/* * Bring one cpu online. */ int smp_boot_one_cpu(int cpuid, struct task_struct *idle) { const struct cpuinfo_parisc *p = &per_cpu(cpu_data, cpuid); long timeout; task_thread_info(idle)->cpu = cpuid; /* Let _start know what logical CPU we're booting ** (offset into init_tasks[],cpu_data[]) */ cpu_now_booting = cpuid; /* ** boot strap code needs to know the task address since ** it also contains the process stack. */ smp_init_current_idle_task = idle ; mb(); printk(KERN_INFO "Releasing cpu %d now, hpa=%lx\n", cpuid, p->hpa); /* ** This gets PDC to release the CPU from a very tight loop. ** ** From the PA-RISC 2.0 Firmware Architecture Reference Specification: ** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which ** is executed after receiving the rendezvous signal (an interrupt to ** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the ** contents of memory are valid." */ gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, p->hpa); mb(); /* * OK, wait a bit for that CPU to finish staggering about. * Slave will set a bit when it reaches smp_cpu_init(). * Once the "monarch CPU" sees the bit change, it can move on. */ for (timeout = 0; timeout < 10000; timeout++) { if(cpu_online(cpuid)) { /* Which implies Slave has started up */ cpu_now_booting = 0; smp_init_current_idle_task = NULL; goto alive ; } udelay(100); barrier(); } printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid); return -1; alive: /* Remember the Slave data */ smp_debug(100, KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n", cpuid, timeout * 100); return 0; }
/* * ipi_send() * Send an Interprocessor Interrupt. */ static void ipi_send(int cpu, enum ipi_message_type op) { struct cpuinfo_ubicom32 *p = &per_cpu(cpu_data, cpu); spinlock_t *lock = &per_cpu(ipi_lock, cpu); unsigned long flags; /* * We protect the setting of the ipi_pending field and ensure * that the ipi delivery mechanism and interrupt are atomically * handled. */ spin_lock_irqsave(lock, flags); p->ipi_pending |= 1 << op; spin_unlock_irqrestore(lock, flags); spin_lock_irqsave(&smp_ipi_lock, flags); smp_needs_ipi |= (1 << p->tid); ubicom32_set_interrupt(smp_ipi_irq); spin_unlock_irqrestore(&smp_ipi_lock, flags); smp_debug(100, KERN_INFO "cpu[%d]: send: %d\n", cpu, op); }
/* * ipi_interrupt() * Handle an Interprocessor Interrupt. */ static irqreturn_t ipi_interrupt(int irq, void *dev_id) { int cpuid = smp_processor_id(); struct cpuinfo_ubicom32 *p = &per_cpu(cpu_data, cpuid); unsigned long ops; /* * Count this now; we may make a call that never returns. */ p->ipi_count++; /* * We are about to process all ops. If another cpu has stated * that we need an IPI, we will have already processed it. By * clearing our smp_needs_ipi, and processing all ops, * we reduce the number of IPI interrupts. However, this introduces * the possibility that smp_needs_ipi will be clear and the soft irq * will have gone off; so we need to make the get_affinity() path * tolerant of spurious interrupts. */ spin_lock(&smp_ipi_lock); smp_needs_ipi &= ~(1 << p->tid); spin_unlock(&smp_ipi_lock); for (;;) { /* * Read the set of IPI commands we should handle. */ spinlock_t *lock = &per_cpu(ipi_lock, cpuid); spin_lock(lock); ops = p->ipi_pending; p->ipi_pending = 0; spin_unlock(lock); /* * If we have no IPI commands to execute, break out. */ if (!ops) { break; } /* * Execute the set of commands in the ops word, one command * at a time in no particular order. Strip of each command * as we execute it. */ while (ops) { unsigned long which = ffz(~ops); ops &= ~(1 << which); BUG_ON(!irqs_disabled()); switch (which) { case IPI_NOP: smp_debug(100, KERN_INFO "cpu[%d]: " "IPI_NOP\n", cpuid); break; case IPI_RESCHEDULE: /* * Reschedule callback. Everything to be * done is done by the interrupt return path. */ smp_debug(200, KERN_INFO "cpu[%d]: " "IPI_RESCHEDULE\n", cpuid); break; case IPI_CALL_FUNC: smp_debug(100, KERN_INFO "cpu[%d]: " "IPI_CALL_FUNC\n", cpuid); generic_smp_call_function_interrupt(); break; case IPI_CALL_FUNC_SINGLE: smp_debug(100, KERN_INFO "cpu[%d]: " "IPI_CALL_FUNC_SINGLE\n", cpuid); generic_smp_call_function_single_interrupt(); break; case IPI_CPU_STOP: smp_debug(100, KERN_INFO "cpu[%d]: " "IPI_CPU_STOP\n", cpuid); smp_halt_processor(); break; #if !defined(CONFIG_LOCAL_TIMERS) case IPI_CPU_TIMER: smp_debug(100, KERN_INFO "cpu[%d]: " "IPI_CPU_TIMER\n", cpuid); #if defined(CONFIG_GENERIC_CLOCKEVENTS) local_timer_interrupt(); #else update_process_times(user_mode(get_irq_regs())); profile_tick(CPU_PROFILING); #endif #endif break; default: printk(KERN_CRIT "cpu[%d]: " "Unknown IPI: %lu\n", cpuid, which); return IRQ_NONE; } } } return IRQ_HANDLED; }
/* * Bring one cpu online. */ int smp_boot_one_cpu(int cpuid) { const struct cpuinfo_parisc *p = &per_cpu(cpu_data, cpuid); struct task_struct *idle; long timeout; /* * Create an idle task for this CPU. Note the address wed* give * to kernel_thread is irrelevant -- it's going to start * where OS_BOOT_RENDEVZ vector in SAL says to start. But * this gets all the other task-y sort of data structures set * up like we wish. We need to pull the just created idle task * off the run queue and stuff it into the init_tasks[] array. * Sheesh . . . */ idle = fork_idle(cpuid); if (IS_ERR(idle)) panic("SMP: fork failed for CPU:%d", cpuid); task_thread_info(idle)->cpu = cpuid; /* Let _start know what logical CPU we're booting ** (offset into init_tasks[],cpu_data[]) */ cpu_now_booting = cpuid; /* ** boot strap code needs to know the task address since ** it also contains the process stack. */ smp_init_current_idle_task = idle ; mb(); printk(KERN_INFO "Releasing cpu %d now, hpa=%lx\n", cpuid, p->hpa); /* ** This gets PDC to release the CPU from a very tight loop. ** ** From the PA-RISC 2.0 Firmware Architecture Reference Specification: ** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which ** is executed after receiving the rendezvous signal (an interrupt to ** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the ** contents of memory are valid." */ gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, p->hpa); mb(); /* * OK, wait a bit for that CPU to finish staggering about. * Slave will set a bit when it reaches smp_cpu_init(). * Once the "monarch CPU" sees the bit change, it can move on. */ for (timeout = 0; timeout < 10000; timeout++) { if(cpu_online(cpuid)) { /* Which implies Slave has started up */ cpu_now_booting = 0; smp_init_current_idle_task = NULL; goto alive ; } udelay(100); barrier(); } put_task_struct(idle); idle = NULL; printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid); return -1; alive: /* Remember the Slave data */ smp_debug(100, KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n", cpuid, timeout * 100); return 0; }
irqreturn_t __irq_entry ipi_interrupt(int irq, void *dev_id) { int this_cpu = smp_processor_id(); struct cpuinfo_parisc *p = &per_cpu(cpu_data, this_cpu); unsigned long ops; unsigned long flags; /* Count this now; we may make a call that never returns. */ p->ipi_count++; mb(); /* Order interrupt and bit testing. */ for (;;) { spinlock_t *lock = &per_cpu(ipi_lock, this_cpu); spin_lock_irqsave(lock, flags); ops = p->pending_ipi; p->pending_ipi = 0; spin_unlock_irqrestore(lock, flags); mb(); /* Order bit clearing and data access. */ if (!ops) break; while (ops) { unsigned long which = ffz(~ops); ops &= ~(1 << which); switch (which) { case IPI_NOP: smp_debug(100, KERN_DEBUG "CPU%d IPI_NOP\n", this_cpu); break; case IPI_RESCHEDULE: smp_debug(100, KERN_DEBUG "CPU%d IPI_RESCHEDULE\n", this_cpu); scheduler_ipi(); break; case IPI_CALL_FUNC: smp_debug(100, KERN_DEBUG "CPU%d IPI_CALL_FUNC\n", this_cpu); generic_smp_call_function_interrupt(); break; case IPI_CALL_FUNC_SINGLE: smp_debug(100, KERN_DEBUG "CPU%d IPI_CALL_FUNC_SINGLE\n", this_cpu); generic_smp_call_function_single_interrupt(); break; case IPI_CPU_START: smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_START\n", this_cpu); break; case IPI_CPU_STOP: smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_STOP\n", this_cpu); halt_processor(); break; case IPI_CPU_TEST: smp_debug(100, KERN_DEBUG "CPU%d is alive!\n", this_cpu); break; default: printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n", this_cpu, which); return IRQ_NONE; } /* Switch */ /* let in any pending interrupts */ local_irq_enable(); local_irq_disable(); } /* while (ops) */ } return IRQ_HANDLED; }
irqreturn_t ipi_interrupt(int irq, void *dev_id) { int this_cpu = smp_processor_id(); struct cpuinfo_parisc *p = &cpu_data[this_cpu]; unsigned long ops; unsigned long flags; /* Count this now; we may make a call that never returns. */ p->ipi_count++; mb(); /* Order interrupt and bit testing. */ for (;;) { spinlock_t *lock = &per_cpu(ipi_lock, this_cpu); spin_lock_irqsave(lock, flags); ops = p->pending_ipi; p->pending_ipi = 0; spin_unlock_irqrestore(lock, flags); mb(); /* Order bit clearing and data access. */ if (!ops) break; while (ops) { unsigned long which = ffz(~ops); ops &= ~(1 << which); switch (which) { case IPI_NOP: smp_debug(100, KERN_DEBUG "CPU%d IPI_NOP\n", this_cpu); break; case IPI_RESCHEDULE: smp_debug(100, KERN_DEBUG "CPU%d IPI_RESCHEDULE\n", this_cpu); /* * Reschedule callback. Everything to be * done is done by the interrupt return path. */ break; case IPI_CALL_FUNC: smp_debug(100, KERN_DEBUG "CPU%d IPI_CALL_FUNC\n", this_cpu); { volatile struct smp_call_struct *data; void (*func)(void *info); void *info; int wait; data = smp_call_function_data; func = data->func; info = data->info; wait = data->wait; mb(); atomic_dec ((atomic_t *)&data->unstarted_count); /* At this point, *data can't * be relied upon. */ (*func)(info); /* Notify the sending CPU that the * task is done. */ mb(); if (wait) atomic_dec ((atomic_t *)&data->unfinished_count); } break; case IPI_CPU_START: smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_START\n", this_cpu); break; case IPI_CPU_STOP: smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_STOP\n", this_cpu); halt_processor(); break; case IPI_CPU_TEST: smp_debug(100, KERN_DEBUG "CPU%d is alive!\n", this_cpu); break; default: printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n", this_cpu, which); return IRQ_NONE; } /* Switch */ /* let in any pending interrupts */ local_irq_enable(); local_irq_disable(); } /* while (ops) */ } return IRQ_HANDLED; }