Exemple #1
0
int main(int argc, char *argv[])
{
  int prompt;
  int i, j, iq0, iq1;
#ifdef CLOV_LEAN
  int oldiq0, oldiq1, oldip0;
#endif
  double starttime, endtime;
#ifdef PRTIME
  double dtime;
#endif
  wilson_prop_field *prop[MAX_PROP];
  wilson_prop_field *quark[MAX_QK];
  
  initialize_machine(&argc,&argv);

  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);
  
  g_sync();
  
  starttime=dclock();
    
  /* set up */
  STARTTIME;
  prompt = setup();
  ENDTIME("setup");

  /* loop over input sets */

  while( readin(prompt) == 0){

    if(prompt == 2)continue;
    
    total_iters=0;
    
#ifdef HISQ_SVD_COUNTER
    hisq_svd_counter = 0;
#endif
    
    /**************************************************************/
    /* Set up gauge field */
    
    if( param.fixflag == COULOMB_GAUGE_FIX)
      {
	if(this_node == 0) 
	  printf("Fixing to Coulomb gauge\n");

	STARTTIME;
	gaugefix(TUP,(Real)1.5,500,GAUGE_FIX_TOL);
	ENDTIME("gauge fix");

	/* (Re)construct APE smeared links after gauge fixing.  
	   No KS phases here! */
	destroy_ape_links_3D(ape_links);
	ape_links = ape_smear_3D( param.staple_weight, param.ape_iter );

	invalidate_this_clov(gen_clov);
      }
    else
      if(this_node == 0)printf("COULOMB GAUGE FIXING SKIPPED.\n");
    
    /* save lattice if requested */
    if( param.saveflag != FORGET ){
      savelat_p = save_lattice( param.saveflag, param.savefile, 
				param.stringLFN );
    } else {
      savelat_p = NULL;
    }

    if(this_node==0)printf("END OF HEADER\n");
    
    /**************************************************************/


    /* Loop over the propagators */

    STARTTIME;
    for(i=0; i<param.num_prop; i++){
      node0_printf("******* Creating propagator %d ********\n",i);fflush(stdout);
      
      /**************************************************************/
      /* Read and/or generate quark propagator */

      if(param.prop_type[i] == CLOVER_TYPE)
	{
	  int ncolor = convert_ksource_to_color(param.src_qs[i].nsource);
	  
	  prop[i] = create_wp_field(ncolor);
      
	  node0_printf("Generate Dirac propagator\n");
	  node0_printf("Kappa= %g source %s residue= %g rel= %g\n",
		       (double)param.dcp[i].Kappa,
		       param.src_qs[i].descrp,
		       (double)param.qic[i].resid,
		       (double)param.qic[i].relresid);
	  
	  /* For clover_info */
	  wqstmp = param.src_qs[i];
	  dcptmp = param.dcp[i];

	  total_iters += get_wprop_to_wp_field(param.prop_type[i],
					       param.startflag_w[i], 
					       param.startfile_w[i], 
					       param.saveflag_w[i], 
					       param.savefile_w[i],
					       prop[i], 
					       &param.src_qs[i],
					       &param.qic[i], 
					       (void *)&param.dcp[i],
					       param.bdry_phase[i],
					       param.coord_origin,
					       param.check[i]);
#ifdef CLOV_LEAN
	  /* Free clover prop memory if we have saved the prop to disk */
	  if(param.saveflag_w[i] != FORGET){
	    free_wp_field(prop[i]);
	    clear_qs(&param.src_qs[i]);
	    node0_printf("destroy prop[%d]\n",i);
	  }
#endif
	}
	
      /* ------------------------------------------- */
      else if(param.prop_type[i] == IFLA_TYPE)
	{
	  int ncolor = convert_ksource_to_color(param.src_qs[i].nsource);
	  

	  prop[i] = create_wp_field(ncolor);
      
	  node0_printf("Generate Dirac IFLA propagator\n");
	  if(this_node==0)printf("Kappa= %g source %s residue= %g rel= %g\n",
				 (double)param.nap[i].kapifla,
				 param.src_qs[i].descrp,
				 (double)param.qic[i].resid,
				 (double)param.qic[i].relresid);
	 
	  /* For clover_info */
	  wqstmp = param.src_qs[i];
	  naptmp = param.nap[i];
	  
	  total_iters += get_wprop_to_wp_field(param.prop_type[i],
					       param.startflag_w[i], 
					       param.startfile_w[i], 
					       param.saveflag_w[i], 
					       param.savefile_w[i],
					       prop[i], 
					       &param.src_qs[i], 
					       &param.qic[i], 
					       (void *)&param.nap[i],
					       param.bdry_phase[i],
					       param.coord_origin,
					       param.check[i]);
#ifdef CLOV_LEAN
	  /* Free clover prop memory if we have saved the prop to disk */
	  if(param.saveflag_w[i] != FORGET){
	    free_wp_field(prop[i]);
	    clear_qs(&param.src_qs[i]);
	    node0_printf("destroy prop[%d]\n",i);
	  }
#endif
	}
      else if(param.prop_type[i] == KS_TYPE || param.prop_type[i] == KS0_TYPE ) /* KS_TYPE */
	{
	  prop[i] = create_wp_field(param.src_qs[i].ncolor);

	  if(this_node==0)printf("Mass= %g source %s residue= %g rel= %g\n",
				 (double)param.ksp[i].mass,
				 param.src_qs[i].descrp,
				 (double)param.qic[i].resid,
				 (double)param.qic[i].relresid);
	  
	  total_iters += get_ksprop_to_wp_field(param.startflag_ks[i], 
						param.startfile_ks[i], 
						param.saveflag_ks[i], 
						param.savefile_ks[i],
						prop[i], 
						&param.src_qs[i],
						&param.qic[i], 
						&param.ksp[i],
						param.bdry_phase[i],
						param.coord_origin,
						param.check[i],
						param.prop_type[i] == KS0_TYPE);
#ifdef CLOV_LEAN
	  /* (We don't free naive prop memory, since we don't save it
	     as a clover prop in get_ksprop_to_wp_field) */
#endif
	}
      else /* KS4_TYPE */
	{
	  prop[i] = create_wp_field(param.src_qs[i].ncolor);

	  if(this_node==0)printf("Mass= %g source %s residue= %g rel= %g\n",
				 (double)param.ksp[i].mass,
				 param.src_qs[i].descrp,
				 (double)param.qic[i].resid,
				 (double)param.qic[i].relresid);
	  
	  total_iters += get_ksprop4_to_wp_field(param.startflag_w[i], 
						 param.startfile_w[i], 
						 param.saveflag_w[i], 
						 param.savefile_w[i],
						 prop[i], 
						 &param.src_qs[i],
						 &param.qic[i], 
						 &param.ksp[i],
						 param.bdry_phase[i],
						 param.coord_origin,
						 param.check[i]);
	}
      
    } /* propagators */
    ENDTIME("compute propagators");

    /*****************************************************************/
    /* Complete the quark propagators by applying the sink operators
       to either the raw propagator or by building on an existing quark
       propagator */
    
    STARTTIME;
#ifdef CLOV_LEAN
    oldip0 = -1;
    oldiq0 = -1;
    oldiq1 = -1;
#endif
    for(j=0; j<param.num_qk; j++){
      node0_printf("******* Creating quark %d ********\n",j); fflush(stdout);
      i = param.prop_for_qk[j];

      if(param.parent_type[j] == PROP_TYPE){
#ifdef CLOV_LEAN
	/* Restore clover prop[i] from file. */
	/* But first destroy the old one, unless we still need it */
	if(oldip0 >= 0 && oldip0 != i)
	  if(param.prop_type[oldip0] == CLOVER_TYPE &&
	     param.saveflag_w[oldip0] != FORGET){
	    free_wp_field(prop[oldip0]);
	    node0_printf("destroy prop[%d]\n",oldip0);
	  }
	
	/* In this case we won't need any old quarks */
	if(oldiq0 >= 0)
	  if(param.saveflag_q[oldiq0] != FORGET){
	    free_wp_field(quark[oldiq0]);
	    node0_printf("destroy quark[%d]\n",oldiq0);
	  }

	if(oldiq1 >= 0)
	  if(param.saveflag_q[oldiq1] != FORGET){
	    free_wp_field(quark[oldiq1]);
	    node0_printf("destroy quark[%d]\n",oldiq1);
	  }

	if(prop[i]->swv[0] == NULL)
	  reread_wprop_to_wp_field(param.saveflag_w[i], param.savefile_w[i], prop[i]);
#endif
	/* Before applying operator, apply momentum twist to
	   ape_links.  Use the momentum twist of the parent
	   propagator */
	momentum_twist_ape_links(i, +1);
	/* Apply sink operator quark[j] <- Op[j] prop[i] */
	quark[j] = create_wp_field_copy(prop[i]);
	wp_sink_op(&param.snk_qs_op[j], quark[j]);
	/* Remove twist */
	momentum_twist_ape_links(i, -1);
#ifdef CLOV_LEAN
	oldip0 = i;
	oldiq0 = -1;
#endif
      }
      else if(param.parent_type[j] == QUARK_TYPE) { /* QUARK_TYPE */
#ifdef CLOV_LEAN
	/* Restore quark[i] from file */
	/* But first destroy the old ones, unless we still need one of them */
	
	/* In this case we won't need the old prop */
	if(oldip0 >= 0)
	   if(param.prop_type[oldip0] == CLOVER_TYPE &&
	      param.saveflag_w[oldip0] != FORGET){
	     free_wp_field(prop[oldip0]);
	     node0_printf("destroy prop[%d]\n",oldip0);
	   }

	if(oldiq0 >= 0 && oldiq0 != i)
	  if(param.saveflag_q[oldiq0] != FORGET){
	    free_wp_field(quark[oldiq0]);
	    node0_printf("destroy quark[%d]\n",oldiq0);
	  }

	if(oldiq1 >= 0 && oldiq1 != i)
	  if(param.saveflag_q[oldiq1] != FORGET){
	    free_wp_field(quark[oldiq1]);
	    node0_printf("destroy quark[%d]\n",oldiq1);
	  }

	if(quark[i]->swv[0] == NULL)
	  reread_wprop_to_wp_field(param.saveflag_q[i], param.savefile_q[i], quark[i]);
	
#endif
	/* Apply sink operator quark[j] <- Op[j] quark[i] */
	momentum_twist_ape_links(i, +1);
	quark[j] = create_wp_field_copy(quark[i]);
	wp_sink_op(&param.snk_qs_op[j], quark[j]);
	momentum_twist_ape_links(i, -1);
#ifdef CLOV_LEAN
	oldip0 = -1;
	oldiq0 = i;
#endif
      } else { /* COMBO_TYPE */
	int k;
	int nc = quark[param.combo_qk_index[j][0]]->nc;
	/* Create a zero field */
	quark[j] = create_wp_field(nc);
	/* Compute the requested linear combination */
	for(k = 0; k < param.num_combo[j]; k++){
	  wilson_prop_field *q = quark[param.combo_qk_index[j][k]];
	  if(nc != q->nc){
	    printf("Error: Attempting to combine an inconsistent number of colors: %d != %d\n",nc, q->nc);
	    terminate(1);
	  }
	  scalar_mult_add_wprop_field(quark[j], q, param.combo_coeff[j][k], quark[j]);
	}
      }
	
      /* Save the resulting quark[j] if requested */
      dump_wprop_from_wp_field( param.saveflag_q[j], param.savetype_q[j],
				param.savefile_q[j], quark[j]);

      /* Can we delete any props and quarks now? */
      /* If nothing later depends on a prop or quark, free it up. */
      for(i = 0; i < param.num_prop; i++)
	if( prop[i]->swv[0] != NULL  &&  param.prop_dep_qkno[i] < j ){
	  free_wp_field(prop[i]);
	  node0_printf("free prop[%d]\n",i);
	}
      
      for(i = 0; i < j; i++)
	if( quark[i]->swv[0] != NULL  &&  param.quark_dep_qkno[i] < j ){
	  free_wp_field(quark[i]);
	  node0_printf("free quark[%d]\n",i);
	}
#ifdef CLOV_LEAN
      oldiq1 = j;
#endif
    }

#ifdef CLOV_LEAN
    /* Free remaining memory */
    if(oldip0 >= 0)
       if(param.prop_type[oldip0] == CLOVER_TYPE &&
	  param.saveflag_w[oldip0] != FORGET){
	 free_wp_field(prop[oldip0]);
	 node0_printf("destroy prop[%d]\n",oldip0);
       }
    
    if(oldiq0 >= 0)
      if(param.saveflag_q[oldiq0] != FORGET){
	free_wp_field(quark[oldiq0]);
	node0_printf("destroy quark[%d]\n",oldiq0);
      }
    
    if(oldiq1 >= 0)
      if(param.saveflag_q[oldiq1] != FORGET){
	free_wp_field(quark[oldiq1]);
	node0_printf("destroy quark[%d]\n",oldiq1);
      }
#endif

    /* Now destroy all remaining propagator fields */

    for(i = 0; i < param.num_prop; i++){
      if(prop[i] != NULL)node0_printf("destroy prop[%d]\n",i);
      destroy_wp_field(prop[i]);
      prop[i] = NULL;
    }
    ENDTIME("generate quarks");
    
    /****************************************************************/
    /* Compute the meson propagators */

    STARTTIME;
    for(i = 0; i < param.num_pair; i++){

      /* Index for the quarks making up this meson */
      iq0 = param.qkpair[i][0];
      iq1 = param.qkpair[i][1];

      node0_printf("Mesons for quarks %d and %d\n",iq0,iq1);

#ifdef CLOV_LEAN
      /* Restore quarks from file and free old memory */
      /* We try to reuse props that are already in memory, so we don't
         destroy them immediately, but wait to see if we need
         them again for the next pair. */
      if(i > 0 && oldiq0 != iq0 && oldiq0 != iq1)
	if(param.saveflag_q[oldiq0] != FORGET){
	  free_wp_field(quark[oldiq0]);
	  node0_printf("destroy quark[%d]\n",oldiq0);
	}
      
      if(i > 0 && oldiq1 != iq0 && oldiq1 != iq1)
	if(param.saveflag_q[oldiq1] != FORGET){
	  free_wp_field(quark[oldiq1]);
	  node0_printf("destroy quark[%d]\n",oldiq1);
	}

      if(quark[iq0]->swv[0] == NULL)
	reread_wprop_to_wp_field(param.saveflag_q[iq0], param.savefile_q[iq0], quark[iq0]);

      if(quark[iq1]->swv[0] == NULL){
	reread_wprop_to_wp_field(param.saveflag_q[iq1], param.savefile_q[iq1], quark[iq1]);
      }
#endif

      /* Tie together to generate hadron spectrum */
      spectrum_cl(quark[iq0], quark[iq1], i);

      /* Remember, in case we need to free memory */
#ifdef CLOV_LEAN
      oldiq0 = iq0;
      oldiq1 = iq1;
#endif
    }
#ifdef CLOV_LEAN
    /* Free any remaining quark prop memory */
    if(quark[oldiq0]->swv[0] != NULL)
      if(param.saveflag_q[oldiq0] != FORGET){
	free_wp_field(quark[oldiq0]);
	node0_printf("destroy quark[%d]\n",oldiq0);
      }
    if(quark[oldiq1]->swv[0] != NULL)
      if(param.saveflag_q[oldiq1] != FORGET){
	free_wp_field(quark[oldiq1]);
	node0_printf("destroy quark[%d]\n",oldiq1);
      }
#endif
    ENDTIME("tie hadron correlators");

    node0_printf("RUNNING COMPLETED\n");
    endtime=dclock();

    node0_printf("Time = %e seconds\n",(double)(endtime-starttime));
    node0_printf("total_iters = %d\n",total_iters);
#ifdef HISQ_SVD_COUNTER
    printf("hisq_svd_counter = %d\n",hisq_svd_counter);
#endif
    fflush(stdout);

    for(i = 0; i < param.num_qk; i++){
      if(quark[i] != NULL)node0_printf("destroy quark[%d]\n",i);
      destroy_wp_field(quark[i]);
      quark[i] = NULL;
    }

    destroy_ape_links_3D(ape_links);

    /* Destroy fermion links (possibly created in make_prop()) */

#if FERM_ACTION == HISQ
    destroy_fermion_links_hisq(fn_links);
#else
    destroy_fermion_links(fn_links);
#endif
    fn_links = NULL;

  } /* readin(prompt) */

#ifdef HAVE_QUDA
  qudaFinalize();
#endif
  normal_exit(0);

  return 0;
}
Exemple #2
0
int main(int argc, char *argv[])
{
  int meascount;
  int prompt;
  Real avm_iters,avs_iters;
  
  double starttime,endtime;
#ifdef IOTIME
  double dtime;
  int iotime = 1;
#else
  int iotime = 0;
#endif
  
  int MaxCG;
  Real RsdCG, RRsdCG;
  
  int spin,color,k;
  int flag;

  int status;

  int cl_cg = CL_CG;

  w_prop_file *fp_in_w[MAX_KAP];        /* For propagator files */
  w_prop_file *fp_out_w[MAX_KAP];       /* For propagator files */

  wilson_vector *psi = NULL;
  wilson_prop_field quark_propagator = NULL;
  
  initialize_machine(&argc,&argv);
#ifdef HAVE_QDP
  QDP_initialize(&argc, &argv);
#endif
  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);
  
  g_sync();
  /* set up */
  prompt = setup_cl();
  /* loop over input sets */

  psi = create_wv_field();
  quark_propagator = create_wp_field();
  
  while( readin(prompt) == 0)
    {
      
      starttime=dclock();
      MaxCG=niter;
      wqstmp = wqs;  /* For clover_info.c */
      
      avm_iters=0.0;
      meascount=0;
      
      if( fixflag == COULOMB_GAUGE_FIX)
	{
	  if(this_node == 0) 
	    printf("Fixing to Coulomb gauge\n");
#ifdef IOTIME
	  dtime = -dclock();
#endif
	  gaugefix(TUP,(Real)1.5,500,GAUGE_FIX_TOL);
#ifdef IOTIME
	  dtime += dclock();
	  if(this_node==0)printf("Time to gauge fix = %e\n",dtime);
#endif
	  invalidate_this_clov(gen_clov);
	}
      else
	if(this_node == 0)printf("COULOMB GAUGE FIXING SKIPPED.\n");
      
      /* save lattice if requested */
      if( saveflag != FORGET ){
	savelat_p = save_lattice( saveflag, savefile, stringLFN );
      }
      
      if(this_node==0)printf("END OF HEADER\n");
      
      /*	if(this_node==0) printf("num_kap = %d\n", num_kap); */
      /* Loop over kappas */
      for(k=0;k<num_kap;k++){
	
	kappa=kap[k];
	RsdCG=resid[k];
	RRsdCG=relresid[k];
	if(this_node==0)printf("Kappa= %g r0= %g residue= %g rel= %g\n",
			       (double)kappa,(double)wqs.r0,(double)RsdCG,
			       (double)RRsdCG);
	
	/* open files for wilson propagators */
	
#ifdef IOTIME
	dtime = -dclock();
#endif
	fp_in_w[k]  = r_open_wprop(startflag_w[k], startfile_w[k]);
#ifdef IOTIME
	dtime += dclock();
	if(startflag_w[k] != FRESH)
	node0_printf("Time to open prop = %e\n",dtime);
#endif
	fp_out_w[k] = w_open_wprop(saveflag_w[k],  savefile_w[k],
				   wqs.type);
	
	
	/* Loop over source spins */
	for(spin=0;spin<4;spin++){
	  /* Loop over source colors */
	  for(color=0;color<3;color++){
	  
	    meascount ++;
	    /*if(this_node==0)printf("color=%d spin=%d\n",color,spin); */
	    if(startflag_w[k] == CONTINUE)
	      {
		node0_printf("Can not continue propagator here! Zeroing it instead\n");
		startflag_w[k] = FRESH;
	      }
	    
	    /* Saves one multiplication by zero in cgilu */
	    if(startflag_w[k] == FRESH)flag = 0;
	    else 
	      flag = 1;      
	    
	    /* load psi if requested */
	    status = reload_wprop_sc_to_field( startflag_w[k], fp_in_w[k], 
				       &wqs, spin, color, psi, iotime);

	    if(status != 0)
	      {
		node0_printf("control_cl: Recovering from error by resetting initial guess to zero\n");
		reload_wprop_sc_to_field( FRESH, fp_in_w[k], &wqs,
			       spin, color, psi, 0);
		flag = 0;
	      }

	    /* Complete the source structure */
	    wqs.color = color;
	    wqs.spin = spin;

	    /* Load inversion control structure */
	    qic.prec = PRECISION;
	    qic.max = MaxCG;
	    qic.nrestart = nrestart;
	    qic.resid = RsdCG;
	    qic.relresid = RRsdCG;
	    qic.start_flag = flag;
	    
	    /* Load Dirac matrix parameters */
	    dcp.Kappa = kappa;
	    dcp.Clov_c = clov_c;
	    dcp.U0 = u0;


	    /* compute the propagator.  Result in psi. */
	    
	    switch (cl_cg) {
	      case BICG:
		avs_iters =
		  (Real)wilson_invert_field_wqs(&wqs, w_source_field, psi,
						bicgilu_cl_field,
						&qic,(void *)&dcp);
		break;
	      case HOP:
		avs_iters = 
		  (Real)wilson_invert_field_wqs(&wqs, w_source_field, psi,
						hopilu_cl_field,
						&qic,(void *)&dcp);
		break;
	      case MR:
		avs_iters = 
		  (Real)wilson_invert_field_wqs(&wqs, w_source_field, psi,
						mrilu_cl_field,
						&qic,(void *)&dcp);
		break;
	      case CG:
		avs_iters = 
		  (Real)wilson_invert_field_wqs(&wqs, w_source_field, psi,
						cgilu_cl_field,
						&qic,(void *)&dcp);
		break;
	      default:
		node0_printf("main(%d): Inverter choice %d not supported\n",
			     this_node,cl_cg);
	      }

	    avm_iters += avs_iters;

	    copy_wp_from_wv(quark_propagator, psi, color, spin);
	    
	    /* save psi if requested */
	    save_wprop_sc_from_field( saveflag_w[k],fp_out_w[k], &wqs,
			     spin,color,psi,"Fill in record info here",iotime);
	  } /* source spins */
	} /* source colors */
	
	/* close files for wilson propagators */
	r_close_wprop(startflag_w[k],fp_in_w[k]);
#ifdef IOTIME
	dtime = -dclock();
#endif
	w_close_wprop(saveflag_w[k],fp_out_w[k]);
#ifdef IOTIME
      dtime += dclock();
      if(saveflag_w[k] != FORGET)
	node0_printf("Time to close prop = %e\n",dtime);
#endif
	
	/* spectrum, if requested */

	if(strstr(spectrum_request,",spectrum,") != NULL)
	  spectrum_cl(quark_propagator, wqs.t0, k);

      } /* kappas */


      if(this_node==0)printf("RUNNING COMPLETED\n");
      if(meascount>0){
	if(this_node==0)printf("total cg iters for measurement= %e\n",
			       (double)avm_iters);
	if(this_node==0)printf("cg iters for measurement= %e\n",
			       (double)avm_iters/(double)meascount);
      }
      
      endtime=dclock();
      if(this_node==0){
	printf("Time = %e seconds\n",(double)(endtime-starttime));
	printf("total_iters = %d\n",total_iters);
      }
      fflush(stdout);
      
    }

  destroy_wv_field(psi);
  destroy_wp_field(quark_propagator);
  return 0;
}