTRS. */

		    if (info != 0) {
			alaerh_(path, "SGTTRS", &info, &c__0, trans, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    slacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda);
		    sgtt02_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], 
			     &x[1], &lda, &work[1], &lda, &rwork[1], &result[
			    1]);

/* +    TEST 3 */
/*                 Check solution from generated exact solution. */

		    sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[2]);

/* +    TESTS 4, 5, and 6 */
/*                 Use iterative refinement to improve the solution. */

		    s_copy(srnamc_1.srnamt, "SGTRFS", (ftnlen)32, (ftnlen)6);
		    sgtrfs_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], 
			     &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m <<
			     1) + 1], &iwork[1], &b[1], &lda, &x[1], &lda, &
			    rwork[1], &rwork[nrhs + 1], &work[1], &iwork[n + 
			    1], &info);

/*                 Check error code from SGTRFS. */

		    if (info != 0) {
			alaerh_(path, "SGTRFS", &info, &c__0, trans, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[3]);
		    sgtt05_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], 
			     &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[
			    1], &rwork[nrhs + 1], &result[4]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 2; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___44.ciunit = *nout;
			    s_wsfe(&io___44);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L70: */
		    }
		    nrun += 5;
/* L80: */
		}
/* L90: */
	    }

L100:
	    ;
	}
/* L110: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SCHKGT */

} /* schkgt_ */
Exemple #4
0
/* Subroutine */ int schksp_(logical *dotype, integer *nn, integer *nval, 
	integer *nns, integer *nsval, real *thresh, logical *tsterr, integer *
	nmax, real *a, real *afac, real *ainv, real *b, real *x, real *xact, 
	real *work, real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g"
	    "12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, n, i1, i2, in, kl, ku, nt, lda, npp, ioff, mode, imat, 
	    info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char uplo[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer nfail, iseed[4];
    extern logical lsame_(char *, char *);
    real rcond;
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *);
    integer nimat;
    extern doublereal sget06_(real *, real *);
    real anorm;
    integer iuplo, izero, nerrs;
    extern /* Subroutine */ int sppt02_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *), 
	    scopy_(integer *, real *, integer *, real *, integer *), sppt03_(
	    char *, integer *, real *, real *, real *, integer *, real *, 
	    real *, real *), sppt05_(char *, integer *, integer *, 
	    real *, real *, integer *, real *, integer *, real *, integer *, 
	    real *, real *, real *), sspt01_(char *, integer *, real *
, real *, integer *, real *, integer *, real *, real *);
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
), alaerh_(char *, char *, integer *, 
	    integer *, char *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *);
    real rcondc;
    char packit[1];
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer 
	    *, integer *);
    real cndnum;
    logical trfcon;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slarhs_(char *, char *, 
	    char *, char *, integer *, integer *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
, integer *, integer *);
    extern doublereal slansp_(char *, char *, integer *, real *, real *);
    extern /* Subroutine */ int slatms_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, integer *, integer *
, char *, real *, integer *, real *, integer *), sspcon_(char *, integer *, real *, integer *, real *, 
	    real *, real *, integer *, integer *);
    real result[8];
    extern /* Subroutine */ int ssprfs_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, integer *, real *, 
	    real *, real *, integer *, integer *), ssptrf_(char *, 
	    integer *, real *, integer *, integer *), ssptri_(char *, 
	    integer *, real *, integer *, real *, integer *), serrsy_(
	    char *, integer *), ssptrs_(char *, integer *, integer *, 
	    real *, integer *, real *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___38 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKSP tests SSPTRF, -TRI, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) REAL array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AFAC    (workspace) REAL array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AINV    (workspace) REAL array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  B       (workspace) REAL array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(2,NSMAX)) */

/*  RWORK   (workspace) REAL array, */
/*                                 dimension (NMAX+2*NSMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nsval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "SP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrsy_(path, nout);
    }
    infoc_1.infot = 0;

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 10;
	if (n <= 0) {
	    nimat = 1;
	}

	izero = 0;
	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L160;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L160;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
		if (lsame_(uplo, "U")) {
		    *(unsigned char *)packit = 'C';
		} else {
		    *(unsigned char *)packit = 'R';
		}

/*              Set up parameters with SLATB4 and generate a test matrix */
/*              with SLATMS. */

		slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)6, (ftnlen)6);
		slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
			1], &info);

/*              Check error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L150;
		}

/*              For types 3-6, zero one or more rows and columns of */
/*              the matrix to test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

		    if (imat < 6) {

/*                    Set row and column IZERO to zero. */

			if (iuplo == 1) {
			    ioff = (izero - 1) * izero / 2;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				a[ioff + i__] = 0.f;
/* L20: */
			    }
			    ioff += izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				a[ioff] = 0.f;
				ioff += i__;
/* L30: */
			    }
			} else {
			    ioff = izero;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				a[ioff] = 0.f;
				ioff = ioff + n - i__;
/* L40: */
			    }
			    ioff -= izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				a[ioff + i__] = 0.f;
/* L50: */
			    }
			}
		    } else {
			ioff = 0;
			if (iuplo == 1) {

/*                       Set the first IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i2 = min(j,izero);
				i__4 = i2;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    a[ioff + i__] = 0.f;
/* L60: */
				}
				ioff += j;
/* L70: */
			    }
			} else {

/*                       Set the last IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i1 = max(j,izero);
				i__4 = n;
				for (i__ = i1; i__ <= i__4; ++i__) {
				    a[ioff + i__] = 0.f;
/* L80: */
				}
				ioff = ioff + n - j;
/* L90: */
			    }
			}
		    }
		} else {
		    izero = 0;
		}

/*              Compute the L*D*L' or U*D*U' factorization of the matrix. */

		npp = n * (n + 1) / 2;
		scopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
		s_copy(srnamc_1.srnamt, "SSPTRF", (ftnlen)6, (ftnlen)6);
		ssptrf_(uplo, &n, &afac[1], &iwork[1], &info);

/*              Adjust the expected value of INFO to account for */
/*              pivoting. */

		k = izero;
		if (k > 0) {
L100:
		    if (iwork[k] < 0) {
			if (iwork[k] != -k) {
			    k = -iwork[k];
			    goto L100;
			}
		    } else if (iwork[k] != k) {
			k = iwork[k];
			goto L100;
		    }
		}

/*              Check error code from SSPTRF. */

		if (info != k) {
		    alaerh_(path, "SSPTRF", &info, &k, uplo, &n, &n, &c_n1, &
			    c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}
		if (info != 0) {
		    trfcon = TRUE_;
		} else {
		    trfcon = FALSE_;
		}

/* +    TEST 1 */
/*              Reconstruct matrix from factors and compute residual. */

		sspt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1], &lda, 
			&rwork[1], result);
		nt = 1;

/* +    TEST 2 */
/*              Form the inverse and compute the residual. */

		if (! trfcon) {
		    scopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
		    s_copy(srnamc_1.srnamt, "SSPTRI", (ftnlen)6, (ftnlen)6);
		    ssptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &info);

/*              Check error code from SSPTRI. */

		    if (info != 0) {
			alaerh_(path, "SSPTRI", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    sppt03_(uplo, &n, &a[1], &ainv[1], &work[1], &lda, &rwork[
			    1], &rcondc, &result[1]);
		    nt = 2;
		}

/*              Print information about the tests that did not pass */
/*              the threshold. */

		i__3 = nt;
		for (k = 1; k <= i__3; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___38.ciunit = *nout;
			s_wsfe(&io___38);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				real));
			e_wsfe();
			++nfail;
		    }
/* L110: */
		}
		nrun += nt;

/*              Do only the condition estimate if INFO is not 0. */

		if (trfcon) {
		    rcondc = 0.f;
		    goto L140;
		}

		i__3 = *nns;
		for (irhs = 1; irhs <= i__3; ++irhs) {
		    nrhs = nsval[irhs];

/* +    TEST 3 */
/*              Solve and compute residual for  A * X = B. */

		    s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)6, (ftnlen)6);
		    slarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    slacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);

		    s_copy(srnamc_1.srnamt, "SSPTRS", (ftnlen)6, (ftnlen)6);
		    ssptrs_(uplo, &n, &nrhs, &afac[1], &iwork[1], &x[1], &lda, 
			     &info);

/*              Check error code from SSPTRS. */

		    if (info != 0) {
			alaerh_(path, "SSPTRS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    slacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda);
		    sppt02_(uplo, &n, &nrhs, &a[1], &x[1], &lda, &work[1], &
			    lda, &rwork[1], &result[2]);

/* +    TEST 4 */
/*              Check solution from generated exact solution. */

		    sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[3]);

/* +    TESTS 5, 6, and 7 */
/*              Use iterative refinement to improve the solution. */

		    s_copy(srnamc_1.srnamt, "SSPRFS", (ftnlen)6, (ftnlen)6);
		    ssprfs_(uplo, &n, &nrhs, &a[1], &afac[1], &iwork[1], &b[1]
, &lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], 
			    &work[1], &iwork[n + 1], &info);

/*              Check error code from SSPRFS. */

		    if (info != 0) {
			alaerh_(path, "SSPRFS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[4]);
		    sppt05_(uplo, &n, &nrhs, &a[1], &b[1], &lda, &x[1], &lda, 
			    &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], &
			    result[5]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 3; k <= 7; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___41.ciunit = *nout;
			    s_wsfe(&io___41);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L120: */
		    }
		    nrun += 5;
/* L130: */
		}

/* +    TEST 8 */
/*              Get an estimate of RCOND = 1/CNDNUM. */

L140:
		anorm = slansp_("1", uplo, &n, &a[1], &rwork[1]);
		s_copy(srnamc_1.srnamt, "SSPCON", (ftnlen)6, (ftnlen)6);
		sspcon_(uplo, &n, &afac[1], &iwork[1], &anorm, &rcond, &work[
			1], &iwork[n + 1], &info);

/*              Check error code from SSPCON. */

		if (info != 0) {
		    alaerh_(path, "SSPCON", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

		result[7] = sget06_(&rcond, &rcondc);

/*              Print the test ratio if it is .GE. THRESH. */

		if (result[7] >= *thresh) {
		    if (nfail == 0 && nerrs == 0) {
			alahd_(nout, path);
		    }
		    io___43.ciunit = *nout;
		    s_wsfe(&io___43);
		    do_fio(&c__1, uplo, (ftnlen)1);
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(real));
		    e_wsfe();
		    ++nfail;
		}
		++nrun;
L150:
		;
	    }
L160:
	    ;
	}
/* L170: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SCHKSP */

} /* schksp_ */
/* Subroutine */ int schklq_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
	nxval, integer *nrhs, real *thresh, logical *tsterr, integer *nmax, 
	real *a, real *af, real *aq, real *al, real *ac, real *b, real *x, 
	real *xact, real *tau, real *work, real *rwork, integer *iwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, K=\002,i"
	    "5,\002, NB=\002,i4,\002, NX=\002,i5,\002, type \002,i2,\002, tes"
	    "t(\002,i2,\002)=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, k, m, n, nb, ik, im, in, kl, nk, ku, nt, nx, lda, inb, mode, 
	    imat, info;
    char path[3];
    integer kval[4];
    char dist[1], type__[1];
    integer nrun;
    integer nfail, iseed[4];
    real anorm;
    integer minmn;
    integer nerrs, lwork;
    real cndnum;
    real result[8];

    /* Fortran I/O blocks */
    static cilist io___33 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKLQ tests SGELQF, SORGLQ and SORMLQ. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB and NX contained in the */
/*          vectors NBVAL and NXVAL.  The blocking parameters are used */
/*          in pairs (NB,NX). */

/*  NBVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the blocksize NB. */

/*  NXVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the crossover point NX. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for M or N, used in dimensioning */
/*          the work arrays. */

/*  A       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AF      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AQ      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AL      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AC      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  TAU     (workspace) REAL array, dimension (NMAX) */

/*  WORK    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  RWORK   (workspace) REAL array, dimension (NMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --tau;
    --xact;
    --x;
    --b;
    --ac;
    --al;
    --aq;
    --af;
    --a;
    --nxval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "LQ", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrlq_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);

    lda = *nmax;
    lwork = *nmax * max(*nmax,*nrhs);

/*     Do for each value of M in MVAL. */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];

/*        Do for each value of N in NVAL. */

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {
	    n = nval[in];
	    minmn = min(m,n);
	    for (imat = 1; imat <= 8; ++imat) {

/*              Do the tests only if DOTYPE( IMAT ) is true. */

		if (! dotype[imat]) {
		    goto L50;
		}

/*              Set up parameters with SLATB4 and generate a test matrix */
/*              with SLATMS. */

		slatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, &
			work[1], &info);

/*              Check error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, " ", &m, &n, &c_n1, 
			    &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L50;
		}

/*              Set some values for K: the first value must be MINMN, */
/*              corresponding to the call of SLQT01; other values are */
/*              used in the calls of SLQT02, and must not exceed MINMN. */

		kval[0] = minmn;
		kval[1] = 0;
		kval[2] = 1;
		kval[3] = minmn / 2;
		if (minmn == 0) {
		    nk = 1;
		} else if (minmn == 1) {
		    nk = 2;
		} else if (minmn <= 3) {
		    nk = 3;
		} else {
		    nk = 4;
		}

/*              Do for each value of K in KVAL */

		i__3 = nk;
		for (ik = 1; ik <= i__3; ++ik) {
		    k = kval[ik - 1];

/*                 Do for each pair of values (NB,NX) in NBVAL and NXVAL. */

		    i__4 = *nnb;
		    for (inb = 1; inb <= i__4; ++inb) {
			nb = nbval[inb];
			xlaenv_(&c__1, &nb);
			nx = nxval[inb];
			xlaenv_(&c__3, &nx);
			for (i__ = 1; i__ <= 8; ++i__) {
			    result[i__ - 1] = 0.f;
			}
			nt = 2;
			if (ik == 1) {

/*                       Test SGELQF */

			    slqt01_(&m, &n, &a[1], &af[1], &aq[1], &al[1], &
				    lda, &tau[1], &work[1], &lwork, &rwork[1], 
				     result);
			    if (! sgennd_(&m, &n, &af[1], &lda)) {
				result[7] = *thresh * 2;
			    }
			    ++nt;
			} else if (m <= n) {

/*                       Test SORGLQ, using factorization */
/*                       returned by SLQT01 */

			    slqt02_(&m, &n, &k, &a[1], &af[1], &aq[1], &al[1], 
				     &lda, &tau[1], &work[1], &lwork, &rwork[
				    1], result);
			}
			if (m >= k) {

/*                       Test SORMLQ, using factorization returned */
/*                       by SLQT01 */

			    slqt03_(&m, &n, &k, &af[1], &ac[1], &al[1], &aq[1]
, &lda, &tau[1], &work[1], &lwork, &rwork[
				    1], &result[2]);
			    nt += 4;

/*                       If M>=N and K=N, call SGELQS to solve a system */
/*                       with NRHS right hand sides and compute the */
/*                       residual. */

			    if (k == m && inb == 1) {

/*                          Generate a solution and set the right */
/*                          hand side. */

				s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, 
					(ftnlen)6);
				slarhs_(path, "New", "Full", "No transpose", &
					m, &n, &c__0, &c__0, nrhs, &a[1], &
					lda, &xact[1], &lda, &b[1], &lda, 
					iseed, &info);

				slacpy_("Full", &m, nrhs, &b[1], &lda, &x[1], 
					&lda);
				s_copy(srnamc_1.srnamt, "SGELQS", (ftnlen)32, 
					(ftnlen)6);
				sgelqs_(&m, &n, nrhs, &af[1], &lda, &tau[1], &
					x[1], &lda, &work[1], &lwork, &info);

/*                          Check error code from SGELQS. */

				if (info != 0) {
				    alaerh_(path, "SGELQS", &info, &c__0, 
					    " ", &m, &n, nrhs, &c_n1, &nb, &
					    imat, &nfail, &nerrs, nout);
				}

				sget02_("No transpose", &m, &n, nrhs, &a[1], &
					lda, &x[1], &lda, &b[1], &lda, &rwork[
					1], &result[6]);
				++nt;
			    }
			}

/*                    Print information about the tests that did not */
/*                    pass the threshold. */

			for (i__ = 1; i__ <= 8; ++i__) {
			    if (result[i__ - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___33.ciunit = *nout;
				s_wsfe(&io___33);
				do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nx, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[i__ - 1], (
					ftnlen)sizeof(real));
				e_wsfe();
				++nfail;
			    }
/* L20: */
			}
			nrun += nt;
/* L30: */
		    }
/* L40: */
		}
L50:
		;
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SCHKLQ */

} /* schklq_ */
Exemple #6
0
/* Subroutine */ int schkgb_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
	nns, integer *nsval, real *thresh, logical *tsterr, real *a, integer *
	la, real *afac, integer *lafac, real *b, real *x, real *xact, real *
	work, real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(\002 *** In SCHKGB, LA=\002,i5,\002 is too sm"
	    "all for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU=\002"
	    ",i4,/\002 ==> Increase LA to at least \002,i5)";
    static char fmt_9998[] = "(\002 *** In SCHKGB, LAFAC=\002,i5,\002 is too"
	    " small for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU"
	    "=\002,i4,/\002 ==> Increase LAFAC to at least \002,i5)";
    static char fmt_9997[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, KL="
	    "\002,i5,\002, KU=\002,i5,\002, NB =\002,i4,\002, type \002,i1"
	    ",\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9996[] = "(\002 TRANS='\002,a1,\002', N=\002,i5,\002, "
	    "KL=\002,i5,\002, KU=\002,i5,\002, NRHS=\002,i3,\002, type \002,i"
	    "1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9995[] = "(\002 NORM ='\002,a1,\002', N=\002,i5,\002, "
	    "KL=\002,i5,\002, KU=\002,i5,\002,\002,10x,\002 type \002,i1,\002"
	    ", test(\002,i1,\002)=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, 
	    i__11;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, m, n, i1, i2, nb, im, in, kl, ku, lda, ldb, inb, ikl, 
	    nkl, iku, nku, ioff, mode, koff, imat, info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char norm[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer nfail, iseed[4];
    extern /* Subroutine */ int sgbt01_(integer *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, integer *, real *
, real *), sgbt02_(char *, integer *, integer *, integer *, 
	    integer *, integer *, real *, integer *, real *, integer *, real *
, integer *, real *), sgbt05_(char *, integer *, integer *
, integer *, integer *, real *, integer *, real *, integer *, 
	    real *, integer *, real *, integer *, real *, real *, real *);
    real rcond;
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *);
    integer nimat, klval[4];
    extern doublereal sget06_(real *, real *);
    real anorm;
    integer itran, kuval[4];
    char trans[1];
    integer izero, nerrs;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
);
    integer ldafac;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    extern doublereal slangb_(char *, integer *, integer *, integer *, real *, 
	     integer *, real *);
    real rcondc;
    extern doublereal slange_(char *, integer *, integer *, real *, integer *, 
	     real *);
    extern /* Subroutine */ int sgbcon_(char *, integer *, integer *, integer 
	    *, real *, integer *, integer *, real *, real *, real *, integer *
, integer *);
    real rcondi;
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer 
	    *, integer *);
    real cndnum, anormi, rcondo;
    extern /* Subroutine */ int serrge_(char *, integer *);
    real ainvnm;
    extern /* Subroutine */ int sgbrfs_(char *, integer *, integer *, integer 
	    *, integer *, real *, integer *, real *, integer *, integer *, 
	    real *, integer *, real *, integer *, real *, real *, real *, 
	    integer *, integer *), sgbtrf_(integer *, integer *, 
	    integer *, integer *, real *, integer *, integer *, integer *);
    logical trfcon;
    real anormo;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slarhs_(char *, char *, 
	    char *, char *, integer *, integer *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
, integer *, integer *), slaset_(
	    char *, integer *, integer *, real *, real *, real *, integer *), xlaenv_(integer *, integer *), slatms_(integer *, 
	    integer *, char *, integer *, char *, real *, integer *, real *, 
	    real *, integer *, integer *, char *, real *, integer *, real *, 
	    integer *), sgbtrs_(char *, integer *, 
	    integer *, integer *, integer *, real *, integer *, integer *, 
	    real *, integer *, integer *);
    real result[7];

    /* Fortran I/O blocks */
    static cilist io___25 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___26 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9995, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKGB tests SGBTRF, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB contained in the vector NBVAL. */

/*  NBVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the blocksize NB. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (LA) */

/*  LA      (input) INTEGER */
/*          The length of the array A.  LA >= (KLMAX+KUMAX+1)*NMAX */
/*          where KLMAX is the largest entry in the local array KLVAL, */
/*                KUMAX is the largest entry in the local array KUVAL and */
/*                NMAX is the largest entry in the input array NVAL. */

/*  AFAC    (workspace) REAL array, dimension (LAFAC) */

/*  LAFAC   (input) INTEGER */
/*          The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX */
/*          where KLMAX is the largest entry in the local array KLVAL, */
/*                KUMAX is the largest entry in the local array KUVAL and */
/*                NMAX is the largest entry in the input array NVAL. */

/*  B       (workspace) REAL array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NSMAX,NMAX)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NSMAX)) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --afac;
    --a;
    --nsval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrge_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);

/*     Initialize the first value for the lower and upper bandwidths. */

    klval[0] = 0;
    kuval[0] = 0;

/*     Do for each value of M in MVAL */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];

/*        Set values to use for the lower bandwidth. */

	klval[1] = m + (m + 1) / 4;

/*        KLVAL( 2 ) = MAX( M-1, 0 ) */

	klval[2] = (m * 3 - 1) / 4;
	klval[3] = (m + 1) / 4;

/*        Do for each value of N in NVAL */

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {
	    n = nval[in];
	    *(unsigned char *)xtype = 'N';

/*           Set values to use for the upper bandwidth. */

	    kuval[1] = n + (n + 1) / 4;

/*           KUVAL( 2 ) = MAX( N-1, 0 ) */

	    kuval[2] = (n * 3 - 1) / 4;
	    kuval[3] = (n + 1) / 4;

/*           Set limits on the number of loop iterations. */

/* Computing MIN */
	    i__3 = m + 1;
	    nkl = min(i__3,4);
	    if (n == 0) {
		nkl = 2;
	    }
/* Computing MIN */
	    i__3 = n + 1;
	    nku = min(i__3,4);
	    if (m == 0) {
		nku = 2;
	    }
	    nimat = 8;
	    if (m <= 0 || n <= 0) {
		nimat = 1;
	    }

	    i__3 = nkl;
	    for (ikl = 1; ikl <= i__3; ++ikl) {

/*              Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This */
/*              order makes it easier to skip redundant values for small */
/*              values of M. */

		kl = klval[ikl - 1];
		i__4 = nku;
		for (iku = 1; iku <= i__4; ++iku) {

/*                 Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This */
/*                 order makes it easier to skip redundant values for */
/*                 small values of N. */

		    ku = kuval[iku - 1];

/*                 Check that A and AFAC are big enough to generate this */
/*                 matrix. */

		    lda = kl + ku + 1;
		    ldafac = (kl << 1) + ku + 1;
		    if (lda * n > *la || ldafac * n > *lafac) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			if (n * (kl + ku + 1) > *la) {
			    io___25.ciunit = *nout;
			    s_wsfe(&io___25);
			    do_fio(&c__1, (char *)&(*la), (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)
				    );
			    i__5 = n * (kl + ku + 1);
			    do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof(
				    integer));
			    e_wsfe();
			    ++nerrs;
			}
			if (n * ((kl << 1) + ku + 1) > *lafac) {
			    io___26.ciunit = *nout;
			    s_wsfe(&io___26);
			    do_fio(&c__1, (char *)&(*lafac), (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)
				    );
			    i__5 = n * ((kl << 1) + ku + 1);
			    do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof(
				    integer));
			    e_wsfe();
			    ++nerrs;
			}
			goto L130;
		    }

		    i__5 = nimat;
		    for (imat = 1; imat <= i__5; ++imat) {

/*                    Do the tests only if DOTYPE( IMAT ) is true. */

			if (! dotype[imat]) {
			    goto L120;
			}

/*                    Skip types 2, 3, or 4 if the matrix size is too */
/*                    small. */

			zerot = imat >= 2 && imat <= 4;
			if (zerot && n < imat - 1) {
			    goto L120;
			}

			if (! zerot || ! dotype[1]) {

/*                       Set up parameters with SLATB4 and generate a */
/*                       test matrix with SLATMS. */

			    slatb4_(path, &imat, &m, &n, type__, &kl, &ku, &
				    anorm, &mode, &cndnum, dist);

/* Computing MAX */
			    i__6 = 1, i__7 = ku + 2 - n;
			    koff = max(i__6,i__7);
			    i__6 = koff - 1;
			    for (i__ = 1; i__ <= i__6; ++i__) {
				a[i__] = 0.f;
/* L20: */
			    }
			    s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)6, (
				    ftnlen)6);
			    slatms_(&m, &n, dist, iseed, type__, &rwork[1], &
				    mode, &cndnum, &anorm, &kl, &ku, "Z", &a[
				    koff], &lda, &work[1], &info);

/*                       Check the error code from SLATMS. */

			    if (info != 0) {
				alaerh_(path, "SLATMS", &info, &c__0, " ", &m, 
					 &n, &kl, &ku, &c_n1, &imat, &nfail, &
					nerrs, nout);
				goto L120;
			    }
			} else if (izero > 0) {

/*                       Use the same matrix for types 3 and 4 as for */
/*                       type 2 by copying back the zeroed out column. */

			    i__6 = i2 - i1 + 1;
			    scopy_(&i__6, &b[1], &c__1, &a[ioff + i1], &c__1);
			}

/*                    For types 2, 3, and 4, zero one or more columns of */
/*                    the matrix to test that INFO is returned correctly. */

			izero = 0;
			if (zerot) {
			    if (imat == 2) {
				izero = 1;
			    } else if (imat == 3) {
				izero = min(m,n);
			    } else {
				izero = min(m,n) / 2 + 1;
			    }
			    ioff = (izero - 1) * lda;
			    if (imat < 4) {

/*                          Store the column to be zeroed out in B. */

/* Computing MAX */
				i__6 = 1, i__7 = ku + 2 - izero;
				i1 = max(i__6,i__7);
/* Computing MIN */
				i__6 = kl + ku + 1, i__7 = ku + 1 + (m - 
					izero);
				i2 = min(i__6,i__7);
				i__6 = i2 - i1 + 1;
				scopy_(&i__6, &a[ioff + i1], &c__1, &b[1], &
					c__1);

				i__6 = i2;
				for (i__ = i1; i__ <= i__6; ++i__) {
				    a[ioff + i__] = 0.f;
/* L30: */
				}
			    } else {
				i__6 = n;
				for (j = izero; j <= i__6; ++j) {
/* Computing MAX */
				    i__7 = 1, i__8 = ku + 2 - j;
/* Computing MIN */
				    i__10 = kl + ku + 1, i__11 = ku + 1 + (m 
					    - j);
				    i__9 = min(i__10,i__11);
				    for (i__ = max(i__7,i__8); i__ <= i__9; 
					    ++i__) {
					a[ioff + i__] = 0.f;
/* L40: */
				    }
				    ioff += lda;
/* L50: */
				}
			    }
			}

/*                    These lines, if used in place of the calls in the */
/*                    loop over INB, cause the code to bomb on a Sun */
/*                    SPARCstation. */

/*                     ANORMO = SLANGB( 'O', N, KL, KU, A, LDA, RWORK ) */
/*                     ANORMI = SLANGB( 'I', N, KL, KU, A, LDA, RWORK ) */

/*                    Do for each blocksize in NBVAL */

			i__6 = *nnb;
			for (inb = 1; inb <= i__6; ++inb) {
			    nb = nbval[inb];
			    xlaenv_(&c__1, &nb);

/*                       Compute the LU factorization of the band matrix. */

			    if (m > 0 && n > 0) {
				i__9 = kl + ku + 1;
				slacpy_("Full", &i__9, &n, &a[1], &lda, &afac[
					kl + 1], &ldafac);
			    }
			    s_copy(srnamc_1.srnamt, "SGBTRF", (ftnlen)6, (
				    ftnlen)6);
			    sgbtrf_(&m, &n, &kl, &ku, &afac[1], &ldafac, &
				    iwork[1], &info);

/*                       Check error code from SGBTRF. */

			    if (info != izero) {
				alaerh_(path, "SGBTRF", &info, &izero, " ", &
					m, &n, &kl, &ku, &nb, &imat, &nfail, &
					nerrs, nout);
			    }
			    trfcon = FALSE_;

/* +    TEST 1 */
/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    sgbt01_(&m, &n, &kl, &ku, &a[1], &lda, &afac[1], &
				    ldafac, &iwork[1], &work[1], result);

/*                       Print information about the tests so far that */
/*                       did not pass the threshold. */

			    if (result[0] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___45.ciunit = *nout;
				s_wsfe(&io___45);
				do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[0], (ftnlen)
					sizeof(real));
				e_wsfe();
				++nfail;
			    }
			    ++nrun;

/*                       Skip the remaining tests if this is not the */
/*                       first block size or if M .ne. N. */

			    if (inb > 1 || m != n) {
				goto L110;
			    }

			    anormo = slangb_("O", &n, &kl, &ku, &a[1], &lda, &
				    rwork[1]);
			    anormi = slangb_("I", &n, &kl, &ku, &a[1], &lda, &
				    rwork[1]);

			    if (info == 0) {

/*                          Form the inverse of A so we can get a good */
/*                          estimate of CNDNUM = norm(A) * norm(inv(A)). */

				ldb = max(1,n);
				slaset_("Full", &n, &n, &c_b63, &c_b64, &work[
					1], &ldb);
				s_copy(srnamc_1.srnamt, "SGBTRS", (ftnlen)6, (
					ftnlen)6);
				sgbtrs_("No transpose", &n, &kl, &ku, &n, &
					afac[1], &ldafac, &iwork[1], &work[1], 
					 &ldb, &info);

/*                          Compute the 1-norm condition number of A. */

				ainvnm = slange_("O", &n, &n, &work[1], &ldb, 
					&rwork[1]);
				if (anormo <= 0.f || ainvnm <= 0.f) {
				    rcondo = 1.f;
				} else {
				    rcondo = 1.f / anormo / ainvnm;
				}

/*                          Compute the infinity-norm condition number of */
/*                          A. */

				ainvnm = slange_("I", &n, &n, &work[1], &ldb, 
					&rwork[1]);
				if (anormi <= 0.f || ainvnm <= 0.f) {
				    rcondi = 1.f;
				} else {
				    rcondi = 1.f / anormi / ainvnm;
				}
			    } else {

/*                          Do only the condition estimate if INFO.NE.0. */

				trfcon = TRUE_;
				rcondo = 0.f;
				rcondi = 0.f;
			    }

/*                       Skip the solve tests if the matrix is singular. */

			    if (trfcon) {
				goto L90;
			    }

			    i__9 = *nns;
			    for (irhs = 1; irhs <= i__9; ++irhs) {
				nrhs = nsval[irhs];
				*(unsigned char *)xtype = 'N';

				for (itran = 1; itran <= 3; ++itran) {
				    *(unsigned char *)trans = *(unsigned char 
					    *)&transs[itran - 1];
				    if (itran == 1) {
					rcondc = rcondo;
					*(unsigned char *)norm = 'O';
				    } else {
					rcondc = rcondi;
					*(unsigned char *)norm = 'I';
				    }

/* +    TEST 2: */
/*                             Solve and compute residual for A * X = B. */

				    s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)
					    6, (ftnlen)6);
				    slarhs_(path, xtype, " ", trans, &n, &n, &
					    kl, &ku, &nrhs, &a[1], &lda, &
					    xact[1], &ldb, &b[1], &ldb, iseed, 
					     &info);
				    *(unsigned char *)xtype = 'C';
				    slacpy_("Full", &n, &nrhs, &b[1], &ldb, &
					    x[1], &ldb);

				    s_copy(srnamc_1.srnamt, "SGBTRS", (ftnlen)
					    6, (ftnlen)6);
				    sgbtrs_(trans, &n, &kl, &ku, &nrhs, &afac[
					    1], &ldafac, &iwork[1], &x[1], &
					    ldb, &info);

/*                             Check error code from SGBTRS. */

				    if (info != 0) {
					alaerh_(path, "SGBTRS", &info, &c__0, 
						trans, &n, &n, &kl, &ku, &
						c_n1, &imat, &nfail, &nerrs, 
						nout);
				    }

				    slacpy_("Full", &n, &nrhs, &b[1], &ldb, &
					    work[1], &ldb);
				    sgbt02_(trans, &m, &n, &kl, &ku, &nrhs, &
					    a[1], &lda, &x[1], &ldb, &work[1], 
					     &ldb, &result[1]);

/* +    TEST 3: */
/*                             Check solution from generated exact */
/*                             solution. */

				    sget04_(&n, &nrhs, &x[1], &ldb, &xact[1], 
					    &ldb, &rcondc, &result[2]);

/* +    TESTS 4, 5, 6: */
/*                             Use iterative refinement to improve the */
/*                             solution. */

				    s_copy(srnamc_1.srnamt, "SGBRFS", (ftnlen)
					    6, (ftnlen)6);
				    sgbrfs_(trans, &n, &kl, &ku, &nrhs, &a[1], 
					     &lda, &afac[1], &ldafac, &iwork[
					    1], &b[1], &ldb, &x[1], &ldb, &
					    rwork[1], &rwork[nrhs + 1], &work[
					    1], &iwork[n + 1], &info);

/*                             Check error code from SGBRFS. */

				    if (info != 0) {
					alaerh_(path, "SGBRFS", &info, &c__0, 
						trans, &n, &n, &kl, &ku, &
						nrhs, &imat, &nfail, &nerrs, 
						nout);
				    }

				    sget04_(&n, &nrhs, &x[1], &ldb, &xact[1], 
					    &ldb, &rcondc, &result[3]);
				    sgbt05_(trans, &n, &kl, &ku, &nrhs, &a[1], 
					     &lda, &b[1], &ldb, &x[1], &ldb, &
					    xact[1], &ldb, &rwork[1], &rwork[
					    nrhs + 1], &result[4]);
				    for (k = 2; k <= 6; ++k) {
					if (result[k - 1] >= *thresh) {
					    if (nfail == 0 && nerrs == 0) {
			  alahd_(nout, path);
					    }
					    io___59.ciunit = *nout;
					    s_wsfe(&io___59);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&nrhs, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&k, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&result[k - 
						    1], (ftnlen)sizeof(real));
					    e_wsfe();
					    ++nfail;
					}
/* L60: */
				    }
				    nrun += 5;
/* L70: */
				}
/* L80: */
			    }

/* +    TEST 7: */
/*                          Get an estimate of RCOND = 1/CNDNUM. */

L90:
			    for (itran = 1; itran <= 2; ++itran) {
				if (itran == 1) {
				    anorm = anormo;
				    rcondc = rcondo;
				    *(unsigned char *)norm = 'O';
				} else {
				    anorm = anormi;
				    rcondc = rcondi;
				    *(unsigned char *)norm = 'I';
				}
				s_copy(srnamc_1.srnamt, "SGBCON", (ftnlen)6, (
					ftnlen)6);
				sgbcon_(norm, &n, &kl, &ku, &afac[1], &ldafac, 
					 &iwork[1], &anorm, &rcond, &work[1], 
					&iwork[n + 1], &info);

/*                             Check error code from SGBCON. */

				if (info != 0) {
				    alaerh_(path, "SGBCON", &info, &c__0, 
					    norm, &n, &n, &kl, &ku, &c_n1, &
					    imat, &nfail, &nerrs, nout);
				}

				result[6] = sget06_(&rcond, &rcondc);

/*                          Print information about the tests that did */
/*                          not pass the threshold. */

				if (result[6] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					alahd_(nout, path);
				    }
				    io___61.ciunit = *nout;
				    s_wsfe(&io___61);
				    do_fio(&c__1, norm, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				    ++nfail;
				}
				++nrun;
/* L100: */
			    }

L110:
			    ;
			}
L120:
			;
		    }
L130:
		    ;
		}
/* L140: */
	    }
/* L150: */
	}
/* L160: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);


    return 0;

/*     End of SCHKGB */

} /* schkgb_ */
Exemple #7
0
/* Subroutine */ int sdrvge_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, integer *nmax, real *a, 
	real *afac, real *asav, real *b, real *bsav, real *x, real *xact, 
	real *s, real *work, real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*4] = "N" "R" "C" "B";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, N =\002,i5,\002, type \002,i2,"
	    "\002, test(\002,i2,\002) =\002,g12.5)";
    static char fmt_9997[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002,"
	    "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i2,"
	    "\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002,"
	    "a1,\002', N=\002,i5,\002, type \002,i2,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    real r__1;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__, k, n, k1, nb, in, kl, ku, nt, lda;
    char fact[1];
    integer ioff, mode;
    real amax;
    char path[3];
    integer imat, info;
    char dist[1], type__[1];
    integer nrun, ifact, nfail, iseed[4], nfact;
    extern logical lsame_(char *, char *);
    char equed[1];
    integer nbmin;
    real rcond, roldc;
    extern /* Subroutine */ int sget01_(integer *, integer *, real *, integer 
	    *, real *, integer *, integer *, real *, real *);
    integer nimat;
    real roldi;
    extern doublereal sget06_(real *, real *);
    extern /* Subroutine */ int sget02_(char *, integer *, integer *, integer 
	    *, real *, integer *, real *, integer *, real *, integer *, real *
, real *);
    real anorm;
    integer itran;
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *);
    logical equil;
    real roldo;
    extern /* Subroutine */ int sget07_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
, real *, real *, real *);
    char trans[1];
    integer izero, nerrs;
    extern /* Subroutine */ int sgesv_(integer *, integer *, real *, integer *
, integer *, real *, integer *, integer *);
    integer lwork;
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
), aladhd_(integer *, char *), 
	    alaerh_(char *, char *, integer *, integer *, char *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *);
    logical prefac;
    real colcnd;
    extern doublereal slamch_(char *);
    real rcondc;
    extern doublereal slange_(char *, integer *, integer *, real *, integer *, 
	     real *);
    logical nofact;
    integer iequed;
    extern /* Subroutine */ int slaqge_(integer *, integer *, real *, integer 
	    *, real *, real *, real *, real *, real *, char *);
    real rcondi;
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    real cndnum, anormi, rcondo, ainvnm;
    extern /* Subroutine */ int sgeequ_(integer *, integer *, real *, integer 
	    *, real *, real *, real *, real *, real *, integer *);
    logical trfcon;
    real anormo, rowcnd;
    extern /* Subroutine */ int sgetrf_(integer *, integer *, real *, integer 
	    *, integer *, integer *), sgetri_(integer *, real *, integer *, 
	    integer *, real *, integer *, integer *), slacpy_(char *, integer 
	    *, integer *, real *, integer *, real *, integer *), 
	    slarhs_(char *, char *, char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, real *, integer *, real *, 
	    integer *, real *, integer *, integer *, integer *);
    extern doublereal slantr_(char *, char *, char *, integer *, integer *, 
	    real *, integer *, real *);
    extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *, 
	    real *, real *, integer *), slatms_(integer *, integer *, 
	    char *, integer *, char *, real *, integer *, real *, real *, 
	    integer *, integer *, char *, real *, integer *, real *, integer *
), xlaenv_(integer *, integer *);
    real result[7];
    extern /* Subroutine */ int sgesvx_(char *, char *, integer *, integer *, 
	    real *, integer *, real *, integer *, integer *, char *, real *, 
	    real *, real *, integer *, real *, integer *, real *, real *, 
	    real *, real *, integer *, integer *);
    real rpvgrw;
    extern /* Subroutine */ int serrvx_(char *, integer *);

    /* Fortran I/O blocks */
    static cilist io___55 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___62 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___63 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___64 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___65 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___66 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___67 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___68 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVGE tests the driver routines SGESV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  ASAV    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  S       (workspace) REAL array, dimension (2*NMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension (2*NRHS+NMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 11;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L80;
	    }

/*           Skip types 5, 6, or 7 if the matrix size is too small. */

	    zerot = imat >= 5 && imat <= 7;
	    if (zerot && n < imat - 4) {
		goto L80;
	    }

/*           Set up parameters with SLATB4 and generate a test matrix */
/*           with SLATMS. */

	    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cndnum, dist);
	    rcondc = 1.f / cndnum;

	    s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)6, (ftnlen)6);
	    slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cndnum, &
		    anorm, &kl, &ku, "No packing", &a[1], &lda, &work[1], &
		    info);

/*           Check error code from SLATMS. */

	    if (info != 0) {
		alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &c_n1, &
			c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		goto L80;
	    }

/*           For types 5-7, zero one or more columns of the matrix to */
/*           test that INFO is returned correctly. */

	    if (zerot) {
		if (imat == 5) {
		    izero = 1;
		} else if (imat == 6) {
		    izero = n;
		} else {
		    izero = n / 2 + 1;
		}
		ioff = (izero - 1) * lda;
		if (imat < 7) {
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			a[ioff + i__] = 0.f;
/* L20: */
		    }
		} else {
		    i__3 = n - izero + 1;
		    slaset_("Full", &n, &i__3, &c_b20, &c_b20, &a[ioff + 1], &
			    lda);
		}
	    } else {
		izero = 0;
	    }

/*           Save a copy of the matrix A in ASAV. */

	    slacpy_("Full", &n, &n, &a[1], &lda, &asav[1], &lda);

	    for (iequed = 1; iequed <= 4; ++iequed) {
		*(unsigned char *)equed = *(unsigned char *)&equeds[iequed - 
			1];
		if (iequed == 1) {
		    nfact = 3;
		} else {
		    nfact = 1;
		}

		i__3 = nfact;
		for (ifact = 1; ifact <= i__3; ++ifact) {
		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];
		    prefac = lsame_(fact, "F");
		    nofact = lsame_(fact, "N");
		    equil = lsame_(fact, "E");

		    if (zerot) {
			if (prefac) {
			    goto L60;
			}
			rcondo = 0.f;
			rcondi = 0.f;

		    } else if (! nofact) {

/*                    Compute the condition number for comparison with */
/*                    the value returned by SGESVX (FACT = 'N' reuses */
/*                    the condition number from the previous iteration */
/*                    with FACT = 'F'). */

			slacpy_("Full", &n, &n, &asav[1], &lda, &afac[1], &
				lda);
			if (equil || iequed > 1) {

/*                       Compute row and column scale factors to */
/*                       equilibrate the matrix A. */

			    sgeequ_(&n, &n, &afac[1], &lda, &s[1], &s[n + 1], 
				    &rowcnd, &colcnd, &amax, &info);
			    if (info == 0 && n > 0) {
				if (lsame_(equed, "R")) 
					{
				    rowcnd = 0.f;
				    colcnd = 1.f;
				} else if (lsame_(equed, "C")) {
				    rowcnd = 1.f;
				    colcnd = 0.f;
				} else if (lsame_(equed, "B")) {
				    rowcnd = 0.f;
				    colcnd = 0.f;
				}

/*                          Equilibrate the matrix. */

				slaqge_(&n, &n, &afac[1], &lda, &s[1], &s[n + 
					1], &rowcnd, &colcnd, &amax, equed);
			    }
			}

/*                    Save the condition number of the non-equilibrated */
/*                    system for use in SGET04. */

			if (equil) {
			    roldo = rcondo;
			    roldi = rcondi;
			}

/*                    Compute the 1-norm and infinity-norm of A. */

			anormo = slange_("1", &n, &n, &afac[1], &lda, &rwork[
				1]);
			anormi = slange_("I", &n, &n, &afac[1], &lda, &rwork[
				1]);

/*                    Factor the matrix A. */

			sgetrf_(&n, &n, &afac[1], &lda, &iwork[1], &info);

/*                    Form the inverse of A. */

			slacpy_("Full", &n, &n, &afac[1], &lda, &a[1], &lda);
			lwork = *nmax * max(3,*nrhs);
			sgetri_(&n, &a[1], &lda, &iwork[1], &work[1], &lwork, 
				&info);

/*                    Compute the 1-norm condition number of A. */

			ainvnm = slange_("1", &n, &n, &a[1], &lda, &rwork[1]);
			if (anormo <= 0.f || ainvnm <= 0.f) {
			    rcondo = 1.f;
			} else {
			    rcondo = 1.f / anormo / ainvnm;
			}

/*                    Compute the infinity-norm condition number of A. */

			ainvnm = slange_("I", &n, &n, &a[1], &lda, &rwork[1]);
			if (anormi <= 0.f || ainvnm <= 0.f) {
			    rcondi = 1.f;
			} else {
			    rcondi = 1.f / anormi / ainvnm;
			}
		    }

		    for (itran = 1; itran <= 3; ++itran) {

/*                    Do for each value of TRANS. */

			*(unsigned char *)trans = *(unsigned char *)&transs[
				itran - 1];
			if (itran == 1) {
			    rcondc = rcondo;
			} else {
			    rcondc = rcondi;
			}

/*                    Restore the matrix A. */

			slacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda);

/*                    Form an exact solution and set the right hand side. */

			s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)6, (ftnlen)
				6);
			slarhs_(path, xtype, "Full", trans, &n, &n, &kl, &ku, 
				nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
				lda, iseed, &info);
			*(unsigned char *)xtype = 'C';
			slacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda);

			if (nofact && itran == 1) {

/*                       --- Test SGESV  --- */

/*                       Compute the LU factorization of the matrix and */
/*                       solve the system. */

			    slacpy_("Full", &n, &n, &a[1], &lda, &afac[1], &
				    lda);
			    slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "SGESV ", (ftnlen)6, (
				    ftnlen)6);
			    sgesv_(&n, nrhs, &afac[1], &lda, &iwork[1], &x[1], 
				     &lda, &info);

/*                       Check error code from SGESV . */

			    if (info != izero) {
				alaerh_(path, "SGESV ", &info, &izero, " ", &
					n, &n, &c_n1, &c_n1, nrhs, &imat, &
					nfail, &nerrs, nout);
			    }

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    sget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[1], result);
			    nt = 1;
			    if (izero == 0) {

/*                          Compute residual of the computed solution. */

				slacpy_("Full", &n, nrhs, &b[1], &lda, &work[
					1], &lda);
				sget02_("No transpose", &n, &n, nrhs, &a[1], &
					lda, &x[1], &lda, &work[1], &lda, &
					rwork[1], &result[1]);

/*                          Check solution from generated exact solution. */

				sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
				nt = 3;
			    }

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    i__4 = nt;
			    for (k = 1; k <= i__4; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    io___55.ciunit = *nout;
				    s_wsfe(&io___55);
				    do_fio(&c__1, "SGESV ", (ftnlen)6);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(real));
				    e_wsfe();
				    ++nfail;
				}
/* L30: */
			    }
			    nrun += nt;
			}

/*                    --- Test SGESVX --- */

			if (! prefac) {
			    slaset_("Full", &n, &n, &c_b20, &c_b20, &afac[1], 
				    &lda);
			}
			slaset_("Full", &n, nrhs, &c_b20, &c_b20, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT = 'F' and */
/*                       EQUED = 'R', 'C', or 'B'. */

			    slaqge_(&n, &n, &a[1], &lda, &s[1], &s[n + 1], &
				    rowcnd, &colcnd, &amax, equed);
			}

/*                    Solve the system and compute the condition number */
/*                    and error bounds using SGESVX. */

			s_copy(srnamc_1.srnamt, "SGESVX", (ftnlen)6, (ftnlen)
				6);
			sgesvx_(fact, trans, &n, nrhs, &a[1], &lda, &afac[1], 
				&lda, &iwork[1], equed, &s[1], &s[n + 1], &b[
				1], &lda, &x[1], &lda, &rcond, &rwork[1], &
				rwork[*nrhs + 1], &work[1], &iwork[n + 1], &
				info);

/*                    Check the error code from SGESVX. */

			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = trans;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "SGESVX", &info, &izero, ch__1, &n, 
				    &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			}

/*                    Compare WORK(1) from SGESVX with the computed */
/*                    reciprocal pivot growth factor RPVGRW */

			if (info != 0) {
			    rpvgrw = slantr_("M", "U", "N", &info, &info, &
				    afac[1], &lda, &work[1]);
			    if (rpvgrw == 0.f) {
				rpvgrw = 1.f;
			    } else {
				rpvgrw = slange_("M", &n, &info, &a[1], &lda, 
					&work[1]) / rpvgrw;
			    }
			} else {
			    rpvgrw = slantr_("M", "U", "N", &n, &n, &afac[1], 
				    &lda, &work[1]);
			    if (rpvgrw == 0.f) {
				rpvgrw = 1.f;
			    } else {
				rpvgrw = slange_("M", &n, &n, &a[1], &lda, &
					work[1]) / rpvgrw;
			    }
			}
			result[6] = (r__1 = rpvgrw - work[1], dabs(r__1)) / 
				dmax(work[1],rpvgrw) / slamch_("E")
				;

			if (! prefac) {

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    sget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

			if (info == 0) {
			    trfcon = FALSE_;

/*                       Compute residual of the computed solution. */

			    slacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
, &lda);
			    sget02_(trans, &n, &n, nrhs, &asav[1], &lda, &x[1]
, &lda, &work[1], &lda, &rwork[(*nrhs << 
				    1) + 1], &result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
			    } else {
				if (itran == 1) {
				    roldc = roldo;
				} else {
				    roldc = roldi;
				}
				sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &roldc, &result[2]);
			    }

/*                       Check the error bounds from iterative */
/*                       refinement. */

			    sget07_(trans, &n, nrhs, &asav[1], &lda, &b[1], &
				    lda, &x[1], &lda, &xact[1], &lda, &rwork[
				    1], &rwork[*nrhs + 1], &result[3]);
			} else {
			    trfcon = TRUE_;
			}

/*                    Compare RCOND from SGESVX with the computed value */
/*                    in RCONDC. */

			result[5] = sget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			if (! trfcon) {
			    for (k = k1; k <= 7; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___61.ciunit = *nout;
					s_wsfe(&io___61);
					do_fio(&c__1, "SGESVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
				    } else {
					io___62.ciunit = *nout;
					s_wsfe(&io___62);
					do_fio(&c__1, "SGESVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L40: */
			    }
			    nrun = nrun + 7 - k1;
			} else {
			    if (result[0] >= *thresh && ! prefac) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___63.ciunit = *nout;
				    s_wsfe(&io___63);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				} else {
				    io___64.ciunit = *nout;
				    s_wsfe(&io___64);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[5] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___65.ciunit = *nout;
				    s_wsfe(&io___65);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				} else {
				    io___66.ciunit = *nout;
				    s_wsfe(&io___66);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[6] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___67.ciunit = *nout;
				    s_wsfe(&io___67);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				} else {
				    io___68.ciunit = *nout;
				    s_wsfe(&io___68);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }

			}

/* L50: */
		    }
L60:
		    ;
		}
/* L70: */
	    }
L80:
	    ;
	}
/* L90: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVGE */

} /* sdrvge_ */
main(int argc, char *argv[])
{
/* 
 * Purpose
 * =======
 *
 * SDRIVE is the main test program for the FLOAT linear 
 * equation driver routines SGSSV and SGSSVX.
 * 
 * The program is invoked by a shell script file -- stest.csh.
 * The output from the tests are written into a file -- stest.out.
 *
 * =====================================================================
 */
    float         *a, *a_save;
    int            *asub, *asub_save;
    int            *xa, *xa_save;
    SuperMatrix  A, B, X, L, U;
    SuperMatrix  ASAV, AC;
    factor_param_t iparam;
    mem_usage_t    mem_usage;
    int            *perm_r; /* row permutation from partial pivoting */
    int            *perm_c, *pc_save; /* column permutation */
    int            *etree;
    float  zero = 0.0;
    float         *R, *C;
    float         *ferr, *berr;
    float         *rwork;
    float	   *wwork;
    void           *work;
    int            info, lwork, nrhs, panel_size, relax;
    int            m, n, nnz;
    float         *xact;
    float         *rhsb, *solx, *bsav;
    int            ldb, ldx;
    float         rpg, rcond;
    int            i, j, k1;
    float         rowcnd, colcnd, amax;
    int            maxsuper, rowblk, colblk;
    int            prefact, nofact, equil, iequed, norefact;
    int            nt, nrun, nfail, nerrs, imat, fimat, nimat;
    int            nfact, ifact, nrefact, irefact, itran;
    int            kl, ku, mode, lda;
    int            zerot, izero, ioff;
    float         anorm, cndnum;
    float         *Afull;
    float         result[NTESTS];
    void    parse_command_line();
    static char    matrix_type[8];
    static char    fact[1], trans[1], equed[1], refact[1],
                   path[3], sym[1], dist[1];

    /* Fixed set of parameters */
    int            iseed[]  = {1988, 1989, 1990, 1991};
    static char    equeds[]  = {'N', 'R', 'C', 'B'};
    static char    facts[]   = {'F', 'N', 'E'};
    static char    refacts[] = {'Y', 'N'};
    static char    transs[]  = {'N', 'T'};

    /* Some function prototypes */ 
    extern int sp_sget01(int, int, SuperMatrix *, SuperMatrix *, 
		         SuperMatrix *, int *, float *);
    extern int sp_sget02(char *, int, int, int, SuperMatrix *, float *,
                         int, float *, int, float *resid);
    extern int sp_sget04(int, int, float *, int, 
                         float *, int, float rcond, float *resid);
    extern int sp_sget07(char *, int, int, SuperMatrix *, float *, int,
                         float *, int, float *, int, 
                         float *, float *, float *);
    extern int slatb4_(char *, int *, int *, int *, char *, int *, int *, 
	               float *, int *, float *, char *);
    extern int slatms_(int *, int *, char *, int *, char *, float *d,
                       int *, float *, float *, int *, int *,
                       char *, float *, int *, float *, int *);
    extern int sp_sconvert(int, int, float *, int, int, int,
	                   float *a, int *, int *, int *);


    /* Executable statements */

    strcpy(path, "SGE");
    nrun  = 0;
    nfail = 0;
    nerrs = 0;


    /* Defaults */
    lwork      = 0;
    n          = 1;
    nrhs       = 1;
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    strcpy(matrix_type, "LA");
    parse_command_line(argc, argv, matrix_type, &n,
		       &panel_size, &relax, &nrhs, &maxsuper,
		       &rowblk, &colblk, &lwork);
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork);
	    exit (-1);
	}
    }

    iparam.panel_size = panel_size;
    iparam.relax      = relax;
    iparam.diag_pivot_thresh = 1.0;
    iparam.drop_tol   = 0.0;
    
    if ( strcmp(matrix_type, "LA") == 0 ) {
	/* Test LAPACK matrix suite. */
	m = n;
	lda = SUPERLU_MAX(n, 1);
	nnz = n * n;        /* upper bound */
	fimat = 1;
	nimat = NTYPES;
	Afull = floatCalloc(lda * n);
	sallocateA(n, nnz, &a, &asub, &xa);
    } else {
	/* Read a sparse matrix */
	fimat = nimat = 0;
	sreadhb(&m, &n, &nnz, &a, &asub, &xa);
    }

    sallocateA(n, nnz, &a_save, &asub_save, &xa_save);
    rhsb = floatMalloc(m * nrhs);
    bsav = floatMalloc(m * nrhs);
    solx = floatMalloc(n * nrhs);
    ldb  = m;
    ldx  = n;
    sCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_S, SLU_GE);
    sCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    etree   = intMalloc(n);
    perm_r  = intMalloc(n);
    perm_c  = intMalloc(n);
    pc_save = intMalloc(n);
    R       = (float *) SUPERLU_MALLOC(m*sizeof(float));
    C       = (float *) SUPERLU_MALLOC(n*sizeof(float));
    ferr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    berr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs);    
    rwork   = (float *) SUPERLU_MALLOC(j*sizeof(float));
    for (i = 0; i < j; ++i) rwork[i] = 0.;
    if ( !R ) ABORT("SUPERLU_MALLOC fails for R");
    if ( !C ) ABORT("SUPERLU_MALLOC fails for C");
    if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr");
    if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr");
    if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
    wwork   = floatCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) );

    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i;

    for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */
	
	if ( imat ) {

	    /* Skip types 5, 6, or 7 if the matrix size is too small. */
	    zerot = (imat >= 5 && imat <= 7);
	    if ( zerot && n < imat-4 )
		continue;
	    
	    /* Set up parameters with SLATB4 and generate a test matrix
	       with SLATMS.  */
	    slatb4_(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode,
		    &cndnum, dist);

	    slatms_(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum,
		    &anorm, &kl, &ku, "No packing", Afull, &lda,
		    &wwork[0], &info);

	    if ( info ) {
		printf(FMT3, "SLATMS", info, izero, n, nrhs, imat, nfail);
		continue;
	    }

	    /* For types 5-7, zero one or more columns of the matrix
	       to test that INFO is returned correctly.   */
	    if ( zerot ) {
		if ( imat == 5 ) izero = 1;
		else if ( imat == 6 ) izero = n;
		else izero = n / 2 + 1;
		ioff = (izero - 1) * lda;
		if ( imat < 7 ) {
		    for (i = 0; i < n; ++i) Afull[ioff + i] = zero;
		} else {
		    for (j = 0; j < n - izero + 1; ++j)
			for (i = 0; i < n; ++i)
			    Afull[ioff + i + j*lda] = zero;
		}
	    } else {
		izero = 0;
	    }

	    /* Convert to sparse representation. */
	    sp_sconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz);

	} else {
	    izero = 0;
	    zerot = 0;
	}
	
	sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE);

	/* Save a copy of matrix A in ASAV */
	sCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save,
			      SLU_NC, SLU_S, SLU_GE);
	sCopy_CompCol_Matrix(&A, &ASAV);
	
	/* Form exact solution. */
	sGenXtrue(n, nrhs, xact, ldx);
	
	for (iequed = 0; iequed < 4; ++iequed) {
	    *equed = equeds[iequed];
	    if (iequed == 0) nfact = 3;
	    else nfact = 1;

	    for (ifact = 0; ifact < nfact; ++ifact) {
		*fact = facts[ifact];
		if (ifact == 0) nrefact = 1;
		else nrefact = 2;

		for (irefact = 0; irefact < nrefact; ++irefact) {
		    *refact = refacts[irefact];
		    norefact  = lsame_(refact, "N");
		    prefact   = lsame_(fact, "F") || ( ! norefact );
		    nofact    = lsame_(fact, "N");
		    equil     = lsame_(fact, "E");

		    /* Restore the matrix A. */
		    sCopy_CompCol_Matrix(&ASAV, &A);
			
		    if ( zerot ) {
			if ( prefact ) continue;
		    } else if ( ! nofact ) {
			if ( equil || iequed ) {
			    /* Compute row and column scale factors to
			       equilibrate matrix A.    */
			    sgsequ(&A, R, C, &rowcnd, &colcnd,
				      &amax, &info);

			    /* Force equilibration. */
			    if ( !info && n > 0 ) {
				if ( lsame_(equed, "R") ) {
				    rowcnd = 0.;
				    colcnd = 1.;
				} else if ( lsame_(equed, "C") ) {
				    rowcnd = 1.;
				    colcnd = 0.;
				} else if ( lsame_(equed, "B") ) {
				    rowcnd = 0.;
				    colcnd = 0.;
				}
			    }
			
			    /* Equilibrate the matrix. */
			    slaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
		    }
		    
		    if ( prefact ) {	/* First time factor */
			
			StatInit(panel_size, relax);
			
			/* Preorder the matrix, obtain the column etree. */
			sp_preorder("N", &A, perm_c, etree, &AC);

			/* Factor the matrix AC. */
			sgstrf("N", &AC, iparam.diag_pivot_thresh,
			       iparam.drop_tol, iparam.relax,
			       iparam.panel_size, etree,
			       work, lwork, perm_r, perm_c, &L, &U, &info);

			if ( info ) { 
                            printf("** First factor: info %d, equed %c\n",
				   info, *equed);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %d bytes\n",
                                        info - n);
                                exit(0);
                            }
                        }
	
                        Destroy_CompCol_Permuted(&AC);
			StatFree();
			
		    } /* if .. first time factor */
		    
		    for (itran = 0; itran < NTRAN; ++itran) {
			*trans = transs[itran];

			/* Restore the matrix A. */
			sCopy_CompCol_Matrix(&ASAV, &A);
			
 			/* Set the right hand side. */
			sFillRHS(trans, nrhs, xact, ldx, &A, &B);
			sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb);

			/*----------------
			 * Test sgssv
			 *----------------*/
			if ( nofact && norefact && itran == 0) {
                            /* Not yet factored, and untransposed */
	
			    sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx);
			    sgssv(&A, perm_c, perm_r, &L, &U, &X, &info);
			    
			    if ( info && info != izero ) {
                                printf(FMT3, "sgssv",
				       info, izero, n, nrhs, imat, nfail);
			    } else {
                                /* Reconstruct matrix from factors and
	                           compute residual. */
                                sp_sget01(m, n, &A, &L, &U, perm_r,
					       &result[0]);
				nt = 1;
				if ( izero == 0 ) {
				    /* Compute residual of the computed
				       solution. */
				    sCopy_Dense_Matrix(m, nrhs, rhsb, ldb,
						       wwork, ldb);
				    sp_sget02(trans, m, n, nrhs, &A, solx,
                                              ldx, wwork,ldb, &result[1]);
				    nt = 2;
				}
				
				/* Print information about the tests that
				   did not pass the threshold.      */
				for (i = 0; i < nt; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT1, "sgssv", n, i,
					       result[i]);
					++nfail;
				    }
				}
				nrun += nt;
			    } /* else .. info == 0 */

			    /* Restore perm_c. */
			    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i];

		            if (lwork == 0) {
			        Destroy_SuperNode_Matrix(&L);
			        Destroy_CompCol_Matrix(&U);
			    }
			} /* if .. end of testing sgssv */
    
			/*----------------
			 * Test sgssvx
			 *----------------*/
    
			/* Equilibrate the matrix if fact = 'F' and
			   equed = 'R', 'C', or 'B'.   */
			if ( iequed > 0 && n > 0 ) {
			    slaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
			
			/* Solve the system and compute the condition number
			   and error bounds using sgssvx.      */
			sgssvx(fact, trans, refact, &A, &iparam, perm_c,
			       perm_r, etree, equed, R, C, &L, &U, work,
			       lwork, &B, &X, &rpg, &rcond, ferr, berr,
			       &mem_usage, &info);

			if ( info && info != izero ) {
			    printf(FMT3, "sgssvx",
				   info, izero, n, nrhs, imat, nfail);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %.0f bytes\n",
                                        mem_usage.total_needed);
                                exit(0);
                            }
			} else {
			    if ( !prefact ) {
			    	/* Reconstruct matrix from factors and
	 			   compute residual. */
                                sp_sget01(m, n, &A, &L, &U, perm_r,
					       &result[0]);
				k1 = 0;
			    } else {
			   	k1 = 1;
			    }

			    if ( !info ) {
				/* Compute residual of the computed solution.*/
				sCopy_Dense_Matrix(m, nrhs, bsav, ldb,
						  wwork, ldb);
				sp_sget02(trans, m, n, nrhs, &ASAV, solx, ldx,
					  wwork, ldb, &result[1]);

				/* Check solution from generated exact
				   solution. */
				sp_sget04(n, nrhs, solx, ldx, xact, ldx, rcond,
					  &result[2]);

				/* Check the error bounds from iterative
				   refinement. */
				sp_sget07(trans, n, nrhs, &ASAV, bsav, ldb,
					  solx, ldx, xact, ldx, ferr, berr,
					  &result[3]);

				/* Print information about the tests that did
				   not pass the threshold.    */
				for (i = k1; i < NTESTS; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT2, "sgssvx",
					       *fact, *trans, *refact, *equed,
					       n, imat, i, result[i]);
					++nfail;
				    }
				}
				nrun += NTESTS;
			    } /* if .. info == 0 */
			} /* else .. end of testing sgssvx */

		    } /* for itran ... */

		    if ( lwork == 0 ) {
			Destroy_SuperNode_Matrix(&L);
			Destroy_CompCol_Matrix(&U);
		    }

		} /* for irefact ... */
	    } /* for ifact ... */
	} /* for iequed ... */
#if 0    
    if ( !info ) {
	PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed);
    }
#endif    

    } /* for imat ... */

    /* Print a summary of the results. */
    PrintSumm("SGE", nfail, nrun, nerrs);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (bsav);
    SUPERLU_FREE (solx);    
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (pc_save);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    SUPERLU_FREE (rwork);
    SUPERLU_FREE (wwork);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    Destroy_CompCol_Matrix(&A);
    Destroy_CompCol_Matrix(&ASAV);
    if ( lwork > 0 ) {
	SUPERLU_FREE (work);
	Destroy_SuperMatrix_Store(&L);
	Destroy_SuperMatrix_Store(&U);
    }

    return 0;
}
Exemple #9
0
/* Subroutine */ int sdrvpb_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, integer *nmax, real *a, 
	real *afac, real *asav, real *b, real *bsav, real *x, real *xact, 
	real *s, real *work, real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*2] = "N" "Y";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, KD =\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";
    static char fmt_9997[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002',"
	    " \002,i5,\002, \002,i5,\002, ... ), EQUED='\002,a1,\002', type"
	    " \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002',"
	    " \002,i5,\002, \002,i5,\002, ... ), type \002,i1,\002, test(\002"
	    ",i1,\002)=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7[2];
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__, k, n, i1, i2, k1, kd, nb, in, kl, iw, ku, nt, lda, ikd, nkd, 
	    ldab;
    char fact[1];
    integer ioff, mode, koff;
    real amax;
    char path[3];
    integer imat, info;
    char dist[1], uplo[1], type__[1];
    integer nrun, ifact, nfail, iseed[4], nfact, kdval[4];
    extern logical lsame_(char *, char *);
    char equed[1];
    integer nbmin;
    real rcond, roldc, scond;
    integer nimat;
    extern doublereal sget06_(real *, real *);
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *), spbt01_(char *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, real *);
    real anorm;
    extern /* Subroutine */ int spbt02_(char *, integer *, integer *, integer 
	    *, real *, integer *, real *, integer *, real *, integer *, real *
, real *), spbt05_(char *, integer *, integer *, integer *
, real *, integer *, real *, integer *, real *, integer *, real *, 
	     integer *, real *, real *, real *);
    logical equil;
    integer iuplo, izero, nerrs;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), spbsv_(char *, integer *, integer *, integer *, real *
, integer *, real *, integer *, integer *), sswap_(
	    integer *, real *, integer *, real *, integer *);
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
), aladhd_(integer *, char *), 
	    alaerh_(char *, char *, integer *, integer *, char *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *);
    logical prefac;
    real rcondc;
    extern doublereal slange_(char *, integer *, integer *, real *, integer *, 
	     real *);
    logical nofact;
    char packit[1];
    integer iequed;
    extern doublereal slansb_(char *, char *, integer *, integer *, real *, 
	    integer *, real *);
    real cndnum;
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *), slaqsb_(char *, integer *, integer *, real 
	    *, integer *, real *, real *, real *, char *);
    real ainvnm;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slarhs_(char *, char *, 
	    char *, char *, integer *, integer *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
, integer *, integer *), slaset_(
	    char *, integer *, integer *, real *, real *, real *, integer *), spbequ_(char *, integer *, integer *, real *, integer *, 
	    real *, real *, real *, integer *), spbtrf_(char *, 
	    integer *, integer *, real *, integer *, integer *), 
	    xlaenv_(integer *, integer *), slatms_(integer *, integer *, char 
	    *, integer *, char *, real *, integer *, real *, real *, integer *
, integer *, char *, real *, integer *, real *, integer *), spbtrs_(char *, integer *, integer *, integer *, 
	     real *, integer *, real *, integer *, integer *);
    real result[6];
    extern /* Subroutine */ int spbsvx_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, char *, real *, 
	    real *, integer *, real *, integer *, real *, real *, real *, 
	    real *, integer *, integer *), serrvx_(
	    char *, integer *);

    /* Fortran I/O blocks */
    static cilist io___57 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVPB tests the driver routines SPBSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  ASAV    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  S       (workspace) REAL array, dimension (NMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension (NMAX+2*NRHS) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "PB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;
    kdval[0] = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';

/*        Set limits on the number of loop iterations. */

/* Computing MAX */
	i__2 = 1, i__3 = min(n,4);
	nkd = max(i__2,i__3);
	nimat = 8;
	if (n == 0) {
	    nimat = 1;
	}

	kdval[1] = n + (n + 1) / 4;
	kdval[2] = (n * 3 - 1) / 4;
	kdval[3] = (n + 1) / 4;

	i__2 = nkd;
	for (ikd = 1; ikd <= i__2; ++ikd) {

/*           Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order */
/*           makes it easier to skip redundant values for small values */
/*           of N. */

	    kd = kdval[ikd - 1];
	    ldab = kd + 1;

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		koff = 1;
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
		    *(unsigned char *)packit = 'Q';
/* Computing MAX */
		    i__3 = 1, i__4 = kd + 2 - n;
		    koff = max(i__3,i__4);
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'B';
		}

		i__3 = nimat;
		for (imat = 1; imat <= i__3; ++imat) {

/*                 Do the tests only if DOTYPE( IMAT ) is true. */

		    if (! dotype[imat]) {
			goto L80;
		    }

/*                 Skip types 2, 3, or 4 if the matrix size is too small. */

		    zerot = imat >= 2 && imat <= 4;
		    if (zerot && n < imat - 1) {
			goto L80;
		    }

		    if (! zerot || ! dotype[1]) {

/*                    Set up parameters with SLATB4 and generate a test */
/*                    matrix with SLATMS. */

			slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, 
				 &mode, &cndnum, dist);

			s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)
				6);
			slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, 
				 &cndnum, &anorm, &kd, &kd, packit, &a[koff], 
				&ldab, &work[1], &info);

/*                    Check error code from SLATMS. */

			if (info != 0) {
			    alaerh_(path, "SLATMS", &info, &c__0, uplo, &n, &
				    n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &
				    nerrs, nout);
			    goto L80;
			}
		    } else if (izero > 0) {

/*                    Use the same matrix for types 3 and 4 as for type */
/*                    2 by copying back the zeroed out column, */

			iw = (lda << 1) + 1;
			if (iuplo == 1) {
			    ioff = (izero - 1) * ldab + kd + 1;
			    i__4 = izero - i1;
			    scopy_(&i__4, &work[iw], &c__1, &a[ioff - izero + 
				    i1], &c__1);
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    scopy_(&i__4, &work[iw], &c__1, &a[ioff], &i__5);
			} else {
			    ioff = (i1 - 1) * ldab + 1;
			    i__4 = izero - i1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    scopy_(&i__4, &work[iw], &c__1, &a[ioff + izero - 
				    i1], &i__5);
			    ioff = (izero - 1) * ldab + 1;
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
			    scopy_(&i__4, &work[iw], &c__1, &a[ioff], &c__1);
			}
		    }

/*                 For types 2-4, zero one row and column of the matrix */
/*                 to test that INFO is returned correctly. */

		    izero = 0;
		    if (zerot) {
			if (imat == 2) {
			    izero = 1;
			} else if (imat == 3) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}

/*                    Save the zeroed out row and column in WORK(*,3) */

			iw = lda << 1;
/* Computing MIN */
			i__5 = (kd << 1) + 1;
			i__4 = min(i__5,n);
			for (i__ = 1; i__ <= i__4; ++i__) {
			    work[iw + i__] = 0.f;
/* L20: */
			}
			++iw;
/* Computing MAX */
			i__4 = izero - kd;
			i1 = max(i__4,1);
/* Computing MIN */
			i__4 = izero + kd;
			i2 = min(i__4,n);

			if (iuplo == 1) {
			    ioff = (izero - 1) * ldab + kd + 1;
			    i__4 = izero - i1;
			    sswap_(&i__4, &a[ioff - izero + i1], &c__1, &work[
				    iw], &c__1);
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    sswap_(&i__4, &a[ioff], &i__5, &work[iw], &c__1);
			} else {
			    ioff = (i1 - 1) * ldab + 1;
			    i__4 = izero - i1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    sswap_(&i__4, &a[ioff + izero - i1], &i__5, &work[
				    iw], &c__1);
			    ioff = (izero - 1) * ldab + 1;
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
			    sswap_(&i__4, &a[ioff], &c__1, &work[iw], &c__1);
			}
		    }

/*                 Save a copy of the matrix A in ASAV. */

		    i__4 = kd + 1;
		    slacpy_("Full", &i__4, &n, &a[1], &ldab, &asav[1], &ldab);

		    for (iequed = 1; iequed <= 2; ++iequed) {
			*(unsigned char *)equed = *(unsigned char *)&equeds[
				iequed - 1];
			if (iequed == 1) {
			    nfact = 3;
			} else {
			    nfact = 1;
			}

			i__4 = nfact;
			for (ifact = 1; ifact <= i__4; ++ifact) {
			    *(unsigned char *)fact = *(unsigned char *)&facts[
				    ifact - 1];
			    prefac = lsame_(fact, "F");
			    nofact = lsame_(fact, "N");
			    equil = lsame_(fact, "E");

			    if (zerot) {
				if (prefac) {
				    goto L60;
				}
				rcondc = 0.f;

			    } else if (! lsame_(fact, "N")) {

/*                          Compute the condition number for comparison */
/*                          with the value returned by SPBSVX (FACT = */
/*                          'N' reuses the condition number from the */
/*                          previous iteration with FACT = 'F'). */

				i__5 = kd + 1;
				slacpy_("Full", &i__5, &n, &asav[1], &ldab, &
					afac[1], &ldab);
				if (equil || iequed > 1) {

/*                             Compute row and column scale factors to */
/*                             equilibrate the matrix A. */

				    spbequ_(uplo, &n, &kd, &afac[1], &ldab, &
					    s[1], &scond, &amax, &info);
				    if (info == 0 && n > 0) {
					if (iequed > 1) {
					    scond = 0.f;
					}

/*                                Equilibrate the matrix. */

					slaqsb_(uplo, &n, &kd, &afac[1], &
						ldab, &s[1], &scond, &amax, 
						equed);
				    }
				}

/*                          Save the condition number of the */
/*                          non-equilibrated system for use in SGET04. */

				if (equil) {
				    roldc = rcondc;
				}

/*                          Compute the 1-norm of A. */

				anorm = slansb_("1", uplo, &n, &kd, &afac[1], 
					&ldab, &rwork[1]);

/*                          Factor the matrix A. */

				spbtrf_(uplo, &n, &kd, &afac[1], &ldab, &info);

/*                          Form the inverse of A. */

				slaset_("Full", &n, &n, &c_b45, &c_b46, &a[1], 
					 &lda);
				s_copy(srnamc_1.srnamt, "SPBTRS", (ftnlen)32, 
					(ftnlen)6);
				spbtrs_(uplo, &n, &kd, &n, &afac[1], &ldab, &
					a[1], &lda, &info);

/*                          Compute the 1-norm condition number of A. */

				ainvnm = slange_("1", &n, &n, &a[1], &lda, &
					rwork[1]);
				if (anorm <= 0.f || ainvnm <= 0.f) {
				    rcondc = 1.f;
				} else {
				    rcondc = 1.f / anorm / ainvnm;
				}
			    }

/*                       Restore the matrix A. */

			    i__5 = kd + 1;
			    slacpy_("Full", &i__5, &n, &asav[1], &ldab, &a[1], 
				     &ldab);

/*                       Form an exact solution and set the right hand */
/*                       side. */

			    s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, (
				    ftnlen)6);
			    slarhs_(path, xtype, uplo, " ", &n, &n, &kd, &kd, 
				    nrhs, &a[1], &ldab, &xact[1], &lda, &b[1], 
				     &lda, iseed, &info);
			    *(unsigned char *)xtype = 'C';
			    slacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &
				    lda);

			    if (nofact) {

/*                          --- Test SPBSV  --- */

/*                          Compute the L*L' or U'*U factorization of the */
/*                          matrix and solve the system. */

				i__5 = kd + 1;
				slacpy_("Full", &i__5, &n, &a[1], &ldab, &
					afac[1], &ldab);
				slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], 
					&lda);

				s_copy(srnamc_1.srnamt, "SPBSV ", (ftnlen)32, 
					(ftnlen)6);
				spbsv_(uplo, &n, &kd, nrhs, &afac[1], &ldab, &
					x[1], &lda, &info);

/*                          Check error code from SPBSV . */

				if (info != izero) {
				    alaerh_(path, "SPBSV ", &info, &izero, 
					    uplo, &n, &n, &kd, &kd, nrhs, &
					    imat, &nfail, &nerrs, nout);
				    goto L40;
				} else if (info != 0) {
				    goto L40;
				}

/*                          Reconstruct matrix from factors and compute */
/*                          residual. */

				spbt01_(uplo, &n, &kd, &a[1], &ldab, &afac[1], 
					 &ldab, &rwork[1], result);

/*                          Compute residual of the computed solution. */

				slacpy_("Full", &n, nrhs, &b[1], &lda, &work[
					1], &lda);
				spbt02_(uplo, &n, &kd, nrhs, &a[1], &ldab, &x[
					1], &lda, &work[1], &lda, &rwork[1], &
					result[1]);

/*                          Check solution from generated exact solution. */

				sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
				nt = 3;

/*                          Print information about the tests that did */
/*                          not pass the threshold. */

				i__5 = nt;
				for (k = 1; k <= i__5; ++k) {
				    if (result[k - 1] >= *thresh) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					io___57.ciunit = *nout;
					s_wsfe(&io___57);
					do_fio(&c__1, "SPBSV ", (ftnlen)6);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
					++nfail;
				    }
/* L30: */
				}
				nrun += nt;
L40:
				;
			    }

/*                       --- Test SPBSVX --- */

			    if (! prefac) {
				i__5 = kd + 1;
				slaset_("Full", &i__5, &n, &c_b45, &c_b45, &
					afac[1], &ldab);
			    }
			    slaset_("Full", &n, nrhs, &c_b45, &c_b45, &x[1], &
				    lda);
			    if (iequed > 1 && n > 0) {

/*                          Equilibrate the matrix if FACT='F' and */
/*                          EQUED='Y' */

				slaqsb_(uplo, &n, &kd, &a[1], &ldab, &s[1], &
					scond, &amax, equed);
			    }

/*                       Solve the system and compute the condition */
/*                       number and error bounds using SPBSVX. */

			    s_copy(srnamc_1.srnamt, "SPBSVX", (ftnlen)32, (
				    ftnlen)6);
			    spbsvx_(fact, uplo, &n, &kd, nrhs, &a[1], &ldab, &
				    afac[1], &ldab, equed, &s[1], &b[1], &lda, 
				     &x[1], &lda, &rcond, &rwork[1], &rwork[*
				    nrhs + 1], &work[1], &iwork[1], &info);

/*                       Check the error code from SPBSVX. */

			    if (info != izero) {
/* Writing concatenation */
				i__7[0] = 1, a__1[0] = fact;
				i__7[1] = 1, a__1[1] = uplo;
				s_cat(ch__1, a__1, i__7, &c__2, (ftnlen)2);
				alaerh_(path, "SPBSVX", &info, &izero, ch__1, 
					&n, &n, &kd, &kd, nrhs, &imat, &nfail, 
					 &nerrs, nout);
				goto L60;
			    }

			    if (info == 0) {
				if (! prefac) {

/*                             Reconstruct matrix from factors and */
/*                             compute residual. */

				    spbt01_(uplo, &n, &kd, &a[1], &ldab, &
					    afac[1], &ldab, &rwork[(*nrhs << 
					    1) + 1], result);
				    k1 = 1;
				} else {
				    k1 = 2;
				}

/*                          Compute residual of the computed solution. */

				slacpy_("Full", &n, nrhs, &bsav[1], &lda, &
					work[1], &lda);
				spbt02_(uplo, &n, &kd, nrhs, &asav[1], &ldab, 
					&x[1], &lda, &work[1], &lda, &rwork[(*
					nrhs << 1) + 1], &result[1]);

/*                          Check solution from generated exact solution. */

				if (nofact || prefac && lsame_(equed, "N")) {
				    sget04_(&n, nrhs, &x[1], &lda, &xact[1], &
					    lda, &rcondc, &result[2]);
				} else {
				    sget04_(&n, nrhs, &x[1], &lda, &xact[1], &
					    lda, &roldc, &result[2]);
				}

/*                          Check the error bounds from iterative */
/*                          refinement. */

				spbt05_(uplo, &n, &kd, nrhs, &asav[1], &ldab, 
					&b[1], &lda, &x[1], &lda, &xact[1], &
					lda, &rwork[1], &rwork[*nrhs + 1], &
					result[3]);
			    } else {
				k1 = 6;
			    }

/*                       Compare RCOND from SPBSVX with the computed */
/*                       value in RCONDC. */

			    result[5] = sget06_(&rcond, &rcondc);

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    for (k = k1; k <= 6; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___60.ciunit = *nout;
					s_wsfe(&io___60);
					do_fio(&c__1, "SPBSVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
				    } else {
					io___61.ciunit = *nout;
					s_wsfe(&io___61);
					do_fio(&c__1, "SPBSVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L50: */
			    }
			    nrun = nrun + 7 - k1;
L60:
			    ;
			}
/* L70: */
		    }
L80:
		    ;
		}
/* L90: */
	    }
/* L100: */
	}
/* L110: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVPB */

} /* sdrvpb_ */
/* Subroutine */ int sdrvgb_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, real *a, integer *la, 
	real *afb, integer *lafb, real *asav, real *b, real *bsav, real *x, 
	real *xact, real *s, real *work, real *rwork, integer *iwork, integer 
	*nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*4] = "N" "R" "C" "B";

    /* Format strings */
    static char fmt_9999[] = "(\002 *** In SDRVGB, LA=\002,i5,\002 is too sm"
	    "all for N=\002,i5,\002, KU=\002,i5,\002, KL=\002,i5,/\002 ==> In"
	    "crease LA to at least \002,i5)";
    static char fmt_9998[] = "(\002 *** In SDRVGB, LAFB=\002,i5,\002 is too "
	    "small for N=\002,i5,\002, KU=\002,i5,\002, KL=\002,i5,/\002 ==> "
	    "Increase LAFB to at least \002,i5)";
    static char fmt_9997[] = "(1x,a,\002, N=\002,i5,\002, KL=\002,i5,\002, K"
	    "U=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)"
	    ;
    static char fmt_9995[] = "(1x,a,\002( '\002,a1,\002','\002,a1,\002',\002"
	    ",i5,\002,\002,i5,\002,\002,i5,\002,...), EQUED='\002,a1,\002', t"
	    "ype \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9996[] = "(1x,a,\002( '\002,a1,\002','\002,a1,\002',\002"
	    ",i5,\002,\002,i5,\002,\002,i5,\002,...), type \002,i1,\002, test("
	    "\002,i1,\002)=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, 
	    i__11[2];
    real r__1, r__2, r__3;
    char ch__1[2];

    /* Local variables */
    integer i__, j, k, n, i1, i2, k1, nb, in, kl, ku, nt, lda, ldb, ikl, nkl, 
	    iku, nku;
    char fact[1];
    integer ioff, mode;
    real amax;
    char path[3];
    integer imat, info;
    char dist[1], type__[1];
    integer nrun, ldafb, ifact, nfail, iseed[4], nfact;
    char equed[1];
    integer nbmin;
    real rcond, roldc;
    integer nimat;
    real roldi;
    real anorm;
    integer itran;
    logical equil;
    real roldo;
    char trans[1];
    integer izero, nerrs;
    logical zerot;
    char xtype[1];
    logical prefac;
    real colcnd;
    real rcondc;
    logical nofact;
    integer iequed;
    real rcondi;
    real cndnum, anormi, rcondo, ainvnm;
    logical trfcon;
    real anormo, rowcnd;
    real anrmpv;
    real result[7], rpvgrw;

    /* Fortran I/O blocks */
    static cilist io___26 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___27 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___65 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___72 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___73 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___74 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___75 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___76 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___77 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___78 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___79 = { 0, 0, 0, fmt_9996, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVGB tests the driver routines SGBSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (LA) */

/*  LA      (input) INTEGER */
/*          The length of the array A.  LA >= (2*NMAX-1)*NMAX */
/*          where NMAX is the largest entry in NVAL. */

/*  AFB     (workspace) REAL array, dimension (LAFB) */

/*  LAFB    (input) INTEGER */
/*          The length of the array AFB.  LAFB >= (3*NMAX-2)*NMAX */
/*          where NMAX is the largest entry in NVAL. */

/*  ASAV    (workspace) REAL array, dimension (LA) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  S       (workspace) REAL array, dimension (2*NMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS,NMAX)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NRHS)) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afb;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	ldb = max(n,1);
	*(unsigned char *)xtype = 'N';

/*        Set limits on the number of loop iterations. */

/* Computing MAX */
	i__2 = 1, i__3 = min(n,4);
	nkl = max(i__2,i__3);
	if (n == 0) {
	    nkl = 1;
	}
	nku = nkl;
	nimat = 8;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nkl;
	for (ikl = 1; ikl <= i__2; ++ikl) {

/*           Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes */
/*           it easier to skip redundant values for small values of N. */

	    if (ikl == 1) {
		kl = 0;
	    } else if (ikl == 2) {
/* Computing MAX */
		i__3 = n - 1;
		kl = max(i__3,0);
	    } else if (ikl == 3) {
		kl = (n * 3 - 1) / 4;
	    } else if (ikl == 4) {
		kl = (n + 1) / 4;
	    }
	    i__3 = nku;
	    for (iku = 1; iku <= i__3; ++iku) {

/*              Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order */
/*              makes it easier to skip redundant values for small */
/*              values of N. */

		if (iku == 1) {
		    ku = 0;
		} else if (iku == 2) {
/* Computing MAX */
		    i__4 = n - 1;
		    ku = max(i__4,0);
		} else if (iku == 3) {
		    ku = (n * 3 - 1) / 4;
		} else if (iku == 4) {
		    ku = (n + 1) / 4;
		}

/*              Check that A and AFB are big enough to generate this */
/*              matrix. */

		lda = kl + ku + 1;
		ldafb = (kl << 1) + ku + 1;
		if (lda * n > *la || ldafb * n > *lafb) {
		    if (nfail == 0 && nerrs == 0) {
			aladhd_(nout, path);
		    }
		    if (lda * n > *la) {
			io___26.ciunit = *nout;
			s_wsfe(&io___26);
			do_fio(&c__1, (char *)&(*la), (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer));
			i__4 = n * (kl + ku + 1);
			do_fio(&c__1, (char *)&i__4, (ftnlen)sizeof(integer));
			e_wsfe();
			++nerrs;
		    }
		    if (ldafb * n > *lafb) {
			io___27.ciunit = *nout;
			s_wsfe(&io___27);
			do_fio(&c__1, (char *)&(*lafb), (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer));
			i__4 = n * ((kl << 1) + ku + 1);
			do_fio(&c__1, (char *)&i__4, (ftnlen)sizeof(integer));
			e_wsfe();
			++nerrs;
		    }
		    goto L130;
		}

		i__4 = nimat;
		for (imat = 1; imat <= i__4; ++imat) {

/*                 Do the tests only if DOTYPE( IMAT ) is true. */

		    if (! dotype[imat]) {
			goto L120;
		    }

/*                 Skip types 2, 3, or 4 if the matrix is too small. */

		    zerot = imat >= 2 && imat <= 4;
		    if (zerot && n < imat - 1) {
			goto L120;
		    }

/*                 Set up parameters with SLATB4 and generate a */
/*                 test matrix with SLATMS. */

		    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &
			    mode, &cndnum, dist);
		    rcondc = 1.f / cndnum;

		    s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		    slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			    cndnum, &anorm, &kl, &ku, "Z", &a[1], &lda, &work[
			    1], &info);

/*                 Check the error code from SLATMS. */

		    if (info != 0) {
			alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &
				kl, &ku, &c_n1, &imat, &nfail, &nerrs, nout);
			goto L120;
		    }

/*                 For types 2, 3, and 4, zero one or more columns of */
/*                 the matrix to test that INFO is returned correctly. */

		    izero = 0;
		    if (zerot) {
			if (imat == 2) {
			    izero = 1;
			} else if (imat == 3) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}
			ioff = (izero - 1) * lda;
			if (imat < 4) {
/* Computing MAX */
			    i__5 = 1, i__6 = ku + 2 - izero;
			    i1 = max(i__5,i__6);
/* Computing MIN */
			    i__5 = kl + ku + 1, i__6 = ku + 1 + (n - izero);
			    i2 = min(i__5,i__6);
			    i__5 = i2;
			    for (i__ = i1; i__ <= i__5; ++i__) {
				a[ioff + i__] = 0.f;
/* L20: */
			    }
			} else {
			    i__5 = n;
			    for (j = izero; j <= i__5; ++j) {
/* Computing MAX */
				i__6 = 1, i__7 = ku + 2 - j;
/* Computing MIN */
				i__9 = kl + ku + 1, i__10 = ku + 1 + (n - j);
				i__8 = min(i__9,i__10);
				for (i__ = max(i__6,i__7); i__ <= i__8; ++i__)
					 {
				    a[ioff + i__] = 0.f;
/* L30: */
				}
				ioff += lda;
/* L40: */
			    }
			}
		    }

/*                 Save a copy of the matrix A in ASAV. */

		    i__5 = kl + ku + 1;
		    slacpy_("Full", &i__5, &n, &a[1], &lda, &asav[1], &lda);

		    for (iequed = 1; iequed <= 4; ++iequed) {
			*(unsigned char *)equed = *(unsigned char *)&equeds[
				iequed - 1];
			if (iequed == 1) {
			    nfact = 3;
			} else {
			    nfact = 1;
			}

			i__5 = nfact;
			for (ifact = 1; ifact <= i__5; ++ifact) {
			    *(unsigned char *)fact = *(unsigned char *)&facts[
				    ifact - 1];
			    prefac = lsame_(fact, "F");
			    nofact = lsame_(fact, "N");
			    equil = lsame_(fact, "E");

			    if (zerot) {
				if (prefac) {
				    goto L100;
				}
				rcondo = 0.f;
				rcondi = 0.f;

			    } else if (! nofact) {

/*                          Compute the condition number for comparison */
/*                          with the value returned by SGESVX (FACT = */
/*                          'N' reuses the condition number from the */
/*                          previous iteration with FACT = 'F'). */

				i__8 = kl + ku + 1;
				slacpy_("Full", &i__8, &n, &asav[1], &lda, &
					afb[kl + 1], &ldafb);
				if (equil || iequed > 1) {

/*                             Compute row and column scale factors to */
/*                             equilibrate the matrix A. */

				    sgbequ_(&n, &n, &kl, &ku, &afb[kl + 1], &
					    ldafb, &s[1], &s[n + 1], &rowcnd, 
					    &colcnd, &amax, &info);
				    if (info == 0 && n > 0) {
					if (lsame_(equed, "R")) {
					    rowcnd = 0.f;
					    colcnd = 1.f;
					} else if (lsame_(equed, "C")) {
					    rowcnd = 1.f;
					    colcnd = 0.f;
					} else if (lsame_(equed, "B")) {
					    rowcnd = 0.f;
					    colcnd = 0.f;
					}

/*                                Equilibrate the matrix. */

					slaqgb_(&n, &n, &kl, &ku, &afb[kl + 1]
, &ldafb, &s[1], &s[n + 1], &
						rowcnd, &colcnd, &amax, equed);
				    }
				}

/*                          Save the condition number of the */
/*                          non-equilibrated system for use in SGET04. */

				if (equil) {
				    roldo = rcondo;
				    roldi = rcondi;
				}

/*                          Compute the 1-norm and infinity-norm of A. */

				anormo = slangb_("1", &n, &kl, &ku, &afb[kl + 
					1], &ldafb, &rwork[1]);
				anormi = slangb_("I", &n, &kl, &ku, &afb[kl + 
					1], &ldafb, &rwork[1]);

/*                          Factor the matrix A. */

				sgbtrf_(&n, &n, &kl, &ku, &afb[1], &ldafb, &
					iwork[1], &info);

/*                          Form the inverse of A. */

				slaset_("Full", &n, &n, &c_b48, &c_b49, &work[
					1], &ldb);
				s_copy(srnamc_1.srnamt, "SGBTRS", (ftnlen)32, 
					(ftnlen)6);
				sgbtrs_("No transpose", &n, &kl, &ku, &n, &
					afb[1], &ldafb, &iwork[1], &work[1], &
					ldb, &info);

/*                          Compute the 1-norm condition number of A. */

				ainvnm = slange_("1", &n, &n, &work[1], &ldb, 
					&rwork[1]);
				if (anormo <= 0.f || ainvnm <= 0.f) {
				    rcondo = 1.f;
				} else {
				    rcondo = 1.f / anormo / ainvnm;
				}

/*                          Compute the infinity-norm condition number */
/*                          of A. */

				ainvnm = slange_("I", &n, &n, &work[1], &ldb, 
					&rwork[1]);
				if (anormi <= 0.f || ainvnm <= 0.f) {
				    rcondi = 1.f;
				} else {
				    rcondi = 1.f / anormi / ainvnm;
				}
			    }

			    for (itran = 1; itran <= 3; ++itran) {

/*                          Do for each value of TRANS. */

				*(unsigned char *)trans = *(unsigned char *)&
					transs[itran - 1];
				if (itran == 1) {
				    rcondc = rcondo;
				} else {
				    rcondc = rcondi;
				}

/*                          Restore the matrix A. */

				i__8 = kl + ku + 1;
				slacpy_("Full", &i__8, &n, &asav[1], &lda, &a[
					1], &lda);

/*                          Form an exact solution and set the right hand */
/*                          side. */

				s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, 
					(ftnlen)6);
				slarhs_(path, xtype, "Full", trans, &n, &n, &
					kl, &ku, nrhs, &a[1], &lda, &xact[1], 
					&ldb, &b[1], &ldb, iseed, &info);
				*(unsigned char *)xtype = 'C';
				slacpy_("Full", &n, nrhs, &b[1], &ldb, &bsav[
					1], &ldb);

				if (nofact && itran == 1) {

/*                             --- Test SGBSV  --- */

/*                             Compute the LU factorization of the matrix */
/*                             and solve the system. */

				    i__8 = kl + ku + 1;
				    slacpy_("Full", &i__8, &n, &a[1], &lda, &
					    afb[kl + 1], &ldafb);
				    slacpy_("Full", &n, nrhs, &b[1], &ldb, &x[
					    1], &ldb);

				    s_copy(srnamc_1.srnamt, "SGBSV ", (ftnlen)
					    32, (ftnlen)6);
				    sgbsv_(&n, &kl, &ku, nrhs, &afb[1], &
					    ldafb, &iwork[1], &x[1], &ldb, &
					    info);

/*                             Check error code from SGBSV . */

				    if (info != izero) {
					alaerh_(path, "SGBSV ", &info, &izero, 
						 " ", &n, &n, &kl, &ku, nrhs, 
						&imat, &nfail, &nerrs, nout);
				    }

/*                             Reconstruct matrix from factors and */
/*                             compute residual. */

				    sgbt01_(&n, &n, &kl, &ku, &a[1], &lda, &
					    afb[1], &ldafb, &iwork[1], &work[
					    1], result);
				    nt = 1;
				    if (izero == 0) {

/*                                Compute residual of the computed */
/*                                solution. */

					slacpy_("Full", &n, nrhs, &b[1], &ldb, 
						 &work[1], &ldb);
					sgbt02_("No transpose", &n, &n, &kl, &
						ku, nrhs, &a[1], &lda, &x[1], 
						&ldb, &work[1], &ldb, &result[
						1]);

/*                                Check solution from generated exact */
/*                                solution. */

					sget04_(&n, nrhs, &x[1], &ldb, &xact[
						1], &ldb, &rcondc, &result[2])
						;
					nt = 3;
				    }

/*                             Print information about the tests that did */
/*                             not pass the threshold. */

				    i__8 = nt;
				    for (k = 1; k <= i__8; ++k) {
					if (result[k - 1] >= *thresh) {
					    if (nfail == 0 && nerrs == 0) {
			  aladhd_(nout, path);
					    }
					    io___65.ciunit = *nout;
					    s_wsfe(&io___65);
					    do_fio(&c__1, "SGBSV ", (ftnlen)6)
						    ;
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&k, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&result[k - 
						    1], (ftnlen)sizeof(real));
					    e_wsfe();
					    ++nfail;
					}
/* L50: */
				    }
				    nrun += nt;
				}

/*                          --- Test SGBSVX --- */

				if (! prefac) {
				    i__8 = (kl << 1) + ku + 1;
				    slaset_("Full", &i__8, &n, &c_b48, &c_b48, 
					     &afb[1], &ldafb);
				}
				slaset_("Full", &n, nrhs, &c_b48, &c_b48, &x[
					1], &ldb);
				if (iequed > 1 && n > 0) {

/*                             Equilibrate the matrix if FACT = 'F' and */
/*                             EQUED = 'R', 'C', or 'B'. */

				    slaqgb_(&n, &n, &kl, &ku, &a[1], &lda, &s[
					    1], &s[n + 1], &rowcnd, &colcnd, &
					    amax, equed);
				}

/*                          Solve the system and compute the condition */
/*                          number and error bounds using SGBSVX. */

				s_copy(srnamc_1.srnamt, "SGBSVX", (ftnlen)32, 
					(ftnlen)6);
				sgbsvx_(fact, trans, &n, &kl, &ku, nrhs, &a[1]
, &lda, &afb[1], &ldafb, &iwork[1], 
					equed, &s[1], &s[n + 1], &b[1], &ldb, 
					&x[1], &ldb, &rcond, &rwork[1], &
					rwork[*nrhs + 1], &work[1], &iwork[n 
					+ 1], &info);

/*                          Check the error code from SGBSVX. */

				if (info != izero) {
/* Writing concatenation */
				    i__11[0] = 1, a__1[0] = fact;
				    i__11[1] = 1, a__1[1] = trans;
				    s_cat(ch__1, a__1, i__11, &c__2, (ftnlen)
					    2);
				    alaerh_(path, "SGBSVX", &info, &izero, 
					    ch__1, &n, &n, &kl, &ku, nrhs, &
					    imat, &nfail, &nerrs, nout);
				}

/*                          Compare WORK(1) from SGBSVX with the computed */
/*                          reciprocal pivot growth factor RPVGRW */

				if (info != 0) {
				    anrmpv = 0.f;
				    i__8 = info;
				    for (j = 1; j <= i__8; ++j) {
/* Computing MAX */
					i__6 = ku + 2 - j;
/* Computing MIN */
					i__9 = n + ku + 1 - j, i__10 = kl + 
						ku + 1;
					i__7 = min(i__9,i__10);
					for (i__ = max(i__6,1); i__ <= i__7; 
						++i__) {
/* Computing MAX */
					    r__2 = anrmpv, r__3 = (r__1 = a[
						    i__ + (j - 1) * lda], 
						    dabs(r__1));
					    anrmpv = dmax(r__2,r__3);
/* L60: */
					}
/* L70: */
				    }
/* Computing MIN */
				    i__7 = info - 1, i__6 = kl + ku;
				    i__8 = min(i__7,i__6);
/* Computing MAX */
				    i__9 = 1, i__10 = kl + ku + 2 - info;
				    rpvgrw = slantb_("M", "U", "N", &info, &
					    i__8, &afb[max(i__9, i__10)], &
					    ldafb, &work[1]);
				    if (rpvgrw == 0.f) {
					rpvgrw = 1.f;
				    } else {
					rpvgrw = anrmpv / rpvgrw;
				    }
				} else {
				    i__8 = kl + ku;
				    rpvgrw = slantb_("M", "U", "N", &n, &i__8, 
					     &afb[1], &ldafb, &work[1]);
				    if (rpvgrw == 0.f) {
					rpvgrw = 1.f;
				    } else {
					rpvgrw = slangb_("M", &n, &kl, &ku, &
						a[1], &lda, &work[1]) / rpvgrw;
				    }
				}
				result[6] = (r__1 = rpvgrw - work[1], dabs(
					r__1)) / dmax(work[1],rpvgrw) / 
					slamch_("E");

				if (! prefac) {

/*                             Reconstruct matrix from factors and */
/*                             compute residual. */

				    sgbt01_(&n, &n, &kl, &ku, &a[1], &lda, &
					    afb[1], &ldafb, &iwork[1], &work[
					    1], result);
				    k1 = 1;
				} else {
				    k1 = 2;
				}

				if (info == 0) {
				    trfcon = FALSE_;

/*                             Compute residual of the computed solution. */

				    slacpy_("Full", &n, nrhs, &bsav[1], &ldb, 
					    &work[1], &ldb);
				    sgbt02_(trans, &n, &n, &kl, &ku, nrhs, &
					    asav[1], &lda, &x[1], &ldb, &work[
					    1], &ldb, &result[1]);

/*                             Check solution from generated exact */
/*                             solution. */

				    if (nofact || prefac && lsame_(equed, 
					    "N")) {
					sget04_(&n, nrhs, &x[1], &ldb, &xact[
						1], &ldb, &rcondc, &result[2])
						;
				    } else {
					if (itran == 1) {
					    roldc = roldo;
					} else {
					    roldc = roldi;
					}
					sget04_(&n, nrhs, &x[1], &ldb, &xact[
						1], &ldb, &roldc, &result[2]);
				    }

/*                             Check the error bounds from iterative */
/*                             refinement. */

				    sgbt05_(trans, &n, &kl, &ku, nrhs, &asav[
					    1], &lda, &b[1], &ldb, &x[1], &
					    ldb, &xact[1], &ldb, &rwork[1], &
					    rwork[*nrhs + 1], &result[3]);
				} else {
				    trfcon = TRUE_;
				}

/*                          Compare RCOND from SGBSVX with the computed */
/*                          value in RCONDC. */

				result[5] = sget06_(&rcond, &rcondc);

/*                          Print information about the tests that did */
/*                          not pass the threshold. */

				if (! trfcon) {
				    for (k = k1; k <= 7; ++k) {
					if (result[k - 1] >= *thresh) {
					    if (nfail == 0 && nerrs == 0) {
			  aladhd_(nout, path);
					    }
					    if (prefac) {
			  io___72.ciunit = *nout;
			  s_wsfe(&io___72);
			  do_fio(&c__1, "SGBSVX", (ftnlen)6);
			  do_fio(&c__1, fact, (ftnlen)1);
			  do_fio(&c__1, trans, (ftnlen)1);
			  do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer));
			  do_fio(&c__1, equed, (ftnlen)1);
			  do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)
				  );
			  do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				  sizeof(real));
			  e_wsfe();
					    } else {
			  io___73.ciunit = *nout;
			  s_wsfe(&io___73);
			  do_fio(&c__1, "SGBSVX", (ftnlen)6);
			  do_fio(&c__1, fact, (ftnlen)1);
			  do_fio(&c__1, trans, (ftnlen)1);
			  do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)
				  );
			  do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				  sizeof(real));
			  e_wsfe();
					    }
					    ++nfail;
					}
/* L80: */
				    }
				    nrun = nrun + 7 - k1;
				} else {
				    if (result[0] >= *thresh && ! prefac) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					if (prefac) {
					    io___74.ciunit = *nout;
					    s_wsfe(&io___74);
					    do_fio(&c__1, "SGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, equed, (ftnlen)1);
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__1, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[0], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					} else {
					    io___75.ciunit = *nout;
					    s_wsfe(&io___75);
					    do_fio(&c__1, "SGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__1, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[0], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					}
					++nfail;
					++nrun;
				    }
				    if (result[5] >= *thresh) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					if (prefac) {
					    io___76.ciunit = *nout;
					    s_wsfe(&io___76);
					    do_fio(&c__1, "SGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, equed, (ftnlen)1);
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__6, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[5], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					} else {
					    io___77.ciunit = *nout;
					    s_wsfe(&io___77);
					    do_fio(&c__1, "SGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__6, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[5], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					}
					++nfail;
					++nrun;
				    }
				    if (result[6] >= *thresh) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					if (prefac) {
					    io___78.ciunit = *nout;
					    s_wsfe(&io___78);
					    do_fio(&c__1, "SGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, equed, (ftnlen)1);
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__7, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[6], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					} else {
					    io___79.ciunit = *nout;
					    s_wsfe(&io___79);
					    do_fio(&c__1, "SGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__7, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[6], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					}
					++nfail;
					++nrun;
				    }

				}
/* L90: */
			    }
L100:
			    ;
			}
/* L110: */
		    }
L120:
		    ;
		}
L130:
		;
	    }
/* L140: */
	}
/* L150: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);


    return 0;

/*     End of SDRVGB */

} /* sdrvgb_ */
Exemple #11
0
/* Subroutine */ int sdrvgt_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, real *a, real *af, real 
	*b, real *x, real *xact, real *work, real *rwork, integer *iwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 0,0,0,1 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002"
	    ", test \002,i2,\002, ratio = \002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', TRANS='\002,a"
	    "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, "
	    "ratio = \002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    real r__1, r__2;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__, j, k, m, n;
    real z__[3];
    integer k1, in, kl, ku, ix, nt, lda;
    char fact[1];
    real cond;
    integer mode, koff, imat, info;
    char path[3], dist[1], type__[1];
    integer nrun, ifact, nfail, iseed[4];
    real rcond;
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *), sscal_(integer *, real *, 
	    real *, integer *);
    integer nimat;
    extern doublereal sget06_(real *, real *);
    real anorm;
    integer itran;
    extern /* Subroutine */ int sgtt01_(integer *, real *, real *, real *, 
	    real *, real *, real *, real *, integer *, real *, integer *, 
	    real *, real *), sgtt02_(char *, integer *, integer *, real *, 
	    real *, real *, real *, integer *, real *, integer *, real *, 
	    real *), sgtt05_(char *, integer *, integer *, real *, 
	    real *, real *, real *, integer *, real *, integer *, real *, 
	    integer *, real *, real *, real *);
    char trans[1];
    integer izero, nerrs;
    extern doublereal sasum_(integer *, real *, integer *);
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    logical zerot;
    extern /* Subroutine */ int sgtsv_(integer *, integer *, real *, real *, 
	    real *, real *, integer *, integer *), slatb4_(char *, integer *, 
	    integer *, integer *, char *, integer *, integer *, real *, 
	    integer *, real *, char *), aladhd_(
	    integer *, char *), alaerh_(char *, char *, integer *, 
	    integer *, char *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *);
    real rcondc, rcondi;
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    real rcondo, anormi;
    extern /* Subroutine */ int slagtm_(char *, integer *, integer *, real *, 
	    real *, real *, real *, real *, integer *, real *, real *, 
	    integer *);
    real ainvnm;
    extern doublereal slangt_(char *, integer *, real *, real *, real *);
    logical trfcon;
    real anormo;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slaset_(char *, integer *, 
	    integer *, real *, real *, real *, integer *), slatms_(
	    integer *, integer *, char *, integer *, char *, real *, integer *
, real *, real *, integer *, integer *, char *, real *, integer *, 
	     real *, integer *), slarnv_(integer *, 
	    integer *, integer *, real *), sgttrf_(integer *, real *, real *, 
	    real *, real *, integer *, integer *);
    real result[6];
    extern /* Subroutine */ int sgttrs_(char *, integer *, integer *, real *, 
	    real *, real *, real *, integer *, real *, integer *, integer *), serrvx_(char *, integer *), sgtsvx_(char *, char 
	    *, integer *, integer *, real *, real *, real *, real *, real *, 
	    real *, real *, integer *, real *, integer *, real *, integer *, 
	    real *, real *, real *, real *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___47 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVGT tests SGTSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (NMAX*4) */

/*  AF      (workspace) REAL array, dimension (NMAX*4) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NRHS)) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --af;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL. */

	n = nval[in];
/* Computing MAX */
	i__2 = n - 1;
	m = max(i__2,0);
	lda = max(1,n);
	nimat = 12;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L130;
	    }

/*           Set up parameters with SLATB4. */

	    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cond, dist);

	    zerot = imat >= 8 && imat <= 10;
	    if (imat <= 6) {

/*              Types 1-6:  generate matrices of known condition number. */

/* Computing MAX */
		i__3 = 2 - ku, i__4 = 3 - max(1,n);
		koff = max(i__3,i__4);
		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
			&anorm, &kl, &ku, "Z", &af[koff], &c__3, &work[1], &
			info);

/*              Check the error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &kl, &
			    ku, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L130;
		}
		izero = 0;

		if (n > 1) {
		    i__3 = n - 1;
		    scopy_(&i__3, &af[4], &c__3, &a[1], &c__1);
		    i__3 = n - 1;
		    scopy_(&i__3, &af[3], &c__3, &a[n + m + 1], &c__1);
		}
		scopy_(&n, &af[2], &c__3, &a[m + 1], &c__1);
	    } else {

/*              Types 7-12:  generate tridiagonal matrices with */
/*              unknown condition numbers. */

		if (! zerot || ! dotype[7]) {

/*                 Generate a matrix with elements from [-1,1]. */

		    i__3 = n + (m << 1);
		    slarnv_(&c__2, iseed, &i__3, &a[1]);
		    if (anorm != 1.f) {
			i__3 = n + (m << 1);
			sscal_(&i__3, &anorm, &a[1], &c__1);
		    }
		} else if (izero > 0) {

/*                 Reuse the last matrix by copying back the zeroed out */
/*                 elements. */

		    if (izero == 1) {
			a[n] = z__[1];
			if (n > 1) {
			    a[1] = z__[2];
			}
		    } else if (izero == n) {
			a[n * 3 - 2] = z__[0];
			a[(n << 1) - 1] = z__[1];
		    } else {
			a[(n << 1) - 2 + izero] = z__[0];
			a[n - 1 + izero] = z__[1];
			a[izero] = z__[2];
		    }
		}

/*              If IMAT > 7, set one column of the matrix to 0. */

		if (! zerot) {
		    izero = 0;
		} else if (imat == 8) {
		    izero = 1;
		    z__[1] = a[n];
		    a[n] = 0.f;
		    if (n > 1) {
			z__[2] = a[1];
			a[1] = 0.f;
		    }
		} else if (imat == 9) {
		    izero = n;
		    z__[0] = a[n * 3 - 2];
		    z__[1] = a[(n << 1) - 1];
		    a[n * 3 - 2] = 0.f;
		    a[(n << 1) - 1] = 0.f;
		} else {
		    izero = (n + 1) / 2;
		    i__3 = n - 1;
		    for (i__ = izero; i__ <= i__3; ++i__) {
			a[(n << 1) - 2 + i__] = 0.f;
			a[n - 1 + i__] = 0.f;
			a[i__] = 0.f;
/* L20: */
		    }
		    a[n * 3 - 2] = 0.f;
		    a[(n << 1) - 1] = 0.f;
		}
	    }

	    for (ifact = 1; ifact <= 2; ++ifact) {
		if (ifact == 1) {
		    *(unsigned char *)fact = 'F';
		} else {
		    *(unsigned char *)fact = 'N';
		}

/*              Compute the condition number for comparison with */
/*              the value returned by SGTSVX. */

		if (zerot) {
		    if (ifact == 1) {
			goto L120;
		    }
		    rcondo = 0.f;
		    rcondi = 0.f;

		} else if (ifact == 1) {
		    i__3 = n + (m << 1);
		    scopy_(&i__3, &a[1], &c__1, &af[1], &c__1);

/*                 Compute the 1-norm and infinity-norm of A. */

		    anormo = slangt_("1", &n, &a[1], &a[m + 1], &a[n + m + 1]);
		    anormi = slangt_("I", &n, &a[1], &a[m + 1], &a[n + m + 1]);

/*                 Factor the matrix A. */

		    sgttrf_(&n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (
			    m << 1) + 1], &iwork[1], &info);

/*                 Use SGTTRS to solve for one column at a time of */
/*                 inv(A), computing the maximum column sum as we go. */

		    ainvnm = 0.f;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    x[j] = 0.f;
/* L30: */
			}
			x[i__] = 1.f;
			sgttrs_("No transpose", &n, &c__1, &af[1], &af[m + 1], 
				 &af[n + m + 1], &af[n + (m << 1) + 1], &
				iwork[1], &x[1], &lda, &info);
/* Computing MAX */
			r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1);
			ainvnm = dmax(r__1,r__2);
/* L40: */
		    }

/*                 Compute the 1-norm condition number of A. */

		    if (anormo <= 0.f || ainvnm <= 0.f) {
			rcondo = 1.f;
		    } else {
			rcondo = 1.f / anormo / ainvnm;
		    }

/*                 Use SGTTRS to solve for one column at a time of */
/*                 inv(A'), computing the maximum column sum as we go. */

		    ainvnm = 0.f;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    x[j] = 0.f;
/* L50: */
			}
			x[i__] = 1.f;
			sgttrs_("Transpose", &n, &c__1, &af[1], &af[m + 1], &
				af[n + m + 1], &af[n + (m << 1) + 1], &iwork[
				1], &x[1], &lda, &info);
/* Computing MAX */
			r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1);
			ainvnm = dmax(r__1,r__2);
/* L60: */
		    }

/*                 Compute the infinity-norm condition number of A. */

		    if (anormi <= 0.f || ainvnm <= 0.f) {
			rcondi = 1.f;
		    } else {
			rcondi = 1.f / anormi / ainvnm;
		    }
		}

		for (itran = 1; itran <= 3; ++itran) {
		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];
		    if (itran == 1) {
			rcondc = rcondo;
		    } else {
			rcondc = rcondi;
		    }

/*                 Generate NRHS random solution vectors. */

		    ix = 1;
		    i__3 = *nrhs;
		    for (j = 1; j <= i__3; ++j) {
			slarnv_(&c__2, iseed, &n, &xact[ix]);
			ix += lda;
/* L70: */
		    }

/*                 Set the right hand side. */

		    slagtm_(trans, &n, nrhs, &c_b43, &a[1], &a[m + 1], &a[n + 
			    m + 1], &xact[1], &lda, &c_b44, &b[1], &lda);

		    if (ifact == 2 && itran == 1) {

/*                    --- Test SGTSV  --- */

/*                    Solve the system using Gaussian elimination with */
/*                    partial pivoting. */

			i__3 = n + (m << 1);
			scopy_(&i__3, &a[1], &c__1, &af[1], &c__1);
			slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

			s_copy(srnamc_1.srnamt, "SGTSV ", (ftnlen)32, (ftnlen)
				6);
			sgtsv_(&n, nrhs, &af[1], &af[m + 1], &af[n + m + 1], &
				x[1], &lda, &info);

/*                    Check error code from SGTSV . */

			if (info != izero) {
			    alaerh_(path, "SGTSV ", &info, &izero, " ", &n, &
				    n, &c__1, &c__1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			}
			nt = 1;
			if (izero == 0) {

/*                       Check residual of computed solution. */

			    slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &
				    lda);
			    sgtt02_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + 
				    m + 1], &x[1], &lda, &work[1], &lda, &
				    rwork[1], &result[1]);

/*                       Check solution from generated exact solution. */

			    sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[2]);
			    nt = 3;
			}

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			i__3 = nt;
			for (k = 2; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "SGTSV ", (ftnlen)6);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(real));
				e_wsfe();
				++nfail;
			    }
/* L80: */
			}
			nrun = nrun + nt - 1;
		    }

/*                 --- Test SGTSVX --- */

		    if (ifact > 1) {

/*                    Initialize AF to zero. */

			i__3 = n * 3 - 2;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    af[i__] = 0.f;
/* L90: */
			}
		    }
		    slaset_("Full", &n, nrhs, &c_b44, &c_b44, &x[1], &lda);

/*                 Solve the system and compute the condition number and */
/*                 error bounds using SGTSVX. */

		    s_copy(srnamc_1.srnamt, "SGTSVX", (ftnlen)32, (ftnlen)6);
		    sgtsvx_(fact, trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m 
			    + 1], &af[1], &af[m + 1], &af[n + m + 1], &af[n + 
			    (m << 1) + 1], &iwork[1], &b[1], &lda, &x[1], &
			    lda, &rcond, &rwork[1], &rwork[*nrhs + 1], &work[
			    1], &iwork[n + 1], &info);

/*                 Check the error code from SGTSVX. */

		    if (info != izero) {
/* Writing concatenation */
			i__5[0] = 1, a__1[0] = fact;
			i__5[1] = 1, a__1[1] = trans;
			s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			alaerh_(path, "SGTSVX", &info, &izero, ch__1, &n, &n, 
				&c__1, &c__1, nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    if (ifact >= 2) {

/*                    Reconstruct matrix from factors and compute */
/*                    residual. */

			sgtt01_(&n, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &
				af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 
				1], &iwork[1], &work[1], &lda, &rwork[1], 
				result);
			k1 = 1;
		    } else {
			k1 = 2;
		    }

		    if (info == 0) {
			trfcon = FALSE_;

/*                    Check residual of computed solution. */

			slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			sgtt02_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 
				1], &x[1], &lda, &work[1], &lda, &rwork[1], &
				result[1]);

/*                    Check solution from generated exact solution. */

			sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			sgtt05_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 
				1], &b[1], &lda, &x[1], &lda, &xact[1], &lda, 
				&rwork[1], &rwork[*nrhs + 1], &result[3]);
			nt = 5;
		    }

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    i__3 = nt;
		    for (k = k1; k <= i__3; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___46.ciunit = *nout;
			    s_wsfe(&io___46);
			    do_fio(&c__1, "SGTSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L100: */
		    }

/*                 Check the reciprocal of the condition number. */

		    result[5] = sget06_(&rcond, &rcondc);
		    if (result[5] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    aladhd_(nout, path);
			}
			io___47.ciunit = *nout;
			s_wsfe(&io___47);
			do_fio(&c__1, "SGTSVX", (ftnlen)6);
			do_fio(&c__1, fact, (ftnlen)1);
			do_fio(&c__1, trans, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				real));
			e_wsfe();
			++nfail;
		    }
		    nrun = nrun + nt - k1 + 2;

/* L110: */
		}
L120:
		;
	    }
L130:
	    ;
	}
/* L140: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVGT */

} /* sdrvgt_ */
Exemple #12
0
/* Subroutine */ int slattp_(integer *imat, char *uplo, char *trans, char *
	diag, integer *iseed, integer *n, real *a, real *b, real *work, 
	integer *info)
{
    /* System generated locals */
    integer i__1, i__2;
    real r__1, r__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double pow_dd(doublereal *, doublereal *), sqrt(doublereal), r_sign(real *
	    , real *);

    /* Local variables */
    real c__;
    integer i__, j;
    real s, t, x, y, z__;
    integer jc;
    real ra;
    integer jj;
    real rb;
    integer jl, kl, jr, ku, iy, jx;
    real ulp, sfac;
    integer mode;
    char path[3], dist[1];
    real unfl, rexp;
    char type__[1];
    real texp;
    extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, 
	    integer *, real *, real *);
    real star1, plus1, plus2, bscal;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    real tscal, anorm, bnorm, tleft, stemp;
    logical upper;
    extern /* Subroutine */ int srotg_(real *, real *, real *, real *), 
	    slatb4_(char *, integer *, integer *, integer *, char *, integer *
, integer *, real *, integer *, real *, char *), slabad_(real *, real *);
    extern doublereal slamch_(char *);
    char packit[1];
    real bignum;
    extern integer isamax_(integer *, real *, integer *);
    extern doublereal slarnd_(integer *, integer *);
    real cndnum;
    integer jcnext, jcount;
    extern /* Subroutine */ int slatms_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, integer *, integer *
, char *, real *, integer *, real *, integer *), slarnv_(integer *, integer *, integer *, real *);
    real smlnum;


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLATTP generates a triangular test matrix in packed storage. */
/*  IMAT and UPLO uniquely specify the properties of the test */
/*  matrix, which is returned in the array AP. */

/*  Arguments */
/*  ========= */

/*  IMAT    (input) INTEGER */
/*          An integer key describing which matrix to generate for this */
/*          path. */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the matrix A will be upper or lower */
/*          triangular. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies whether the matrix or its transpose will be used. */
/*          = 'N':  No transpose */
/*          = 'T':  Transpose */
/*          = 'C':  Conjugate transpose (= Transpose) */

/*  DIAG    (output) CHARACTER*1 */
/*          Specifies whether or not the matrix A is unit triangular. */
/*          = 'N':  Non-unit triangular */
/*          = 'U':  Unit triangular */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          The seed vector for the random number generator (used in */
/*          SLATMS).  Modified on exit. */

/*  N       (input) INTEGER */
/*          The order of the matrix to be generated. */

/*  A       (output) REAL array, dimension (N*(N+1)/2) */
/*          The upper or lower triangular matrix A, packed columnwise in */
/*          a linear array.  The j-th column of A is stored in the array */
/*          AP as follows: */
/*          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', */
/*             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */

/*  B       (output) REAL array, dimension (N) */
/*          The right hand side vector, if IMAT > 10. */

/*  WORK    (workspace) REAL array, dimension (3*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0: if INFO = -k, the k-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --work;
    --b;
    --a;
    --iseed;

    /* Function Body */
    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "TP", (ftnlen)2, (ftnlen)2);
    unfl = slamch_("Safe minimum");
    ulp = slamch_("Epsilon") * slamch_("Base");
    smlnum = unfl;
    bignum = (1.f - ulp) / smlnum;
    slabad_(&smlnum, &bignum);
    if (*imat >= 7 && *imat <= 10 || *imat == 18) {
	*(unsigned char *)diag = 'U';
    } else {
	*(unsigned char *)diag = 'N';
    }
    *info = 0;

/*     Quick return if N.LE.0. */

    if (*n <= 0) {
	return 0;
    }

/*     Call SLATB4 to set parameters for SLATMS. */

    upper = lsame_(uplo, "U");
    if (upper) {
	slatb4_(path, imat, n, n, type__, &kl, &ku, &anorm, &mode, &cndnum, 
		dist);
	*(unsigned char *)packit = 'C';
    } else {
	i__1 = -(*imat);
	slatb4_(path, &i__1, n, n, type__, &kl, &ku, &anorm, &mode, &cndnum, 
		dist);
	*(unsigned char *)packit = 'R';
    }

/*     IMAT <= 6:  Non-unit triangular matrix */

    if (*imat <= 6) {
	slatms_(n, n, dist, &iseed[1], type__, &b[1], &mode, &cndnum, &anorm, 
		&kl, &ku, packit, &a[1], n, &work[1], info);

/*     IMAT > 6:  Unit triangular matrix */
/*     The diagonal is deliberately set to something other than 1. */

/*     IMAT = 7:  Matrix is the identity */

    } else if (*imat == 7) {
	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    a[jc + i__ - 1] = 0.f;
/* L10: */
		}
		a[jc + j - 1] = (real) j;
		jc += j;
/* L20: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		a[jc] = (real) j;
		i__2 = *n;
		for (i__ = j + 1; i__ <= i__2; ++i__) {
		    a[jc + i__ - j] = 0.f;
/* L30: */
		}
		jc = jc + *n - j + 1;
/* L40: */
	    }
	}

/*     IMAT > 7:  Non-trivial unit triangular matrix */

/*     Generate a unit triangular matrix T with condition CNDNUM by */
/*     forming a triangular matrix with known singular values and */
/*     filling in the zero entries with Givens rotations. */

    } else if (*imat <= 10) {
	if (upper) {
	    jc = 0;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    a[jc + i__] = 0.f;
/* L50: */
		}
		a[jc + j] = (real) j;
		jc += j;
/* L60: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		a[jc] = (real) j;
		i__2 = *n;
		for (i__ = j + 1; i__ <= i__2; ++i__) {
		    a[jc + i__ - j] = 0.f;
/* L70: */
		}
		jc = jc + *n - j + 1;
/* L80: */
	    }
	}

/*        Since the trace of a unit triangular matrix is 1, the product */
/*        of its singular values must be 1.  Let s = sqrt(CNDNUM), */
/*        x = sqrt(s) - 1/sqrt(s), y = sqrt(2/(n-2))*x, and z = x**2. */
/*        The following triangular matrix has singular values s, 1, 1, */
/*        ..., 1, 1/s: */

/*        1  y  y  y  ...  y  y  z */
/*           1  0  0  ...  0  0  y */
/*              1  0  ...  0  0  y */
/*                 .  ...  .  .  . */
/*                     .   .  .  . */
/*                         1  0  y */
/*                            1  y */
/*                               1 */

/*        To fill in the zeros, we first multiply by a matrix with small */
/*        condition number of the form */

/*        1  0  0  0  0  ... */
/*           1  +  *  0  0  ... */
/*              1  +  0  0  0 */
/*                 1  +  *  0  0 */
/*                    1  +  0  0 */
/*                       ... */
/*                          1  +  0 */
/*                             1  0 */
/*                                1 */

/*        Each element marked with a '*' is formed by taking the product */
/*        of the adjacent elements marked with '+'.  The '*'s can be */
/*        chosen freely, and the '+'s are chosen so that the inverse of */
/*        T will have elements of the same magnitude as T.  If the *'s in */
/*        both T and inv(T) have small magnitude, T is well conditioned. */
/*        The two offdiagonals of T are stored in WORK. */

/*        The product of these two matrices has the form */

/*        1  y  y  y  y  y  .  y  y  z */
/*           1  +  *  0  0  .  0  0  y */
/*              1  +  0  0  .  0  0  y */
/*                 1  +  *  .  .  .  . */
/*                    1  +  .  .  .  . */
/*                       .  .  .  .  . */
/*                          .  .  .  . */
/*                             1  +  y */
/*                                1  y */
/*                                   1 */

/*        Now we multiply by Givens rotations, using the fact that */

/*              [  c   s ] [  1   w ] [ -c  -s ] =  [  1  -w ] */
/*              [ -s   c ] [  0   1 ] [  s  -c ]    [  0   1 ] */
/*        and */
/*              [ -c  -s ] [  1   0 ] [  c   s ] =  [  1   0 ] */
/*              [  s  -c ] [  w   1 ] [ -s   c ]    [ -w   1 ] */

/*        where c = w / sqrt(w**2+4) and s = 2 / sqrt(w**2+4). */

	star1 = .25f;
	sfac = .5f;
	plus1 = sfac;
	i__1 = *n;
	for (j = 1; j <= i__1; j += 2) {
	    plus2 = star1 / plus1;
	    work[j] = plus1;
	    work[*n + j] = star1;
	    if (j + 1 <= *n) {
		work[j + 1] = plus2;
		work[*n + j + 1] = 0.f;
		plus1 = star1 / plus2;
		rexp = slarnd_(&c__2, &iseed[1]);
		d__1 = (doublereal) sfac;
		d__2 = (doublereal) rexp;
		star1 *= pow_dd(&d__1, &d__2);
		if (rexp < 0.f) {
		    d__1 = (doublereal) sfac;
		    d__2 = (doublereal) (1.f - rexp);
		    star1 = -pow_dd(&d__1, &d__2);
		} else {
		    d__1 = (doublereal) sfac;
		    d__2 = (doublereal) (rexp + 1.f);
		    star1 = pow_dd(&d__1, &d__2);
		}
	    }
/* L90: */
	}

	x = sqrt(cndnum) - 1.f / sqrt(cndnum);
	if (*n > 2) {
	    y = sqrt(2.f / (real) (*n - 2)) * x;
	} else {
	    y = 0.f;
	}
	z__ = x * x;

	if (upper) {

/*           Set the upper triangle of A with a unit triangular matrix */
/*           of known condition number. */

	    jc = 1;
	    i__1 = *n;
	    for (j = 2; j <= i__1; ++j) {
		a[jc + 1] = y;
		if (j > 2) {
		    a[jc + j - 1] = work[j - 2];
		}
		if (j > 3) {
		    a[jc + j - 2] = work[*n + j - 3];
		}
		jc += j;
/* L100: */
	    }
	    jc -= *n;
	    a[jc + 1] = z__;
	    i__1 = *n - 1;
	    for (j = 2; j <= i__1; ++j) {
		a[jc + j] = y;
/* L110: */
	    }
	} else {

/*           Set the lower triangle of A with a unit triangular matrix */
/*           of known condition number. */

	    i__1 = *n - 1;
	    for (i__ = 2; i__ <= i__1; ++i__) {
		a[i__] = y;
/* L120: */
	    }
	    a[*n] = z__;
	    jc = *n + 1;
	    i__1 = *n - 1;
	    for (j = 2; j <= i__1; ++j) {
		a[jc + 1] = work[j - 1];
		if (j < *n - 1) {
		    a[jc + 2] = work[*n + j - 1];
		}
		a[jc + *n - j] = y;
		jc = jc + *n - j + 1;
/* L130: */
	    }
	}

/*        Fill in the zeros using Givens rotations */

	if (upper) {
	    jc = 1;
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; ++j) {
		jcnext = jc + j;
		ra = a[jcnext + j - 1];
		rb = 2.f;
		srotg_(&ra, &rb, &c__, &s);

/*              Multiply by [ c  s; -s  c] on the left. */

		if (*n > j + 1) {
		    jx = jcnext + j;
		    i__2 = *n;
		    for (i__ = j + 2; i__ <= i__2; ++i__) {
			stemp = c__ * a[jx + j] + s * a[jx + j + 1];
			a[jx + j + 1] = -s * a[jx + j] + c__ * a[jx + j + 1];
			a[jx + j] = stemp;
			jx += i__;
/* L140: */
		    }
		}

/*              Multiply by [-c -s;  s -c] on the right. */

		if (j > 1) {
		    i__2 = j - 1;
		    r__1 = -c__;
		    r__2 = -s;
		    srot_(&i__2, &a[jcnext], &c__1, &a[jc], &c__1, &r__1, &
			    r__2);
		}

/*              Negate A(J,J+1). */

		a[jcnext + j - 1] = -a[jcnext + j - 1];
		jc = jcnext;
/* L150: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; ++j) {
		jcnext = jc + *n - j + 1;
		ra = a[jc + 1];
		rb = 2.f;
		srotg_(&ra, &rb, &c__, &s);

/*              Multiply by [ c -s;  s  c] on the right. */

		if (*n > j + 1) {
		    i__2 = *n - j - 1;
		    r__1 = -s;
		    srot_(&i__2, &a[jcnext + 1], &c__1, &a[jc + 2], &c__1, &
			    c__, &r__1);
		}

/*              Multiply by [-c  s; -s -c] on the left. */

		if (j > 1) {
		    jx = 1;
		    i__2 = j - 1;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			stemp = -c__ * a[jx + j - i__] + s * a[jx + j - i__ + 
				1];
			a[jx + j - i__ + 1] = -s * a[jx + j - i__] - c__ * a[
				jx + j - i__ + 1];
			a[jx + j - i__] = stemp;
			jx = jx + *n - i__ + 1;
/* L160: */
		    }
		}

/*              Negate A(J+1,J). */

		a[jc + 1] = -a[jc + 1];
		jc = jcnext;
/* L170: */
	    }
	}

/*     IMAT > 10:  Pathological test cases.  These triangular matrices */
/*     are badly scaled or badly conditioned, so when used in solving a */
/*     triangular system they may cause overflow in the solution vector. */

    } else if (*imat == 11) {

/*        Type 11:  Generate a triangular matrix with elements between */
/*        -1 and 1. Give the diagonal norm 2 to make it well-conditioned. */
/*        Make the right hand side large so that it requires scaling. */

	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		slarnv_(&c__2, &iseed[1], &j, &a[jc]);
		a[jc + j - 1] = r_sign(&c_b36, &a[jc + j - 1]);
		jc += j;
/* L180: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc]);
		a[jc] = r_sign(&c_b36, &a[jc]);
		jc = jc + *n - j + 1;
/* L190: */
	    }
	}

/*        Set the right hand side so that the largest value is BIGNUM. */

	slarnv_(&c__2, &iseed[1], n, &b[1]);
	iy = isamax_(n, &b[1], &c__1);
	bnorm = (r__1 = b[iy], dabs(r__1));
	bscal = bignum / dmax(1.f,bnorm);
	sscal_(n, &bscal, &b[1], &c__1);

    } else if (*imat == 12) {

/*        Type 12:  Make the first diagonal element in the solve small to */
/*        cause immediate overflow when dividing by T(j,j). */
/*        In type 12, the offdiagonal elements are small (CNORM(j) < 1). */

	slarnv_(&c__2, &iseed[1], n, &b[1]);
/* Computing MAX */
	r__1 = 1.f, r__2 = (real) (*n - 1);
	tscal = 1.f / dmax(r__1,r__2);
	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc]);
		i__2 = j - 1;
		sscal_(&i__2, &tscal, &a[jc], &c__1);
		r__1 = slarnd_(&c__2, &iseed[1]);
		a[jc + j - 1] = r_sign(&c_b48, &r__1);
		jc += j;
/* L200: */
	    }
	    a[*n * (*n + 1) / 2] = smlnum;
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc + 1]);
		i__2 = *n - j;
		sscal_(&i__2, &tscal, &a[jc + 1], &c__1);
		r__1 = slarnd_(&c__2, &iseed[1]);
		a[jc] = r_sign(&c_b48, &r__1);
		jc = jc + *n - j + 1;
/* L210: */
	    }
	    a[1] = smlnum;
	}

    } else if (*imat == 13) {

/*        Type 13:  Make the first diagonal element in the solve small to */
/*        cause immediate overflow when dividing by T(j,j). */
/*        In type 13, the offdiagonal elements are O(1) (CNORM(j) > 1). */

	slarnv_(&c__2, &iseed[1], n, &b[1]);
	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc]);
		r__1 = slarnd_(&c__2, &iseed[1]);
		a[jc + j - 1] = r_sign(&c_b48, &r__1);
		jc += j;
/* L220: */
	    }
	    a[*n * (*n + 1) / 2] = smlnum;
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc + 1]);
		r__1 = slarnd_(&c__2, &iseed[1]);
		a[jc] = r_sign(&c_b48, &r__1);
		jc = jc + *n - j + 1;
/* L230: */
	    }
	    a[1] = smlnum;
	}

    } else if (*imat == 14) {

/*        Type 14:  T is diagonal with small numbers on the diagonal to */
/*        make the growth factor underflow, but a small right hand side */
/*        chosen so that the solution does not overflow. */

	if (upper) {
	    jcount = 1;
	    jc = (*n - 1) * *n / 2 + 1;
	    for (j = *n; j >= 1; --j) {
		i__1 = j - 1;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    a[jc + i__ - 1] = 0.f;
/* L240: */
		}
		if (jcount <= 2) {
		    a[jc + j - 1] = smlnum;
		} else {
		    a[jc + j - 1] = 1.f;
		}
		++jcount;
		if (jcount > 4) {
		    jcount = 1;
		}
		jc = jc - j + 1;
/* L250: */
	    }
	} else {
	    jcount = 1;
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n;
		for (i__ = j + 1; i__ <= i__2; ++i__) {
		    a[jc + i__ - j] = 0.f;
/* L260: */
		}
		if (jcount <= 2) {
		    a[jc] = smlnum;
		} else {
		    a[jc] = 1.f;
		}
		++jcount;
		if (jcount > 4) {
		    jcount = 1;
		}
		jc = jc + *n - j + 1;
/* L270: */
	    }
	}

/*        Set the right hand side alternately zero and small. */

	if (upper) {
	    b[1] = 0.f;
	    for (i__ = *n; i__ >= 2; i__ += -2) {
		b[i__] = 0.f;
		b[i__ - 1] = smlnum;
/* L280: */
	    }
	} else {
	    b[*n] = 0.f;
	    i__1 = *n - 1;
	    for (i__ = 1; i__ <= i__1; i__ += 2) {
		b[i__] = 0.f;
		b[i__ + 1] = smlnum;
/* L290: */
	    }
	}

    } else if (*imat == 15) {

/*        Type 15:  Make the diagonal elements small to cause gradual */
/*        overflow when dividing by T(j,j).  To control the amount of */
/*        scaling needed, the matrix is bidiagonal. */

/* Computing MAX */
	r__1 = 1.f, r__2 = (real) (*n - 1);
	texp = 1.f / dmax(r__1,r__2);
	d__1 = (doublereal) smlnum;
	d__2 = (doublereal) texp;
	tscal = pow_dd(&d__1, &d__2);
	slarnv_(&c__2, &iseed[1], n, &b[1]);
	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 2;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    a[jc + i__ - 1] = 0.f;
/* L300: */
		}
		if (j > 1) {
		    a[jc + j - 2] = -1.f;
		}
		a[jc + j - 1] = tscal;
		jc += j;
/* L310: */
	    }
	    b[*n] = 1.f;
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n;
		for (i__ = j + 2; i__ <= i__2; ++i__) {
		    a[jc + i__ - j] = 0.f;
/* L320: */
		}
		if (j < *n) {
		    a[jc + 1] = -1.f;
		}
		a[jc] = tscal;
		jc = jc + *n - j + 1;
/* L330: */
	    }
	    b[1] = 1.f;
	}

    } else if (*imat == 16) {

/*        Type 16:  One zero diagonal element. */

	iy = *n / 2 + 1;
	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		slarnv_(&c__2, &iseed[1], &j, &a[jc]);
		if (j != iy) {
		    a[jc + j - 1] = r_sign(&c_b36, &a[jc + j - 1]);
		} else {
		    a[jc + j - 1] = 0.f;
		}
		jc += j;
/* L340: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc]);
		if (j != iy) {
		    a[jc] = r_sign(&c_b36, &a[jc]);
		} else {
		    a[jc] = 0.f;
		}
		jc = jc + *n - j + 1;
/* L350: */
	    }
	}
	slarnv_(&c__2, &iseed[1], n, &b[1]);
	sscal_(n, &c_b36, &b[1], &c__1);

    } else if (*imat == 17) {

/*        Type 17:  Make the offdiagonal elements large to cause overflow */
/*        when adding a column of T.  In the non-transposed case, the */
/*        matrix is constructed to cause overflow when adding a column in */
/*        every other step. */

	tscal = unfl / ulp;
	tscal = (1.f - ulp) / tscal;
	i__1 = *n * (*n + 1) / 2;
	for (j = 1; j <= i__1; ++j) {
	    a[j] = 0.f;
/* L360: */
	}
	texp = 1.f;
	if (upper) {
	    jc = (*n - 1) * *n / 2 + 1;
	    for (j = *n; j >= 2; j += -2) {
		a[jc] = -tscal / (real) (*n + 1);
		a[jc + j - 1] = 1.f;
		b[j] = texp * (1.f - ulp);
		jc = jc - j + 1;
		a[jc] = -(tscal / (real) (*n + 1)) / (real) (*n + 2);
		a[jc + j - 2] = 1.f;
		b[j - 1] = texp * (real) (*n * *n + *n - 1);
		texp *= 2.f;
		jc = jc - j + 2;
/* L370: */
	    }
	    b[1] = (real) (*n + 1) / (real) (*n + 2) * tscal;
	} else {
	    jc = 1;
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; j += 2) {
		a[jc + *n - j] = -tscal / (real) (*n + 1);
		a[jc] = 1.f;
		b[j] = texp * (1.f - ulp);
		jc = jc + *n - j + 1;
		a[jc + *n - j - 1] = -(tscal / (real) (*n + 1)) / (real) (*n 
			+ 2);
		a[jc] = 1.f;
		b[j + 1] = texp * (real) (*n * *n + *n - 1);
		texp *= 2.f;
		jc = jc + *n - j;
/* L380: */
	    }
	    b[*n] = (real) (*n + 1) / (real) (*n + 2) * tscal;
	}

    } else if (*imat == 18) {

/*        Type 18:  Generate a unit triangular matrix with elements */
/*        between -1 and 1, and make the right hand side large so that it */
/*        requires scaling. */

	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc]);
		a[jc + j - 1] = 0.f;
		jc += j;
/* L390: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (j < *n) {
		    i__2 = *n - j;
		    slarnv_(&c__2, &iseed[1], &i__2, &a[jc + 1]);
		}
		a[jc] = 0.f;
		jc = jc + *n - j + 1;
/* L400: */
	    }
	}

/*        Set the right hand side so that the largest value is BIGNUM. */

	slarnv_(&c__2, &iseed[1], n, &b[1]);
	iy = isamax_(n, &b[1], &c__1);
	bnorm = (r__1 = b[iy], dabs(r__1));
	bscal = bignum / dmax(1.f,bnorm);
	sscal_(n, &bscal, &b[1], &c__1);

    } else if (*imat == 19) {

/*        Type 19:  Generate a triangular matrix with elements between */
/*        BIGNUM/(n-1) and BIGNUM so that at least one of the column */
/*        norms will exceed BIGNUM. */

/* Computing MAX */
	r__1 = 1.f, r__2 = (real) (*n - 1);
	tleft = bignum / dmax(r__1,r__2);
/* Computing MAX */
	r__1 = 1.f, r__2 = (real) (*n);
	tscal = bignum * ((real) (*n - 1) / dmax(r__1,r__2));
	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		slarnv_(&c__2, &iseed[1], &j, &a[jc]);
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    a[jc + i__ - 1] = r_sign(&tleft, &a[jc + i__ - 1]) + 
			    tscal * a[jc + i__ - 1];
/* L410: */
		}
		jc += j;
/* L420: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc]);
		i__2 = *n;
		for (i__ = j; i__ <= i__2; ++i__) {
		    a[jc + i__ - j] = r_sign(&tleft, &a[jc + i__ - j]) + 
			    tscal * a[jc + i__ - j];
/* L430: */
		}
		jc = jc + *n - j + 1;
/* L440: */
	    }
	}
	slarnv_(&c__2, &iseed[1], n, &b[1]);
	sscal_(n, &c_b36, &b[1], &c__1);
    }

/*     Flip the matrix across its counter-diagonal if the transpose will */
/*     be used. */

    if (! lsame_(trans, "N")) {
	if (upper) {
	    jj = 1;
	    jr = *n * (*n + 1) / 2;
	    i__1 = *n / 2;
	    for (j = 1; j <= i__1; ++j) {
		jl = jj;
		i__2 = *n - j;
		for (i__ = j; i__ <= i__2; ++i__) {
		    t = a[jr - i__ + j];
		    a[jr - i__ + j] = a[jl];
		    a[jl] = t;
		    jl += i__;
/* L450: */
		}
		jj = jj + j + 1;
		jr -= *n - j + 1;
/* L460: */
	    }
	} else {
	    jl = 1;
	    jj = *n * (*n + 1) / 2;
	    i__1 = *n / 2;
	    for (j = 1; j <= i__1; ++j) {
		jr = jj;
		i__2 = *n - j;
		for (i__ = j; i__ <= i__2; ++i__) {
		    t = a[jl + i__ - j];
		    a[jl + i__ - j] = a[jr];
		    a[jr] = t;
		    jr -= i__;
/* L470: */
		}
		jl = jl + *n - j + 1;
		jj = jj - j - 1;
/* L480: */
	    }
	}
    }

    return 0;

/*     End of SLATTP */

} /* slattp_ */