/** * flush_icache_range - Globally flush dcache and invalidate icache for region * @start: The starting virtual address of the region. * @end: The ending virtual address of the region. * * This is used by the kernel to globally flush some code it has just written * from the dcache back to RAM and then to globally invalidate the icache over * that region so that that code can be run on all CPUs in the system. */ void flush_icache_range(unsigned long start, unsigned long end) { unsigned long start_page, end_page; unsigned long flags; flags = smp_lock_cache(); if (end > 0x80000000UL) { /* addresses above 0xa0000000 do not go through the cache */ if (end > 0xa0000000UL) { end = 0xa0000000UL; if (start >= end) goto done; } /* kernel addresses between 0x80000000 and 0x9fffffff do not * require page tables, so we just map such addresses * directly */ start_page = (start >= 0x80000000UL) ? start : 0x80000000UL; mn10300_local_dcache_flush_range(start_page, end); mn10300_local_icache_inv_range(start_page, end); smp_cache_call(SMP_IDCACHE_INV_FLUSH_RANGE, start_page, end); if (start_page == start) goto done; end = start_page; } start_page = start & PAGE_MASK; end_page = (end - 1) & PAGE_MASK; if (start_page == end_page) { /* the first and last bytes are on the same page */ flush_icache_page_range(start, end); } else if (start_page + 1 == end_page) { /* split over two virtually contiguous pages */ flush_icache_page_range(start, end_page); flush_icache_page_range(end_page, end); } else { /* more than 2 pages; just flush the entire cache */ mn10300_dcache_flush(); mn10300_icache_inv(); smp_cache_call(SMP_IDCACHE_INV_FLUSH, 0, 0); } done: smp_unlock_cache(flags); }
void flush_icache_range(unsigned long start, unsigned long end) { unsigned long start_page, end_page; unsigned long flags; flags = smp_lock_cache(); if (end > 0x80000000UL) { /* */ if (end > 0xa0000000UL) { end = 0xa0000000UL; if (start >= end) goto done; } /* */ start_page = (start >= 0x80000000UL) ? start : 0x80000000UL; mn10300_local_dcache_flush_range(start_page, end); mn10300_local_icache_inv_range(start_page, end); smp_cache_call(SMP_IDCACHE_INV_FLUSH_RANGE, start_page, end); if (start_page == start) goto done; end = start_page; } start_page = start & PAGE_MASK; end_page = (end - 1) & PAGE_MASK; if (start_page == end_page) { /* */ flush_icache_page_range(start, end); } else if (start_page + 1 == end_page) { /* */ flush_icache_page_range(start, end_page); flush_icache_page_range(end_page, end); } else { /* */ mn10300_dcache_flush(); mn10300_icache_inv(); smp_cache_call(SMP_IDCACHE_INV_FLUSH, 0, 0); } done: smp_unlock_cache(flags); }
/** * mn10300_dcache_inv - Globally invalidate data cache * * Invalidate the data cache on all CPUs. */ void mn10300_dcache_inv(void) { unsigned long flags; flags = smp_lock_cache(); mn10300_local_dcache_inv(); smp_cache_call(SMP_DCACHE_INV, 0, 0); smp_unlock_cache(flags); }
/** * mn10300_icache_inv_range2 - Globally invalidate range of instruction cache * @start: The start address of the region to be invalidated. * @size: The size of the region to be invalidated. * * Invalidate a range of addresses in the instruction cache on all CPUs, * between start and start+size-1 inclusive. */ void mn10300_icache_inv_range2(unsigned long start, unsigned long size) { unsigned long flags; flags = smp_lock_cache(); mn10300_local_icache_inv_range2(start, size); smp_cache_call(SMP_ICACHE_INV_RANGE, start, start + size); smp_unlock_cache(flags); }
/** * mn10300_dcache_inv_range - Globally invalidate range of data cache * @start: The start address of the region to be invalidated. * @end: The end address of the region to be invalidated. * * Invalidate a range of addresses in the data cache on all CPUs, between start * and end-1 inclusive. */ void mn10300_dcache_inv_range(unsigned long start, unsigned long end) { unsigned long flags; flags = smp_lock_cache(); mn10300_local_dcache_inv_range(start, end); smp_cache_call(SMP_DCACHE_INV_RANGE, start, end); smp_unlock_cache(flags); }
/** * mn10300_dcache_flush_range2 - Globally flush range of data cache * @start: The start address of the region to be flushed. * @size: The size of the region to be flushed. * * Flush a range of addresses in the data cache on all CPUs, between start and * start+size-1 inclusive. */ void mn10300_dcache_flush_range2(unsigned long start, unsigned long size) { unsigned long flags; flags = smp_lock_cache(); mn10300_local_dcache_flush_range2(start, size); smp_cache_call(SMP_DCACHE_FLUSH_RANGE, start, start + size); smp_unlock_cache(flags); }
/** * mn10300_dcache_flush - Globally flush data cache * * Flush the data cache on all CPUs. */ void mn10300_dcache_flush(void) { unsigned long flags; flags = smp_lock_cache(); mn10300_local_dcache_flush(); smp_cache_call(SMP_DCACHE_FLUSH, 0, 0); smp_unlock_cache(flags); }
/** * mn10300_icache_inv_page - Globally invalidate a page of instruction cache * @start: The address of the page of memory to be invalidated. * * Invalidate a range of addresses in the instruction cache on all CPUs * covering the page that includes the given address. */ void mn10300_icache_inv_page(unsigned long start) { unsigned long flags; start &= ~(PAGE_SIZE-1); flags = smp_lock_cache(); mn10300_local_icache_inv_page(start); smp_cache_call(SMP_ICACHE_INV_RANGE, start, start + PAGE_SIZE); smp_unlock_cache(flags); }
/** * mn10300_dcache_flush_page - Globally flush a page of data cache * @start: The address of the page of memory to be flushed. * * Flush a range of addresses in the data cache on all CPUs covering * the page that includes the given address. */ void mn10300_dcache_flush_page(unsigned long start) { unsigned long flags; start &= ~(PAGE_SIZE-1); flags = smp_lock_cache(); mn10300_local_dcache_flush_page(start); smp_cache_call(SMP_DCACHE_FLUSH_RANGE, start, start + PAGE_SIZE); smp_unlock_cache(flags); }
/** * flush_icache_page - Flush a page from the dcache and invalidate the icache * @vma: The VMA the page is part of. * @page: The page to be flushed. * * Write a page back from the dcache and invalidate the icache so that we can * run code from it that we've just written into it */ void flush_icache_page(struct vm_area_struct *vma, struct page *page) { unsigned long start = page_to_phys(page); unsigned long flags; flags = smp_lock_cache(); mn10300_local_dcache_flush_page(start); mn10300_local_icache_inv_page(start); smp_cache_call(SMP_IDCACHE_INV_FLUSH_RANGE, start, start + PAGE_SIZE); smp_unlock_cache(flags); }
/** * flush_icache_page_range - Flush dcache and invalidate icache for part of a * single page * @start: The starting virtual address of the page part. * @end: The ending virtual address of the page part. * * Flush the dcache and invalidate the icache for part of a single page, as * determined by the virtual addresses given. The page must be in the paged * area. */ static void flush_icache_page_range(unsigned long start, unsigned long end) { unsigned long addr, size, off; struct page *page; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *ppte, pte; /* work out how much of the page to flush */ off = start & ~PAGE_MASK; size = end - start; /* get the physical address the page is mapped to from the page * tables */ pgd = pgd_offset(current->mm, start); if (!pgd || !pgd_val(*pgd)) return; pud = pud_offset(pgd, start); if (!pud || !pud_val(*pud)) return; pmd = pmd_offset(pud, start); if (!pmd || !pmd_val(*pmd)) return; ppte = pte_offset_map(pmd, start); if (!ppte) return; pte = *ppte; pte_unmap(ppte); if (pte_none(pte)) return; page = pte_page(pte); if (!page) return; addr = page_to_phys(page); /* flush the dcache and invalidate the icache coverage on that * region */ mn10300_local_dcache_flush_range2(addr + off, size); mn10300_local_icache_inv_range2(addr + off, size); smp_cache_call(SMP_IDCACHE_INV_FLUSH_RANGE, start, end); }
static void flush_icache_page_range(unsigned long start, unsigned long end) { unsigned long addr, size, off; struct page *page; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *ppte, pte; /* */ off = start & ~PAGE_MASK; size = end - start; /* */ pgd = pgd_offset(current->mm, start); if (!pgd || !pgd_val(*pgd)) return; pud = pud_offset(pgd, start); if (!pud || !pud_val(*pud)) return; pmd = pmd_offset(pud, start); if (!pmd || !pmd_val(*pmd)) return; ppte = pte_offset_map(pmd, start); if (!ppte) return; pte = *ppte; pte_unmap(ppte); if (pte_none(pte)) return; page = pte_page(pte); if (!page) return; addr = page_to_phys(page); /* */ mn10300_local_dcache_flush_range2(addr + off, size); mn10300_local_icache_inv_range2(addr + off, size); smp_cache_call(SMP_IDCACHE_INV_FLUSH_RANGE, start, end); }