/* Subroutine */ int serrlq_(char *path, integer *nunit)
{
    /* Local variables */
    real a[4]	/* was [2][2] */, b[2];
    integer i__, j;
    real w[2], x[2], af[4]	/* was [2][2] */;
    integer info;

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SERRLQ tests the error exits for the REAL routines */
/*  that use the LQ decomposition of a general matrix. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 2; ++j) {
	for (i__ = 1; i__ <= 2; ++i__) {
	    a[i__ + (j << 1) - 3] = 1.f / (real) (i__ + j);
	    af[i__ + (j << 1) - 3] = 1.f / (real) (i__ + j);
/* L10: */
	}
	b[j - 1] = 0.f;
	w[j - 1] = 0.f;
	x[j - 1] = 0.f;
/* L20: */
    }
    infoc_1.ok = TRUE_;

/*     Error exits for LQ factorization */

/*     SGELQF */

    s_copy(srnamc_1.srnamt, "SGELQF", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    sgelqf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info);
    chkxer_("SGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    sgelqf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info);
    chkxer_("SGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    sgelqf_(&c__2, &c__1, a, &c__1, b, w, &c__2, &info);
    chkxer_("SGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    sgelqf_(&c__2, &c__1, a, &c__2, b, w, &c__1, &info);
    chkxer_("SGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     SGELQ2 */

    s_copy(srnamc_1.srnamt, "SGELQ2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    sgelq2_(&c_n1, &c__0, a, &c__1, b, w, &info);
    chkxer_("SGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    sgelq2_(&c__0, &c_n1, a, &c__1, b, w, &info);
    chkxer_("SGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    sgelq2_(&c__2, &c__1, a, &c__1, b, w, &info);
    chkxer_("SGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     SGELQS */

    s_copy(srnamc_1.srnamt, "SGELQS", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    sgelqs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("SGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    sgelqs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("SGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    sgelqs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info);
    chkxer_("SGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    sgelqs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("SGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    sgelqs_(&c__2, &c__2, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info);
    chkxer_("SGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    sgelqs_(&c__1, &c__2, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("SGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    sgelqs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("SGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     SORGLQ */

    s_copy(srnamc_1.srnamt, "SORGLQ", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    sorglq_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("SORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    sorglq_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("SORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    sorglq_(&c__2, &c__1, &c__0, a, &c__2, x, w, &c__2, &info);
    chkxer_("SORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    sorglq_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info);
    chkxer_("SORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    sorglq_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info);
    chkxer_("SORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    sorglq_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info);
    chkxer_("SORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    sorglq_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info);
    chkxer_("SORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     SORGL2 */

    s_copy(srnamc_1.srnamt, "SORGL2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    sorgl2_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info);
    chkxer_("SORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    sorgl2_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info);
    chkxer_("SORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    sorgl2_(&c__2, &c__1, &c__0, a, &c__2, x, w, &info);
    chkxer_("SORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    sorgl2_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info);
    chkxer_("SORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    sorgl2_(&c__1, &c__1, &c__2, a, &c__1, x, w, &info);
    chkxer_("SORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    sorgl2_(&c__2, &c__2, &c__0, a, &c__1, x, w, &info);
    chkxer_("SORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     SORMLQ */

    s_copy(srnamc_1.srnamt, "SORMLQ", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    sormlq_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("SORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    sormlq_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("SORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    sormlq_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("SORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    sormlq_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("SORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    sormlq_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("SORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    sormlq_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("SORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    sormlq_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("SORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    sormlq_("L", "N", &c__2, &c__0, &c__2, a, &c__1, x, af, &c__2, w, &c__1, &
	    info);
    chkxer_("SORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    sormlq_("R", "N", &c__0, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("SORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    sormlq_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("SORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 12;
    sormlq_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("SORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 12;
    sormlq_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, &
	    info);
    chkxer_("SORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     SORML2 */

    s_copy(srnamc_1.srnamt, "SORML2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    sorml2_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("SORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    sorml2_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("SORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    sorml2_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("SORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    sorml2_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("SORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    sorml2_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("SORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    sorml2_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("SORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    sorml2_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("SORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    sorml2_("L", "N", &c__2, &c__1, &c__2, a, &c__1, x, af, &c__2, w, &info);
    chkxer_("SORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    sorml2_("R", "N", &c__1, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("SORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    sorml2_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info);
    chkxer_("SORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of SERRLQ */

} /* serrlq_ */
Exemple #2
0
/* Subroutine */ int sormbr_(char *vect, char *side, char *trans, integer *m, 
	integer *n, integer *k, real *a, integer *lda, real *tau, real *c__, 
	integer *ldc, real *work, integer *lwork, integer *info)
{
    /* System generated locals */
    address a__1[2];
    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2];
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i1, i2, nb, mi, ni, nq, nw;
    logical left;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    logical notran, applyq;
    char transt[1];
    extern /* Subroutine */ int sormlq_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, real *, integer *, real *, 
	    integer *, integer *);
    integer lwkopt;
    logical lquery;
    extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, real *, integer *, real *, 
	    integer *, integer *);


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C */
/*  with */
/*                  SIDE = 'L'     SIDE = 'R' */
/*  TRANS = 'N':      Q * C          C * Q */
/*  TRANS = 'T':      Q**T * C       C * Q**T */

/*  If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C */
/*  with */
/*                  SIDE = 'L'     SIDE = 'R' */
/*  TRANS = 'N':      P * C          C * P */
/*  TRANS = 'T':      P**T * C       C * P**T */

/*  Here Q and P**T are the orthogonal matrices determined by SGEBRD when */
/*  reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and */
/*  P**T are defined as products of elementary reflectors H(i) and G(i) */
/*  respectively. */

/*  Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the */
/*  order of the orthogonal matrix Q or P**T that is applied. */

/*  If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: */
/*  if nq >= k, Q = H(1) H(2) . . . H(k); */
/*  if nq < k, Q = H(1) H(2) . . . H(nq-1). */

/*  If VECT = 'P', A is assumed to have been a K-by-NQ matrix: */
/*  if k < nq, P = G(1) G(2) . . . G(k); */
/*  if k >= nq, P = G(1) G(2) . . . G(nq-1). */

/*  Arguments */
/*  ========= */

/*  VECT    (input) CHARACTER*1 */
/*          = 'Q': apply Q or Q**T; */
/*          = 'P': apply P or P**T. */

/*  SIDE    (input) CHARACTER*1 */
/*          = 'L': apply Q, Q**T, P or P**T from the Left; */
/*          = 'R': apply Q, Q**T, P or P**T from the Right. */

/*  TRANS   (input) CHARACTER*1 */
/*          = 'N':  No transpose, apply Q  or P; */
/*          = 'T':  Transpose, apply Q**T or P**T. */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix C. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix C. N >= 0. */

/*  K       (input) INTEGER */
/*          If VECT = 'Q', the number of columns in the original */
/*          matrix reduced by SGEBRD. */
/*          If VECT = 'P', the number of rows in the original */
/*          matrix reduced by SGEBRD. */
/*          K >= 0. */

/*  A       (input) REAL array, dimension */
/*                                (LDA,min(nq,K)) if VECT = 'Q' */
/*                                (LDA,nq)        if VECT = 'P' */
/*          The vectors which define the elementary reflectors H(i) and */
/*          G(i), whose products determine the matrices Q and P, as */
/*          returned by SGEBRD. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. */
/*          If VECT = 'Q', LDA >= max(1,nq); */
/*          if VECT = 'P', LDA >= max(1,min(nq,K)). */

/*  TAU     (input) REAL array, dimension (min(nq,K)) */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i) or G(i) which determines Q or P, as returned */
/*          by SGEBRD in the array argument TAUQ or TAUP. */

/*  C       (input/output) REAL array, dimension (LDC,N) */
/*          On entry, the M-by-N matrix C. */
/*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q */
/*          or P*C or P**T*C or C*P or C*P**T. */

/*  LDC     (input) INTEGER */
/*          The leading dimension of the array C. LDC >= max(1,M). */

/*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          If SIDE = 'L', LWORK >= max(1,N); */
/*          if SIDE = 'R', LWORK >= max(1,M). */
/*          For optimum performance LWORK >= N*NB if SIDE = 'L', and */
/*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
/*          blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;

    /* Function Body */
    *info = 0;
    applyq = lsame_(vect, "Q");
    left = lsame_(side, "L");
    notran = lsame_(trans, "N");
    lquery = *lwork == -1;

/*     NQ is the order of Q or P and NW is the minimum dimension of WORK */

    if (left) {
	nq = *m;
	nw = *n;
    } else {
	nq = *n;
	nw = *m;
    }
    if (! applyq && ! lsame_(vect, "P")) {
	*info = -1;
    } else if (! left && ! lsame_(side, "R")) {
	*info = -2;
    } else if (! notran && ! lsame_(trans, "T")) {
	*info = -3;
    } else if (*m < 0) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*k < 0) {
	*info = -6;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = 1, i__2 = min(nq,*k);
	if (applyq && *lda < max(1,nq) || ! applyq && *lda < max(i__1,i__2)) {
	    *info = -8;
	} else if (*ldc < max(1,*m)) {
	    *info = -11;
	} else if (*lwork < max(1,nw) && ! lquery) {
	    *info = -13;
	}
    }

    if (*info == 0) {
	if (applyq) {
	    if (left) {
/* Writing concatenation */
		i__3[0] = 1, a__1[0] = side;
		i__3[1] = 1, a__1[1] = trans;
		s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
		i__1 = *m - 1;
		i__2 = *m - 1;
		nb = ilaenv_(&c__1, "SORMQR", ch__1, &i__1, n, &i__2, &c_n1);
	    } else {
/* Writing concatenation */
		i__3[0] = 1, a__1[0] = side;
		i__3[1] = 1, a__1[1] = trans;
		s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
		i__1 = *n - 1;
		i__2 = *n - 1;
		nb = ilaenv_(&c__1, "SORMQR", ch__1, m, &i__1, &i__2, &c_n1);
	    }
	} else {
	    if (left) {
/* Writing concatenation */
		i__3[0] = 1, a__1[0] = side;
		i__3[1] = 1, a__1[1] = trans;
		s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
		i__1 = *m - 1;
		i__2 = *m - 1;
		nb = ilaenv_(&c__1, "SORMLQ", ch__1, &i__1, n, &i__2, &c_n1);
	    } else {
/* Writing concatenation */
		i__3[0] = 1, a__1[0] = side;
		i__3[1] = 1, a__1[1] = trans;
		s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
		i__1 = *n - 1;
		i__2 = *n - 1;
		nb = ilaenv_(&c__1, "SORMLQ", ch__1, m, &i__1, &i__2, &c_n1);
	    }
	}
	lwkopt = max(1,nw) * nb;
	work[1] = (real) lwkopt;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SORMBR", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    work[1] = 1.f;
    if (*m == 0 || *n == 0) {
	return 0;
    }

    if (applyq) {

/*        Apply Q */

	if (nq >= *k) {

/*           Q was determined by a call to SGEBRD with nq >= k */

	    sormqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
		    c_offset], ldc, &work[1], lwork, &iinfo);
	} else if (nq > 1) {

/*           Q was determined by a call to SGEBRD with nq < k */

	    if (left) {
		mi = *m - 1;
		ni = *n;
		i1 = 2;
		i2 = 1;
	    } else {
		mi = *m;
		ni = *n - 1;
		i1 = 1;
		i2 = 2;
	    }
	    i__1 = nq - 1;
	    sormqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1]
, &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
	}
    } else {

/*        Apply P */

	if (notran) {
	    *(unsigned char *)transt = 'T';
	} else {
	    *(unsigned char *)transt = 'N';
	}
	if (nq > *k) {

/*           P was determined by a call to SGEBRD with nq > k */

	    sormlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[
		    c_offset], ldc, &work[1], lwork, &iinfo);
	} else if (nq > 1) {

/*           P was determined by a call to SGEBRD with nq <= k */

	    if (left) {
		mi = *m - 1;
		ni = *n;
		i1 = 2;
		i2 = 1;
	    } else {
		mi = *m;
		ni = *n - 1;
		i1 = 1;
		i2 = 2;
	    }
	    i__1 = nq - 1;
	    sormlq_(side, transt, &mi, &ni, &i__1, &a[(a_dim1 << 1) + 1], lda, 
		     &tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &
		    iinfo);
	}
    }
    work[1] = (real) lwkopt;
    return 0;

/*     End of SORMBR */

} /* sormbr_ */
Exemple #3
0
/* Subroutine */ int slqt03_(integer *m, integer *n, integer *k, real *af, 
	real *c__, real *cc, real *q, integer *lda, real *tau, real *work, 
	integer *lwork, real *rwork, real *result)
{
    /* Initialized data */

    static integer iseed[4] = { 1988,1989,1990,1991 };

    /* System generated locals */
    integer af_dim1, af_offset, c_dim1, c_offset, cc_dim1, cc_offset, q_dim1, 
	    q_offset, i__1;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    integer j, mc, nc;
    real eps;
    char side[1];
    integer info, iside;
    extern logical lsame_(char *, char *);
    real resid;
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    real cnorm;
    char trans[1];
    extern doublereal slamch_(char *), slange_(char *, integer *, 
	    integer *, real *, integer *, real *);
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slaset_(char *, integer *, 
	    integer *, real *, real *, real *, integer *);
    integer itrans;
    extern /* Subroutine */ int slarnv_(integer *, integer *, integer *, real 
	    *), sorglq_(integer *, integer *, integer *, real *, integer *, 
	    real *, real *, integer *, integer *), sormlq_(char *, char *, 
	    integer *, integer *, integer *, real *, integer *, real *, real *
, integer *, real *, integer *, integer *);


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLQT03 tests SORMLQ, which computes Q*C, Q'*C, C*Q or C*Q'. */

/*  SLQT03 compares the results of a call to SORMLQ with the results of */
/*  forming Q explicitly by a call to SORGLQ and then performing matrix */
/*  multiplication by a call to SGEMM. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows or columns of the matrix C; C is n-by-m if */
/*          Q is applied from the left, or m-by-n if Q is applied from */
/*          the right.  M >= 0. */

/*  N       (input) INTEGER */
/*          The order of the orthogonal matrix Q.  N >= 0. */

/*  K       (input) INTEGER */
/*          The number of elementary reflectors whose product defines the */
/*          orthogonal matrix Q.  N >= K >= 0. */

/*  AF      (input) REAL array, dimension (LDA,N) */
/*          Details of the LQ factorization of an m-by-n matrix, as */
/*          returned by SGELQF. See SGELQF for further details. */

/*  C       (workspace) REAL array, dimension (LDA,N) */

/*  CC      (workspace) REAL array, dimension (LDA,N) */

/*  Q       (workspace) REAL array, dimension (LDA,N) */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the arrays AF, C, CC, and Q. */

/*  TAU     (input) REAL array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors corresponding */
/*          to the LQ factorization in AF. */

/*  WORK    (workspace) REAL array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The length of WORK.  LWORK must be at least M, and should be */
/*          M*NB, where NB is the blocksize for this environment. */

/*  RWORK   (workspace) REAL array, dimension (M) */

/*  RESULT  (output) REAL array, dimension (4) */
/*          The test ratios compare two techniques for multiplying a */
/*          random matrix C by an n-by-n orthogonal matrix Q. */
/*          RESULT(1) = norm( Q*C - Q*C )  / ( N * norm(C) * EPS ) */
/*          RESULT(2) = norm( C*Q - C*Q )  / ( N * norm(C) * EPS ) */
/*          RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS ) */
/*          RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS ) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    q_dim1 = *lda;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    cc_dim1 = *lda;
    cc_offset = 1 + cc_dim1;
    cc -= cc_offset;
    c_dim1 = *lda;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    af_dim1 = *lda;
    af_offset = 1 + af_dim1;
    af -= af_offset;
    --tau;
    --work;
    --rwork;
    --result;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    eps = slamch_("Epsilon");

/*     Copy the first k rows of the factorization to the array Q */

    slaset_("Full", n, n, &c_b4, &c_b4, &q[q_offset], lda);
    i__1 = *n - 1;
    slacpy_("Upper", k, &i__1, &af[(af_dim1 << 1) + 1], lda, &q[(q_dim1 << 1) 
	    + 1], lda);

/*     Generate the n-by-n matrix Q */

    s_copy(srnamc_1.srnamt, "SORGLQ", (ftnlen)32, (ftnlen)6);
    sorglq_(n, n, k, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);

    for (iside = 1; iside <= 2; ++iside) {
	if (iside == 1) {
	    *(unsigned char *)side = 'L';
	    mc = *n;
	    nc = *m;
	} else {
	    *(unsigned char *)side = 'R';
	    mc = *m;
	    nc = *n;
	}

/*        Generate MC by NC matrix C */

	i__1 = nc;
	for (j = 1; j <= i__1; ++j) {
	    slarnv_(&c__2, iseed, &mc, &c__[j * c_dim1 + 1]);
/* L10: */
	}
	cnorm = slange_("1", &mc, &nc, &c__[c_offset], lda, &rwork[1]);
	if (cnorm == 0.f) {
	    cnorm = 1.f;
	}

	for (itrans = 1; itrans <= 2; ++itrans) {
	    if (itrans == 1) {
		*(unsigned char *)trans = 'N';
	    } else {
		*(unsigned char *)trans = 'T';
	    }

/*           Copy C */

	    slacpy_("Full", &mc, &nc, &c__[c_offset], lda, &cc[cc_offset], 
		    lda);

/*           Apply Q or Q' to C */

	    s_copy(srnamc_1.srnamt, "SORMLQ", (ftnlen)32, (ftnlen)6);
	    sormlq_(side, trans, &mc, &nc, k, &af[af_offset], lda, &tau[1], &
		    cc[cc_offset], lda, &work[1], lwork, &info);

/*           Form explicit product and subtract */

	    if (lsame_(side, "L")) {
		sgemm_(trans, "No transpose", &mc, &nc, &mc, &c_b21, &q[
			q_offset], lda, &c__[c_offset], lda, &c_b22, &cc[
			cc_offset], lda);
	    } else {
		sgemm_("No transpose", trans, &mc, &nc, &nc, &c_b21, &c__[
			c_offset], lda, &q[q_offset], lda, &c_b22, &cc[
			cc_offset], lda);
	    }

/*           Compute error in the difference */

	    resid = slange_("1", &mc, &nc, &cc[cc_offset], lda, &rwork[1]);
	    result[(iside - 1 << 1) + itrans] = resid / ((real) max(1,*n) * 
		    cnorm * eps);

/* L20: */
	}
/* L30: */
    }

    return 0;

/*     End of SLQT03 */

} /* slqt03_ */
Exemple #4
0
/* Subroutine */ int sgels_(char *trans, integer *m, integer *n, integer *
	nrhs, real *a, integer *lda, real *b, integer *ldb, real *work, 
	integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;

    /* Local variables */
    integer i__, j, nb, mn;
    real anrm, bnrm;
    integer brow;
    logical tpsd;
    integer iascl, ibscl;
    extern logical lsame_(char *, char *);
    integer wsize;
    real rwork[1];
    extern /* Subroutine */ int slabad_(real *, real *);
    extern doublereal slamch_(char *), slange_(char *, integer *, 
	    integer *, real *, integer *, real *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    integer scllen;
    real bignum;
    extern /* Subroutine */ int sgelqf_(integer *, integer *, real *, integer 
	    *, real *, real *, integer *, integer *), slascl_(char *, integer 
	    *, integer *, real *, real *, integer *, integer *, real *, 
	    integer *, integer *), sgeqrf_(integer *, integer *, real 
	    *, integer *, real *, real *, integer *, integer *), slaset_(char 
	    *, integer *, integer *, real *, real *, real *, integer *);
    real smlnum;
    extern /* Subroutine */ int sormlq_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, real *, integer *, real *, 
	    integer *, integer *);
    logical lquery;
    extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, real *, integer *, real *, 
	    integer *, integer *), strtrs_(char *, char *, 
	    char *, integer *, integer *, real *, integer *, real *, integer *
, integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SGELS solves overdetermined or underdetermined real linear systems */
/*  involving an M-by-N matrix A, or its transpose, using a QR or LQ */
/*  factorization of A.  It is assumed that A has full rank. */

/*  The following options are provided: */

/*  1. If TRANS = 'N' and m >= n:  find the least squares solution of */
/*     an overdetermined system, i.e., solve the least squares problem */
/*                  minimize || B - A*X ||. */

/*  2. If TRANS = 'N' and m < n:  find the minimum norm solution of */
/*     an underdetermined system A * X = B. */

/*  3. If TRANS = 'T' and m >= n:  find the minimum norm solution of */
/*     an undetermined system A**T * X = B. */

/*  4. If TRANS = 'T' and m < n:  find the least squares solution of */
/*     an overdetermined system, i.e., solve the least squares problem */
/*                  minimize || B - A**T * X ||. */

/*  Several right hand side vectors b and solution vectors x can be */
/*  handled in a single call; they are stored as the columns of the */
/*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
/*  matrix X. */

/*  Arguments */
/*  ========= */

/*  TRANS   (input) CHARACTER*1 */
/*          = 'N': the linear system involves A; */
/*          = 'T': the linear system involves A**T. */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of */
/*          columns of the matrices B and X. NRHS >=0. */

/*  A       (input/output) REAL array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, */
/*            if M >= N, A is overwritten by details of its QR */
/*                       factorization as returned by SGEQRF; */
/*            if M <  N, A is overwritten by details of its LQ */
/*                       factorization as returned by SGELQF. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  B       (input/output) REAL array, dimension (LDB,NRHS) */
/*          On entry, the matrix B of right hand side vectors, stored */
/*          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */
/*          if TRANS = 'T'. */
/*          On exit, if INFO = 0, B is overwritten by the solution */
/*          vectors, stored columnwise: */
/*          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */
/*          squares solution vectors; the residual sum of squares for the */
/*          solution in each column is given by the sum of squares of */
/*          elements N+1 to M in that column; */
/*          if TRANS = 'N' and m < n, rows 1 to N of B contain the */
/*          minimum norm solution vectors; */
/*          if TRANS = 'T' and m >= n, rows 1 to M of B contain the */
/*          minimum norm solution vectors; */
/*          if TRANS = 'T' and m < n, rows 1 to M of B contain the */
/*          least squares solution vectors; the residual sum of squares */
/*          for the solution in each column is given by the sum of */
/*          squares of elements M+1 to N in that column. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= MAX(1,M,N). */

/*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          LWORK >= max( 1, MN + max( MN, NRHS ) ). */
/*          For optimal performance, */
/*          LWORK >= max( 1, MN + max( MN, NRHS )*NB ). */
/*          where MN = min(M,N) and NB is the optimum block size. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO =  i, the i-th diagonal element of the */
/*                triangular factor of A is zero, so that A does not have */
/*                full rank; the least squares solution could not be */
/*                computed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --work;

    /* Function Body */
    *info = 0;
    mn = min(*m,*n);
    lquery = *lwork == -1;
    if (! (lsame_(trans, "N") || lsame_(trans, "T"))) {
	*info = -1;
    } else if (*m < 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (*lda < max(1,*m)) {
	*info = -6;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m);
	if (*ldb < max(i__1,*n)) {
	    *info = -8;
	} else /* if(complicated condition) */ {
/* Computing MAX */
	    i__1 = 1, i__2 = mn + max(mn,*nrhs);
	    if (*lwork < max(i__1,i__2) && ! lquery) {
		*info = -10;
	    }
	}
    }

/*     Figure out optimal block size */

    if (*info == 0 || *info == -10) {

	tpsd = TRUE_;
	if (lsame_(trans, "N")) {
	    tpsd = FALSE_;
	}

	if (*m >= *n) {
	    nb = ilaenv_(&c__1, "SGEQRF", " ", m, n, &c_n1, &c_n1);
	    if (tpsd) {
/* Computing MAX */
		i__1 = nb, i__2 = ilaenv_(&c__1, "SORMQR", "LN", m, nrhs, n, &
			c_n1);
		nb = max(i__1,i__2);
	    } else {
/* Computing MAX */
		i__1 = nb, i__2 = ilaenv_(&c__1, "SORMQR", "LT", m, nrhs, n, &
			c_n1);
		nb = max(i__1,i__2);
	    }
	} else {
	    nb = ilaenv_(&c__1, "SGELQF", " ", m, n, &c_n1, &c_n1);
	    if (tpsd) {
/* Computing MAX */
		i__1 = nb, i__2 = ilaenv_(&c__1, "SORMLQ", "LT", n, nrhs, m, &
			c_n1);
		nb = max(i__1,i__2);
	    } else {
/* Computing MAX */
		i__1 = nb, i__2 = ilaenv_(&c__1, "SORMLQ", "LN", n, nrhs, m, &
			c_n1);
		nb = max(i__1,i__2);
	    }
	}

/* Computing MAX */
	i__1 = 1, i__2 = mn + max(mn,*nrhs) * nb;
	wsize = max(i__1,i__2);
	work[1] = (real) wsize;

    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SGELS ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

/* Computing MIN */
    i__1 = min(*m,*n);
    if (min(i__1,*nrhs) == 0) {
	i__1 = max(*m,*n);
	slaset_("Full", &i__1, nrhs, &c_b33, &c_b33, &b[b_offset], ldb);
	return 0;
    }

/*     Get machine parameters */

    smlnum = slamch_("S") / slamch_("P");
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);

/*     Scale A, B if max element outside range [SMLNUM,BIGNUM] */

    anrm = slange_("M", m, n, &a[a_offset], lda, rwork);
    iascl = 0;
    if (anrm > 0.f && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
		info);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
		info);
	iascl = 2;
    } else if (anrm == 0.f) {

/*        Matrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	slaset_("F", &i__1, nrhs, &c_b33, &c_b33, &b[b_offset], ldb);
	goto L50;
    }

    brow = *m;
    if (tpsd) {
	brow = *n;
    }
    bnrm = slange_("M", &brow, nrhs, &b[b_offset], ldb, rwork);
    ibscl = 0;
    if (bnrm > 0.f && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	slascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset], 
		ldb, info);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	slascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset], 
		ldb, info);
	ibscl = 2;
    }

    if (*m >= *n) {

/*        compute QR factorization of A */

	i__1 = *lwork - mn;
	sgeqrf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
		;

/*        workspace at least N, optimally N*NB */

	if (! tpsd) {

/*           Least-Squares Problem min || A * X - B || */

/*           B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */

	    i__1 = *lwork - mn;
	    sormqr_("Left", "Transpose", m, nrhs, n, &a[a_offset], lda, &work[
		    1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);

/*           workspace at least NRHS, optimally NRHS*NB */

/*           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */

	    strtrs_("Upper", "No transpose", "Non-unit", n, nrhs, &a[a_offset]
, lda, &b[b_offset], ldb, info);

	    if (*info > 0) {
		return 0;
	    }

	    scllen = *n;

	} else {

/*           Overdetermined system of equations A' * X = B */

/*           B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS) */

	    strtrs_("Upper", "Transpose", "Non-unit", n, nrhs, &a[a_offset], 
		    lda, &b[b_offset], ldb, info);

	    if (*info > 0) {
		return 0;
	    }

/*           B(N+1:M,1:NRHS) = ZERO */

	    i__1 = *nrhs;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = *n + 1; i__ <= i__2; ++i__) {
		    b[i__ + j * b_dim1] = 0.f;
/* L10: */
		}
/* L20: */
	    }

/*           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */

	    i__1 = *lwork - mn;
	    sormqr_("Left", "No transpose", m, nrhs, n, &a[a_offset], lda, &
		    work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);

/*           workspace at least NRHS, optimally NRHS*NB */

	    scllen = *m;

	}

    } else {

/*        Compute LQ factorization of A */

	i__1 = *lwork - mn;
	sgelqf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
		;

/*        workspace at least M, optimally M*NB. */

	if (! tpsd) {

/*           underdetermined system of equations A * X = B */

/*           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */

	    strtrs_("Lower", "No transpose", "Non-unit", m, nrhs, &a[a_offset]
, lda, &b[b_offset], ldb, info);

	    if (*info > 0) {
		return 0;
	    }

/*           B(M+1:N,1:NRHS) = 0 */

	    i__1 = *nrhs;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n;
		for (i__ = *m + 1; i__ <= i__2; ++i__) {
		    b[i__ + j * b_dim1] = 0.f;
/* L30: */
		}
/* L40: */
	    }

/*           B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS) */

	    i__1 = *lwork - mn;
	    sormlq_("Left", "Transpose", n, nrhs, m, &a[a_offset], lda, &work[
		    1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);

/*           workspace at least NRHS, optimally NRHS*NB */

	    scllen = *n;

	} else {

/*           overdetermined system min || A' * X - B || */

/*           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */

	    i__1 = *lwork - mn;
	    sormlq_("Left", "No transpose", n, nrhs, m, &a[a_offset], lda, &
		    work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);

/*           workspace at least NRHS, optimally NRHS*NB */

/*           B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS) */

	    strtrs_("Lower", "Transpose", "Non-unit", m, nrhs, &a[a_offset], 
		    lda, &b[b_offset], ldb, info);

	    if (*info > 0) {
		return 0;
	    }

	    scllen = *m;

	}

    }

/*     Undo scaling */

    if (iascl == 1) {
	slascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset]
, ldb, info);
    } else if (iascl == 2) {
	slascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset]
, ldb, info);
    }
    if (ibscl == 1) {
	slascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset]
, ldb, info);
    } else if (ibscl == 2) {
	slascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset]
, ldb, info);
    }

L50:
    work[1] = (real) wsize;

    return 0;

/*     End of SGELS */

} /* sgels_ */
Exemple #5
0
/* Subroutine */ int sgelss_(integer *m, integer *n, integer *nrhs, real *a, 
	integer *lda, real *b, integer *ldb, real *s, real *rcond, integer *
	rank, real *work, integer *lwork, integer *info)
{
/*  -- LAPACK driver routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    SGELSS computes the minimum norm solution to a real linear least   
    squares problem:   

    Minimize 2-norm(| b - A*x |).   

    using the singular value decomposition (SVD) of A. A is an M-by-N   
    matrix which may be rank-deficient.   

    Several right hand side vectors b and solution vectors x can be   
    handled in a single call; they are stored as the columns of the   
    M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix 
  
    X.   

    The effective rank of A is determined by treating as zero those   
    singular values which are less than RCOND times the largest singular 
  
    value.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A. M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A. N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrices B and X. NRHS >= 0.   

    A       (input/output) REAL array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, the first min(m,n) rows of A are overwritten with   
            its right singular vectors, stored rowwise.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    B       (input/output) REAL array, dimension (LDB,NRHS)   
            On entry, the M-by-NRHS right hand side matrix B.   
            On exit, B is overwritten by the N-by-NRHS solution   
            matrix X.  If m >= n and RANK = n, the residual   
            sum-of-squares for the solution in the i-th column is given   
            by the sum of squares of elements n+1:m in that column.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,max(M,N)). 
  

    S       (output) REAL array, dimension (min(M,N))   
            The singular values of A in decreasing order.   
            The condition number of A in the 2-norm = S(1)/S(min(m,n)).   

    RCOND   (input) REAL   
            RCOND is used to determine the effective rank of A.   
            Singular values S(i) <= RCOND*S(1) are treated as zero.   
            If RCOND < 0, machine precision is used instead.   

    RANK    (output) INTEGER   
            The effective rank of A, i.e., the number of singular values 
  
            which are greater than RCOND*S(1).   

    WORK    (workspace/output) REAL array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >= 1, and also:   
            LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )   
            For good performance, LWORK should generally be larger.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  the algorithm for computing the SVD failed to converge; 
  
                  if INFO = i, i off-diagonal elements of an intermediate 
  
                  bidiagonal form did not converge to zero.   

    ===================================================================== 
  


       Test the input arguments   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__6 = 6;
    static integer c_n1 = -1;
    static integer c__1 = 1;
    static integer c__0 = 0;
    static real c_b74 = 0.f;
    static real c_b108 = 1.f;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
    real r__1;
    /* Local variables */
    static real anrm, bnrm;
    static integer itau;
    static real vdum[1];
    static integer i, iascl, ibscl, chunk;
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    static real sfmin;
    static integer minmn, maxmn;
    extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *, integer *);
    static integer itaup, itauq;
    extern /* Subroutine */ int srscl_(integer *, real *, real *, integer *);
    static integer mnthr, iwork;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    static integer bl, ie, il;
    extern /* Subroutine */ int slabad_(real *, real *);
    static integer mm, bdspac;
    extern /* Subroutine */ int sgebrd_(integer *, integer *, real *, integer 
	    *, real *, real *, real *, real *, real *, integer *, integer *);
    extern doublereal slamch_(char *), slange_(char *, integer *, 
	    integer *, real *, integer *, real *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static real bignum;
    extern /* Subroutine */ int sgelqf_(integer *, integer *, real *, integer 
	    *, real *, real *, integer *, integer *), slascl_(char *, integer 
	    *, integer *, real *, real *, integer *, integer *, real *, 
	    integer *, integer *), sgeqrf_(integer *, integer *, real 
	    *, integer *, real *, real *, integer *, integer *), slacpy_(char 
	    *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, 
	    real *, integer *), sbdsqr_(char *, integer *, integer *, 
	    integer *, integer *, real *, real *, real *, integer *, real *, 
	    integer *, real *, integer *, real *, integer *), sorgbr_(
	    char *, integer *, integer *, integer *, real *, integer *, real *
	    , real *, integer *, integer *);
    static integer ldwork;
    extern /* Subroutine */ int sormbr_(char *, char *, char *, integer *, 
	    integer *, integer *, real *, integer *, real *, real *, integer *
	    , real *, integer *, integer *);
    static integer minwrk, maxwrk;
    static real smlnum;
    extern /* Subroutine */ int sormlq_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, real *, integer *, real *, 
	    integer *, integer *), sormqr_(char *, char *, 
	    integer *, integer *, integer *, real *, integer *, real *, real *
	    , integer *, real *, integer *, integer *);
    static real eps, thr;



#define S(I) s[(I)-1]
#define WORK(I) work[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]

    *info = 0;
    minmn = min(*m,*n);
    maxmn = max(*m,*n);
    mnthr = ilaenv_(&c__6, "SGELSS", " ", m, n, nrhs, &c_n1, 6L, 1L);
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,maxmn)) {
	*info = -7;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of workspace needed at that point in the code,   
         as well as the preferred amount for good performance.   
         NB refers to the optimal block size for the immediately   
         following subroutine, as returned by ILAENV.) */

    minwrk = 1;
    if (*info == 0 && *lwork >= 1) {
	maxwrk = 0;
	mm = *m;
	if (*m >= *n && *m >= mnthr) {

/*           Path 1a - overdetermined, with many more rows than co
lumns */

	    mm = *n;
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SGEQRF", " ", m, 
		    n, &c_n1, &c_n1, 6L, 1L);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "SORMQR", "LT", 
		    m, nrhs, n, &c_n1, 6L, 2L);
	    maxwrk = max(i__1,i__2);
	}
	if (*m >= *n) {

/*           Path 1 - overdetermined or exactly determined   

             Compute workspace neede for SBDSQR   

   Computing MAX */
	    i__1 = 1, i__2 = *n * 5 - 4;
	    bdspac = max(i__1,i__2);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n * 3 + (mm + *n) * ilaenv_(&c__1, "SGEBRD"
		    , " ", &mm, n, &c_n1, &c_n1, 6L, 1L);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n * 3 + *nrhs * ilaenv_(&c__1, "SORMBR", 
		    "QLT", &mm, nrhs, n, &c_n1, 6L, 3L);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n * 3 + (*n - 1) * ilaenv_(&c__1, "SORGBR",
		     "P", n, n, n, &c_n1, 6L, 1L);
	    maxwrk = max(i__1,i__2);
	    maxwrk = max(maxwrk,bdspac);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n * *nrhs;
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = max(i__1,i__2);
	    minwrk = max(i__1,bdspac);
	    maxwrk = max(minwrk,maxwrk);
	}
	if (*n > *m) {

/*           Compute workspace neede for SBDSQR   

   Computing MAX */
	    i__1 = 1, i__2 = *m * 5 - 4;
	    bdspac = max(i__1,i__2);
/* Computing MAX */
	    i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *n, i__1 = max(i__1,i__2);
	    minwrk = max(i__1,bdspac);
	    if (*n >= mnthr) {

/*              Path 2a - underdetermined, with many more colu
mns   
                than rows */

		maxwrk = *m + *m * ilaenv_(&c__1, "SGELQF", " ", m, n, &c_n1, 
			&c_n1, 6L, 1L);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) * 
			ilaenv_(&c__1, "SGEBRD", " ", m, m, &c_n1, &c_n1, 6L, 
			1L);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs * ilaenv_(&
			c__1, "SORMBR", "QLT", m, nrhs, m, &c_n1, 6L, 3L);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) * 
			ilaenv_(&c__1, "SORGBR", "P", m, m, m, &c_n1, 6L, 1L);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * *m + *m + bdspac;
		maxwrk = max(i__1,i__2);
		if (*nrhs > 1) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
		    maxwrk = max(i__1,i__2);
		} else {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
		    maxwrk = max(i__1,i__2);
		}
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m + *nrhs * ilaenv_(&c__1, "SORMLQ", 
			"LT", n, nrhs, m, &c_n1, 6L, 2L);
		maxwrk = max(i__1,i__2);
	    } else {

/*              Path 2 - underdetermined */

		maxwrk = *m * 3 + (*n + *m) * ilaenv_(&c__1, "SGEBRD", " ", m,
			 n, &c_n1, &c_n1, 6L, 1L);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * 3 + *nrhs * ilaenv_(&c__1, "SORMBR"
			, "QLT", m, nrhs, m, &c_n1, 6L, 3L);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORGBR", 
			"P", m, n, m, &c_n1, 6L, 1L);
		maxwrk = max(i__1,i__2);
		maxwrk = max(maxwrk,bdspac);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n * *nrhs;
		maxwrk = max(i__1,i__2);
	    }
	}
	maxwrk = max(minwrk,maxwrk);
	WORK(1) = (real) maxwrk;
    }

    minwrk = max(minwrk,1);
    if (*lwork < minwrk) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SGELSS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	*rank = 0;
	return 0;
    }

/*     Get machine parameters */

    eps = slamch_("P");
    sfmin = slamch_("S");
    smlnum = sfmin / eps;
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    anrm = slange_("M", m, n, &A(1,1), lda, &WORK(1));
    iascl = 0;
    if (anrm > 0.f && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &A(1,1), lda, 
		info);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &A(1,1), lda, 
		info);
	iascl = 2;
    } else if (anrm == 0.f) {

/*        VISMatrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	slaset_("F", &i__1, nrhs, &c_b74, &c_b74, &B(1,1), ldb);
	slaset_("F", &minmn, &c__1, &c_b74, &c_b74, &S(1), &c__1);
	*rank = 0;
	goto L70;
    }

/*     Scale B if max element outside range [SMLNUM,BIGNUM] */

    bnrm = slange_("M", m, nrhs, &B(1,1), ldb, &WORK(1));
    ibscl = 0;
    if (bnrm > 0.f && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	slascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &B(1,1), ldb,
		 info);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	slascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &B(1,1), ldb,
		 info);
	ibscl = 2;
    }

/*     Overdetermined case */

    if (*m >= *n) {

/*        Path 1 - overdetermined or exactly determined */

	mm = *m;
	if (*m >= mnthr) {

/*           Path 1a - overdetermined, with many more rows than co
lumns */

	    mm = *n;
	    itau = 1;
	    iwork = itau + *n;

/*           Compute A=Q*R   
             (Workspace: need 2*N, prefer N+N*NB) */

	    i__1 = *lwork - iwork + 1;
	    sgeqrf_(m, n, &A(1,1), lda, &WORK(itau), &WORK(iwork), &i__1,
		     info);

/*           Multiply B by transpose(Q)   
             (Workspace: need N+NRHS, prefer N+NRHS*NB) */

	    i__1 = *lwork - iwork + 1;
	    sormqr_("L", "T", m, nrhs, n, &A(1,1), lda, &WORK(itau), &B(1,1), ldb, &WORK(iwork), &i__1, info);

/*           Zero out below R */

	    if (*n > 1) {
		i__1 = *n - 1;
		i__2 = *n - 1;
		slaset_("L", &i__1, &i__2, &c_b74, &c_b74, &A(2,1), 
			lda);
	    }
	}

	ie = 1;
	itauq = ie + *n;
	itaup = itauq + *n;
	iwork = itaup + *n;

/*        Bidiagonalize R in A   
          (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */

	i__1 = *lwork - iwork + 1;
	sgebrd_(&mm, n, &A(1,1), lda, &S(1), &WORK(ie), &WORK(itauq), &
		WORK(itaup), &WORK(iwork), &i__1, info);

/*        Multiply B by transpose of left bidiagonalizing vectors of R
   
          (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */

	i__1 = *lwork - iwork + 1;
	sormbr_("Q", "L", "T", &mm, nrhs, n, &A(1,1), lda, &WORK(itauq), 
		&B(1,1), ldb, &WORK(iwork), &i__1, info);

/*        Generate right bidiagonalizing vectors of R in A   
          (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */

	i__1 = *lwork - iwork + 1;
	sorgbr_("P", n, n, n, &A(1,1), lda, &WORK(itaup), &WORK(iwork), &
		i__1, info);
	iwork = ie + *n;

/*        Perform bidiagonal QR iteration   
            multiply B by transpose of left singular vectors   
            compute right singular vectors in A   
          (Workspace: need BDSPAC) */

	sbdsqr_("U", n, n, &c__0, nrhs, &S(1), &WORK(ie), &A(1,1), lda, 
		vdum, &c__1, &B(1,1), ldb, &WORK(iwork), info);
	if (*info != 0) {
	    goto L70;
	}

/*        Multiply B by reciprocals of singular values   

   Computing MAX */
	r__1 = *rcond * S(1);
	thr = dmax(r__1,sfmin);
	if (*rcond < 0.f) {
/* Computing MAX */
	    r__1 = eps * S(1);
	    thr = dmax(r__1,sfmin);
	}
	*rank = 0;
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    if (S(i) > thr) {
		srscl_(nrhs, &S(i), &B(i,1), ldb);
		++(*rank);
	    } else {
		slaset_("F", &c__1, nrhs, &c_b74, &c_b74, &B(i,1), ldb);
	    }
/* L10: */
	}

/*        Multiply B by right singular vectors   
          (Workspace: need N, prefer N*NRHS) */

	if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
	    sgemm_("T", "N", n, nrhs, n, &c_b108, &A(1,1), lda, &B(1,1), ldb, &c_b74, &WORK(1), ldb);
	    slacpy_("G", n, nrhs, &WORK(1), ldb, &B(1,1), ldb);
	} else if (*nrhs > 1) {
	    chunk = *lwork / *n;
	    i__1 = *nrhs;
	    i__2 = chunk;
	    for (i = 1; chunk < 0 ? i >= *nrhs : i <= *nrhs; i += chunk) {
/* Computing MIN */
		i__3 = *nrhs - i + 1;
		bl = min(i__3,chunk);
		sgemm_("T", "N", n, &bl, n, &c_b108, &A(1,1), lda, &B(1,1), ldb, &c_b74, &WORK(1), n);
		slacpy_("G", n, &bl, &WORK(1), n, &B(1,1), ldb);
/* L20: */
	    }
	} else {
	    sgemv_("T", n, n, &c_b108, &A(1,1), lda, &B(1,1), &c__1,
		     &c_b74, &WORK(1), &c__1);
	    scopy_(n, &WORK(1), &c__1, &B(1,1), &c__1);
	}

    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__2 = *m, i__1 = (*m << 1) - 4, i__2 = max(i__2,i__1), i__2 = max(
		i__2,*nrhs), i__1 = *n - *m * 3;
	if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__2,i__1)) {

/*        Path 2a - underdetermined, with many more columns than r
ows   
          and sufficient workspace for an efficient algorithm */

	    ldwork = *m;
/* Computing MAX   
   Computing MAX */
	    i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 = 
		    max(i__3,*nrhs), i__4 = *n - *m * 3;
	    i__2 = (*m << 2) + *m * *lda + max(i__3,i__4), i__1 = *m * *lda + 
		    *m + *m * *nrhs;
	    if (*lwork >= max(i__2,i__1)) {
		ldwork = *lda;
	    }
	    itau = 1;
	    iwork = *m + 1;

/*        Compute A=L*Q   
          (Workspace: need 2*M, prefer M+M*NB) */

	    i__2 = *lwork - iwork + 1;
	    sgelqf_(m, n, &A(1,1), lda, &WORK(itau), &WORK(iwork), &i__2,
		     info);
	    il = iwork;

/*        Copy L to WORK(IL), zeroing out above it */

	    slacpy_("L", m, m, &A(1,1), lda, &WORK(il), &ldwork);
	    i__2 = *m - 1;
	    i__1 = *m - 1;
	    slaset_("U", &i__2, &i__1, &c_b74, &c_b74, &WORK(il + ldwork), &
		    ldwork);
	    ie = il + ldwork * *m;
	    itauq = ie + *m;
	    itaup = itauq + *m;
	    iwork = itaup + *m;

/*        Bidiagonalize L in WORK(IL)   
          (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */

	    i__2 = *lwork - iwork + 1;
	    sgebrd_(m, m, &WORK(il), &ldwork, &S(1), &WORK(ie), &WORK(itauq), 
		    &WORK(itaup), &WORK(iwork), &i__2, info);

/*        Multiply B by transpose of left bidiagonalizing vectors 
of L   
          (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) 
*/

	    i__2 = *lwork - iwork + 1;
	    sormbr_("Q", "L", "T", m, nrhs, m, &WORK(il), &ldwork, &WORK(
		    itauq), &B(1,1), ldb, &WORK(iwork), &i__2, info);

/*        Generate right bidiagonalizing vectors of R in WORK(IL) 
  
          (Workspace: need M*M+5*M-1, prefer M*M+4*M+(M-1)*NB) */

	    i__2 = *lwork - iwork + 1;
	    sorgbr_("P", m, m, m, &WORK(il), &ldwork, &WORK(itaup), &WORK(
		    iwork), &i__2, info);
	    iwork = ie + *m;

/*        Perform bidiagonal QR iteration,   
             computing right singular vectors of L in WORK(IL) and
   
             multiplying B by transpose of left singular vectors 
  
          (Workspace: need M*M+M+BDSPAC) */

	    sbdsqr_("U", m, m, &c__0, nrhs, &S(1), &WORK(ie), &WORK(il), &
		    ldwork, &A(1,1), lda, &B(1,1), ldb, &WORK(iwork)
		    , info);
	    if (*info != 0) {
		goto L70;
	    }

/*        Multiply B by reciprocals of singular values   

   Computing MAX */
	    r__1 = *rcond * S(1);
	    thr = dmax(r__1,sfmin);
	    if (*rcond < 0.f) {
/* Computing MAX */
		r__1 = eps * S(1);
		thr = dmax(r__1,sfmin);
	    }
	    *rank = 0;
	    i__2 = *m;
	    for (i = 1; i <= *m; ++i) {
		if (S(i) > thr) {
		    srscl_(nrhs, &S(i), &B(i,1), ldb);
		    ++(*rank);
		} else {
		    slaset_("F", &c__1, nrhs, &c_b74, &c_b74, &B(i,1), 
			    ldb);
		}
/* L30: */
	    }
	    iwork = ie;

/*        Multiply B by right singular vectors of L in WORK(IL)   
          (Workspace: need M*M+2*M, prefer M*M+M+M*NRHS) */

	    if (*lwork >= *ldb * *nrhs + iwork - 1 && *nrhs > 1) {
		sgemm_("T", "N", m, nrhs, m, &c_b108, &WORK(il), &ldwork, &B(1,1), ldb, &c_b74, &WORK(iwork), ldb);
		slacpy_("G", m, nrhs, &WORK(iwork), ldb, &B(1,1), ldb);
	    } else if (*nrhs > 1) {
		chunk = (*lwork - iwork + 1) / *m;
		i__2 = *nrhs;
		i__1 = chunk;
		for (i = 1; chunk < 0 ? i >= *nrhs : i <= *nrhs; i += chunk) {
/* Computing MIN */
		    i__3 = *nrhs - i + 1;
		    bl = min(i__3,chunk);
		    sgemm_("T", "N", m, &bl, m, &c_b108, &WORK(il), &ldwork, &
			    B(1,i), ldb, &c_b74, &WORK(iwork), n);
		    slacpy_("G", m, &bl, &WORK(iwork), n, &B(1,1), ldb);
/* L40: */
		}
	    } else {
		sgemv_("T", m, m, &c_b108, &WORK(il), &ldwork, &B(1,1),
			 &c__1, &c_b74, &WORK(iwork), &c__1);
		scopy_(m, &WORK(iwork), &c__1, &B(1,1), &c__1);
	    }

/*        Zero out below first M rows of B */

	    i__1 = *n - *m;
	    slaset_("F", &i__1, nrhs, &c_b74, &c_b74, &B(*m+1,1), 
		    ldb);
	    iwork = itau + *m;

/*        Multiply transpose(Q) by B   
          (Workspace: need M+NRHS, prefer M+NRHS*NB) */

	    i__1 = *lwork - iwork + 1;
	    sormlq_("L", "T", n, nrhs, m, &A(1,1), lda, &WORK(itau), &B(1,1), ldb, &WORK(iwork), &i__1, info);

	} else {

/*        Path 2 - remaining underdetermined cases */

	    ie = 1;
	    itauq = ie + *m;
	    itaup = itauq + *m;
	    iwork = itaup + *m;

/*        Bidiagonalize A   
          (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */

	    i__1 = *lwork - iwork + 1;
	    sgebrd_(m, n, &A(1,1), lda, &S(1), &WORK(ie), &WORK(itauq), &
		    WORK(itaup), &WORK(iwork), &i__1, info);

/*        Multiply B by transpose of left bidiagonalizing vectors 
  
          (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */

	    i__1 = *lwork - iwork + 1;
	    sormbr_("Q", "L", "T", m, nrhs, n, &A(1,1), lda, &WORK(itauq)
		    , &B(1,1), ldb, &WORK(iwork), &i__1, info);

/*        Generate right bidiagonalizing vectors in A   
          (Workspace: need 4*M, prefer 3*M+M*NB) */

	    i__1 = *lwork - iwork + 1;
	    sorgbr_("P", m, n, m, &A(1,1), lda, &WORK(itaup), &WORK(
		    iwork), &i__1, info);
	    iwork = ie + *m;

/*        Perform bidiagonal QR iteration,   
             computing right singular vectors of A in A and   
             multiplying B by transpose of left singular vectors 
  
          (Workspace: need BDSPAC) */

	    sbdsqr_("L", m, n, &c__0, nrhs, &S(1), &WORK(ie), &A(1,1), 
		    lda, vdum, &c__1, &B(1,1), ldb, &WORK(iwork), info);
	    if (*info != 0) {
		goto L70;
	    }

/*        Multiply B by reciprocals of singular values   

   Computing MAX */
	    r__1 = *rcond * S(1);
	    thr = dmax(r__1,sfmin);
	    if (*rcond < 0.f) {
/* Computing MAX */
		r__1 = eps * S(1);
		thr = dmax(r__1,sfmin);
	    }
	    *rank = 0;
	    i__1 = *m;
	    for (i = 1; i <= *m; ++i) {
		if (S(i) > thr) {
		    srscl_(nrhs, &S(i), &B(i,1), ldb);
		    ++(*rank);
		} else {
		    slaset_("F", &c__1, nrhs, &c_b74, &c_b74, &B(i,1), 
			    ldb);
		}
/* L50: */
	    }

/*        Multiply B by right singular vectors of A   
          (Workspace: need N, prefer N*NRHS) */

	    if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
		sgemm_("T", "N", n, nrhs, m, &c_b108, &A(1,1), lda, &B(1,1), ldb, &c_b74, &WORK(1), ldb);
		slacpy_("F", n, nrhs, &WORK(1), ldb, &B(1,1), ldb);
	    } else if (*nrhs > 1) {
		chunk = *lwork / *n;
		i__1 = *nrhs;
		i__2 = chunk;
		for (i = 1; chunk < 0 ? i >= *nrhs : i <= *nrhs; i += chunk) {
/* Computing MIN */
		    i__3 = *nrhs - i + 1;
		    bl = min(i__3,chunk);
		    sgemm_("T", "N", n, &bl, m, &c_b108, &A(1,1), lda, &
			    B(1,i), ldb, &c_b74, &WORK(1), n);
		    slacpy_("F", n, &bl, &WORK(1), n, &B(1,i), ldb);
/* L60: */
		}
	    } else {
		sgemv_("T", m, n, &c_b108, &A(1,1), lda, &B(1,1), &
			c__1, &c_b74, &WORK(1), &c__1);
		scopy_(n, &WORK(1), &c__1, &B(1,1), &c__1);
	    }
	}
    }

/*     Undo scaling */

    if (iascl == 1) {
	slascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &B(1,1), ldb,
		 info);
	slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &S(1), &
		minmn, info);
    } else if (iascl == 2) {
	slascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &B(1,1), ldb,
		 info);
	slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &S(1), &
		minmn, info);
    }
    if (ibscl == 1) {
	slascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &B(1,1), ldb,
		 info);
    } else if (ibscl == 2) {
	slascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &B(1,1), ldb,
		 info);
    }

L70:
    WORK(1) = (real) maxwrk;
    return 0;

/*     End of SGELSS */

} /* sgelss_ */
Exemple #6
0
/* Subroutine */ int sgelsd_(integer *m, integer *n, integer *nrhs, real *a, 
	integer *lda, real *b, integer *ldb, real *s, real *rcond, integer *
	rank, real *work, integer *lwork, integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;

    /* Builtin functions */
    double log(doublereal);

    /* Local variables */
    static real anrm, bnrm;
    static integer itau, nlvl, iascl, ibscl;
    static real sfmin;
    static integer minmn, maxmn, itaup, itauq, mnthr, nwork, ie, il;
    extern /* Subroutine */ int slabad_(real *, real *);
    static integer mm;
    extern /* Subroutine */ int sgebrd_(integer *, integer *, real *, integer 
	    *, real *, real *, real *, real *, real *, integer *, integer *);
    extern doublereal slamch_(char *), slange_(char *, integer *, 
	    integer *, real *, integer *, real *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static real bignum;
    extern /* Subroutine */ int sgelqf_(integer *, integer *, real *, integer 
	    *, real *, real *, integer *, integer *), slalsd_(char *, integer 
	    *, integer *, integer *, real *, real *, real *, integer *, real *
	    , integer *, real *, integer *, integer *), slascl_(char *
	    , integer *, integer *, real *, real *, integer *, integer *, 
	    real *, integer *, integer *);
    static integer wlalsd;
    extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer 
	    *, real *, real *, integer *, integer *), slacpy_(char *, integer 
	    *, integer *, real *, integer *, real *, integer *), 
	    slaset_(char *, integer *, integer *, real *, real *, real *, 
	    integer *);
    static integer ldwork;
    extern /* Subroutine */ int sormbr_(char *, char *, char *, integer *, 
	    integer *, integer *, real *, integer *, real *, real *, integer *
	    , real *, integer *, integer *);
    static integer minwrk, maxwrk;
    static real smlnum;
    extern /* Subroutine */ int sormlq_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, real *, integer *, real *, 
	    integer *, integer *);
    static logical lquery;
    static integer smlsiz;
    extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, real *, integer *, real *, 
	    integer *, integer *);
    static real eps;


#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]


/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1999   


    Purpose   
    =======   

    SGELSD computes the minimum-norm solution to a real linear least   
    squares problem:   
        minimize 2-norm(| b - A*x |)   
    using the singular value decomposition (SVD) of A. A is an M-by-N   
    matrix which may be rank-deficient.   

    Several right hand side vectors b and solution vectors x can be   
    handled in a single call; they are stored as the columns of the   
    M-by-NRHS right hand side matrix B and the N-by-NRHS solution   
    matrix X.   

    The problem is solved in three steps:   
    (1) Reduce the coefficient matrix A to bidiagonal form with   
        Householder transformations, reducing the original problem   
        into a "bidiagonal least squares problem" (BLS)   
    (2) Solve the BLS using a divide and conquer approach.   
    (3) Apply back all the Householder tranformations to solve   
        the original least squares problem.   

    The effective rank of A is determined by treating as zero those   
    singular values which are less than RCOND times the largest singular   
    value.   

    The divide and conquer algorithm makes very mild assumptions about   
    floating point arithmetic. It will work on machines with a guard   
    digit in add/subtract, or on those binary machines without guard   
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or   
    Cray-2. It could conceivably fail on hexadecimal or decimal machines   
    without guard digits, but we know of none.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of A. M >= 0.   

    N       (input) INTEGER   
            The number of columns of A. N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrices B and X. NRHS >= 0.   

    A       (input) REAL array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, A has been destroyed.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    B       (input/output) REAL array, dimension (LDB,NRHS)   
            On entry, the M-by-NRHS right hand side matrix B.   
            On exit, B is overwritten by the N-by-NRHS solution   
            matrix X.  If m >= n and RANK = n, the residual   
            sum-of-squares for the solution in the i-th column is given   
            by the sum of squares of elements n+1:m in that column.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,max(M,N)).   

    S       (output) REAL array, dimension (min(M,N))   
            The singular values of A in decreasing order.   
            The condition number of A in the 2-norm = S(1)/S(min(m,n)).   

    RCOND   (input) REAL   
            RCOND is used to determine the effective rank of A.   
            Singular values S(i) <= RCOND*S(1) are treated as zero.   
            If RCOND < 0, machine precision is used instead.   

    RANK    (output) INTEGER   
            The effective rank of A, i.e., the number of singular values   
            which are greater than RCOND*S(1).   

    WORK    (workspace/output) REAL array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK must be at least 1.   
            The exact minimum amount of workspace needed depends on M,   
            N and NRHS. As long as LWORK is at least   
                12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,   
            if M is greater than or equal to N or   
                12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,   
            if M is less than N, the code will execute correctly.   
            SMLSIZ is returned by ILAENV and is equal to the maximum   
            size of the subproblems at the bottom of the computation   
            tree (usually about 25), and   
               NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )   
            For good performance, LWORK should generally be larger.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    IWORK   (workspace) INTEGER array, dimension (LIWORK)   
            LIWORK >= 3 * MINMN * NLVL + 11 * MINMN,   
            where MINMN = MIN( M,N ).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  the algorithm for computing the SVD failed to converge;   
                  if INFO = i, i off-diagonal elements of an intermediate   
                  bidiagonal form did not converge to zero.   

    Further Details   
    ===============   

    Based on contributions by   
       Ming Gu and Ren-Cang Li, Computer Science Division, University of   
         California at Berkeley, USA   
       Osni Marques, LBNL/NERSC, USA   

    =====================================================================   


       Test the input arguments.   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --s;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    minmn = min(*m,*n);
    maxmn = max(*m,*n);
    mnthr = ilaenv_(&c__6, "SGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,maxmn)) {
	*info = -7;
    }

    smlsiz = ilaenv_(&c__9, "SGELSD", " ", &c__0, &c__0, &c__0, &c__0, (
	    ftnlen)6, (ftnlen)1);

/*     Compute workspace.   
       (Note: Comments in the code beginning "Workspace:" describe the   
       minimal amount of workspace needed at that point in the code,   
       as well as the preferred amount for good performance.   
       NB refers to the optimal block size for the immediately   
       following subroutine, as returned by ILAENV.) */

    minwrk = 1;
    minmn = max(1,minmn);
/* Computing MAX */
    i__1 = (integer) (log((real) minmn / (real) (smlsiz + 1)) / log(2.f)) + 1;
    nlvl = max(i__1,0);

    if (*info == 0) {
	maxwrk = 0;
	mm = *m;
	if (*m >= *n && *m >= mnthr) {

/*           Path 1a - overdetermined, with many more rows than columns. */

	    mm = *n;
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SGEQRF", " ", m, 
		    n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "SORMQR", "LT", 
		    m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
	    maxwrk = max(i__1,i__2);
	}
	if (*m >= *n) {

/*           Path 1 - overdetermined or exactly determined.   

   Computing MAX */
	    i__1 = maxwrk, i__2 = *n * 3 + (mm + *n) * ilaenv_(&c__1, "SGEBRD"
		    , " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n * 3 + *nrhs * ilaenv_(&c__1, "SORMBR", 
		    "QLT", &mm, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n * 3 + (*n - 1) * ilaenv_(&c__1, "SORMBR",
		     "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
	    maxwrk = max(i__1,i__2);
/* Computing 2nd power */
	    i__1 = smlsiz + 1;
	    wlalsd = *n * 9 + (*n << 1) * smlsiz + (*n << 3) * nlvl + *n * *
		    nrhs + i__1 * i__1;
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n * 3 + wlalsd;
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = max(i__1,i__2), 
		    i__2 = *n * 3 + wlalsd;
	    minwrk = max(i__1,i__2);
	}
	if (*n > *m) {
/* Computing 2nd power */
	    i__1 = smlsiz + 1;
	    wlalsd = *m * 9 + (*m << 1) * smlsiz + (*m << 3) * nlvl + *m * *
		    nrhs + i__1 * i__1;
	    if (*n >= mnthr) {

/*              Path 2a - underdetermined, with many more columns   
                than rows. */

		maxwrk = *m + *m * ilaenv_(&c__1, "SGELQF", " ", m, n, &c_n1, 
			&c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) * 
			ilaenv_(&c__1, "SGEBRD", " ", m, m, &c_n1, &c_n1, (
			ftnlen)6, (ftnlen)1);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs * ilaenv_(&
			c__1, "SORMBR", "QLT", m, nrhs, m, &c_n1, (ftnlen)6, (
			ftnlen)3);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) * 
			ilaenv_(&c__1, "SORMBR", "PLN", m, nrhs, m, &c_n1, (
			ftnlen)6, (ftnlen)3);
		maxwrk = max(i__1,i__2);
		if (*nrhs > 1) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
		    maxwrk = max(i__1,i__2);
		} else {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
		    maxwrk = max(i__1,i__2);
		}
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m + *nrhs * ilaenv_(&c__1, "SORMLQ", 
			"LT", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)2);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + wlalsd;
		maxwrk = max(i__1,i__2);
	    } else {

/*              Path 2 - remaining underdetermined cases. */

		maxwrk = *m * 3 + (*n + *m) * ilaenv_(&c__1, "SGEBRD", " ", m,
			 n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * 3 + *nrhs * ilaenv_(&c__1, "SORMBR"
			, "QLT", m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR", 
			"PLN", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)3);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * 3 + wlalsd;
		maxwrk = max(i__1,i__2);
	    }
/* Computing MAX */
	    i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *m, i__1 = max(i__1,i__2), 
		    i__2 = *m * 3 + wlalsd;
	    minwrk = max(i__1,i__2);
	}
	minwrk = min(minwrk,maxwrk);
	work[1] = (real) maxwrk;
	if (*lwork < minwrk && ! lquery) {
	    *info = -12;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SGELSD", &i__1);
	return 0;
    } else if (lquery) {
	goto L10;
    }

/*     Quick return if possible. */

    if (*m == 0 || *n == 0) {
	*rank = 0;
	return 0;
    }

/*     Get machine parameters. */

    eps = slamch_("P");
    sfmin = slamch_("S");
    smlnum = sfmin / eps;
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);

/*     Scale A if max entry outside range [SMLNUM,BIGNUM]. */

    anrm = slange_("M", m, n, &a[a_offset], lda, &work[1]);
    iascl = 0;
    if (anrm > 0.f && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM. */

	slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
		info);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM. */

	slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
		info);
	iascl = 2;
    } else if (anrm == 0.f) {

/*        Matrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	slaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b[b_offset], ldb);
	slaset_("F", &minmn, &c__1, &c_b82, &c_b82, &s[1], &c__1);
	*rank = 0;
	goto L10;
    }

/*     Scale B if max entry outside range [SMLNUM,BIGNUM]. */

    bnrm = slange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
    ibscl = 0;
    if (bnrm > 0.f && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM. */

	slascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM. */

	slascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 2;
    }

/*     If M < N make sure certain entries of B are zero. */

    if (*m < *n) {
	i__1 = *n - *m;
	slaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b_ref(*m + 1, 1), ldb);
    }

/*     Overdetermined case. */

    if (*m >= *n) {

/*        Path 1 - overdetermined or exactly determined. */

	mm = *m;
	if (*m >= mnthr) {

/*           Path 1a - overdetermined, with many more rows than columns. */

	    mm = *n;
	    itau = 1;
	    nwork = itau + *n;

/*           Compute A=Q*R.   
             (Workspace: need 2*N, prefer N+N*NB) */

	    i__1 = *lwork - nwork + 1;
	    sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
		     info);

/*           Multiply B by transpose(Q).   
             (Workspace: need N+NRHS, prefer N+NRHS*NB) */

	    i__1 = *lwork - nwork + 1;
	    sormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
		    b_offset], ldb, &work[nwork], &i__1, info);

/*           Zero out below R. */

	    if (*n > 1) {
		i__1 = *n - 1;
		i__2 = *n - 1;
		slaset_("L", &i__1, &i__2, &c_b82, &c_b82, &a_ref(2, 1), lda);
	    }
	}

	ie = 1;
	itauq = ie + *n;
	itaup = itauq + *n;
	nwork = itaup + *n;

/*        Bidiagonalize R in A.   
          (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */

	i__1 = *lwork - nwork + 1;
	sgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
		work[itaup], &work[nwork], &i__1, info);

/*        Multiply B by transpose of left bidiagonalizing vectors of R.   
          (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */

	i__1 = *lwork - nwork + 1;
	sormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], 
		&b[b_offset], ldb, &work[nwork], &i__1, info);

/*        Solve the bidiagonal least squares problem. */

	slalsd_("U", &smlsiz, n, nrhs, &s[1], &work[ie], &b[b_offset], ldb, 
		rcond, rank, &work[nwork], &iwork[1], info);
	if (*info != 0) {
	    goto L10;
	}

/*        Multiply B by right bidiagonalizing vectors of R. */

	i__1 = *lwork - nwork + 1;
	sormbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
		b[b_offset], ldb, &work[nwork], &i__1, info);

    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2), i__1 = max(
		i__1,*nrhs), i__2 = *n - *m * 3;
	if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,i__2)) {

/*        Path 2a - underdetermined, with many more columns than rows   
          and sufficient workspace for an efficient algorithm. */

	    ldwork = *m;
/* Computing MAX   
   Computing MAX */
	    i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 = 
		    max(i__3,*nrhs), i__4 = *n - *m * 3;
	    i__1 = (*m << 2) + *m * *lda + max(i__3,i__4), i__2 = *m * *lda + 
		    *m + *m * *nrhs;
	    if (*lwork >= max(i__1,i__2)) {
		ldwork = *lda;
	    }
	    itau = 1;
	    nwork = *m + 1;

/*        Compute A=L*Q.   
          (Workspace: need 2*M, prefer M+M*NB) */

	    i__1 = *lwork - nwork + 1;
	    sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
		     info);
	    il = nwork;

/*        Copy L to WORK(IL), zeroing out above its diagonal. */

	    slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
	    i__1 = *m - 1;
	    i__2 = *m - 1;
	    slaset_("U", &i__1, &i__2, &c_b82, &c_b82, &work[il + ldwork], &
		    ldwork);
	    ie = il + ldwork * *m;
	    itauq = ie + *m;
	    itaup = itauq + *m;
	    nwork = itaup + *m;

/*        Bidiagonalize L in WORK(IL).   
          (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */

	    i__1 = *lwork - nwork + 1;
	    sgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq], 
		    &work[itaup], &work[nwork], &i__1, info);

/*        Multiply B by transpose of left bidiagonalizing vectors of L.   
          (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */

	    i__1 = *lwork - nwork + 1;
	    sormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[
		    itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);

/*        Solve the bidiagonal least squares problem. */

	    slalsd_("U", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset], 
		    ldb, rcond, rank, &work[nwork], &iwork[1], info);
	    if (*info != 0) {
		goto L10;
	    }

/*        Multiply B by right bidiagonalizing vectors of L. */

	    i__1 = *lwork - nwork + 1;
	    sormbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
		    itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);

/*        Zero out below first M rows of B. */

	    i__1 = *n - *m;
	    slaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b_ref(*m + 1, 1), ldb);
	    nwork = itau + *m;

/*        Multiply transpose(Q) by B.   
          (Workspace: need M+NRHS, prefer M+NRHS*NB) */

	    i__1 = *lwork - nwork + 1;
	    sormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
		    b_offset], ldb, &work[nwork], &i__1, info);

	} else {

/*        Path 2 - remaining underdetermined cases. */

	    ie = 1;
	    itauq = ie + *m;
	    itaup = itauq + *m;
	    nwork = itaup + *m;

/*        Bidiagonalize A.   
          (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */

	    i__1 = *lwork - nwork + 1;
	    sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
		    work[itaup], &work[nwork], &i__1, info);

/*        Multiply B by transpose of left bidiagonalizing vectors.   
          (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */

	    i__1 = *lwork - nwork + 1;
	    sormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq]
		    , &b[b_offset], ldb, &work[nwork], &i__1, info);

/*        Solve the bidiagonal least squares problem. */

	    slalsd_("L", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset], 
		    ldb, rcond, rank, &work[nwork], &iwork[1], info);
	    if (*info != 0) {
		goto L10;
	    }

/*        Multiply B by right bidiagonalizing vectors of A. */

	    i__1 = *lwork - nwork + 1;
	    sormbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
		    , &b[b_offset], ldb, &work[nwork], &i__1, info);

	}
    }

/*     Undo scaling. */

    if (iascl == 1) {
	slascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
		 info);
	slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
		minmn, info);
    } else if (iascl == 2) {
	slascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
		 info);
	slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
		minmn, info);
    }
    if (ibscl == 1) {
	slascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    } else if (ibscl == 2) {
	slascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    }

L10:
    work[1] = (real) maxwrk;
    return 0;

/*     End of SGELSD */

} /* sgelsd_ */
Exemple #7
0
/* Subroutine */ int sgelqs_(integer *m, integer *n, integer *nrhs, real *a, 
	integer *lda, real *tau, real *b, integer *ldb, real *work, integer *
	lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;

    /* Local variables */
    extern /* Subroutine */ int strsm_(char *, char *, char *, char *, 
	    integer *, integer *, real *, real *, integer *, real *, integer *
), xerbla_(char *, integer *), slaset_(char *, integer *, integer *, real *, real *, 
	    real *, integer *), sormlq_(char *, char *, integer *, 
	    integer *, integer *, real *, integer *, real *, real *, integer *
, real *, integer *, integer *);


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  Compute a minimum-norm solution */
/*      min || A*X - B || */
/*  using the LQ factorization */
/*      A = L*Q */
/*  computed by SGELQF. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= M >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of columns of B.  NRHS >= 0. */

/*  A       (input) REAL array, dimension (LDA,N) */
/*          Details of the LQ factorization of the original matrix A as */
/*          returned by SGELQF. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= M. */

/*  TAU     (input) REAL array, dimension (M) */
/*          Details of the orthogonal matrix Q. */

/*  B       (input/output) REAL array, dimension (LDB,NRHS) */
/*          On entry, the m-by-nrhs right hand side matrix B. */
/*          On exit, the n-by-nrhs solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= N. */

/*  WORK    (workspace) REAL array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK must be at least NRHS, */
/*          and should be at least NRHS*NB, where NB is the block size */
/*          for this environment. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0 || *m > *n) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    } else if (*lwork < 1 || *lwork < *nrhs && *m > 0 && *n > 0) {
	*info = -10;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SGELQS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0 || *m == 0) {
	return 0;
    }

/*     Solve L*X = B(1:m,:) */

    strsm_("Left", "Lower", "No transpose", "Non-unit", m, nrhs, &c_b7, &a[
	    a_offset], lda, &b[b_offset], ldb);

/*     Set B(m+1:n,:) to zero */

    if (*m < *n) {
	i__1 = *n - *m;
	slaset_("Full", &i__1, nrhs, &c_b9, &c_b9, &b[*m + 1 + b_dim1], ldb);
    }

/*     B := Q' * B */

    sormlq_("Left", "Transpose", n, nrhs, m, &a[a_offset], lda, &tau[1], &b[
	    b_offset], ldb, &work[1], lwork, info);

    return 0;

/*     End of SGELQS */

} /* sgelqs_ */