void check_pull_dma(int side){ // Check left if(md[am].held_tag[side] < 32){ mfc_write_tag_mask( 1 << md[am].held_tag[side] ); int status = mfc_read_tag_status_immediate(); if(status){ // Update idx md[am].idx[side][HEAD] = spu_add(md[am].idx[side][HEAD], md[am].num_waiting[side]); vector signed int buffer_size = spu_splats(mcb[am].buffer_size[side] -1); vector unsigned int cmp_v = spu_cmpgt(md[am].idx[side][HEAD], buffer_size); vector signed int zeros = {0,0,0,0}; buffer_size = spu_add(buffer_size,1); zeros = spu_sel(zeros,buffer_size,cmp_v); md[am].idx[side][HEAD] = spu_sub(md[am].idx[side][HEAD],zeros); md[am].num_pulled[side] += md[am].num_waiting[side]; md[am].num_waiting[side] = 0; if(md[am].num_pulled[side] == mcb[am].data_size[side]){ md[am].mm_depleted[side] = 1; } // Release tag mfc_tag_release( md[am].held_tag[side] ); md[am].held_tag[side] = 32; } } }
inline vector float SAHCostSIMD(vector float invarea, vector float ctravers, vector float cleft, vector float aleft, vector float cright, vector float aright) { vector float l = spu_mul(cleft, spu_mul(aleft, invarea)); vector float r = spu_mul(cright, spu_mul(aright, invarea)); return spu_add(ctravers, spu_add(l, r)); }
inline void merge_cache_blocks(RenderableCacheLine* cache) { vec_uchar16 next = cache->chunkNext; for (;;) { vec_uchar16 nextnext = spu_shuffle(next, next, next); vec_uchar16 nextmask = spu_and(next, spu_splats((unsigned char)CHUNKNEXT_MASK)); vec_ushort8 firstblock0 = spu_cmpeq( cache->chunkStart[0], 0); vec_ushort8 firstblock1 = spu_cmpeq( cache->chunkStart[1], 0); // change next to word offset, note we don't care what the low bit shifted in is vec_uchar16 firstshuf = (vec_uchar16) spu_sl( (vec_ushort8)nextmask, 1 ); vec_uchar16 first = (vec_uchar16) spu_shuffle( firstblock0, firstblock1, firstshuf ); vec_ushort8 tri0 = cache->chunkTriangle[0]; vec_ushort8 tri1 = cache->chunkTriangle[1]; vec_uchar16 trishufhi = spu_or ( firstshuf, spu_splats((unsigned char) 1)); vec_uchar16 trishuflo = spu_and( firstshuf, spu_splats((unsigned char) 254)); vec_ushort8 ntri0 = spu_shuffle( tri0, tri1, spu_shuffle( trishuflo, trishufhi, SHUF0 ) ); vec_ushort8 ntri1 = spu_shuffle( tri0, tri1, spu_shuffle( trishuflo, trishufhi, SHUF1 ) ); vec_ushort8 trieq0 = spu_cmpeq( tri0, ntri0 ); vec_ushort8 trieq1 = spu_cmpeq( tri1, ntri1 ); vec_uchar16 trieq = (vec_uchar16) spu_shuffle( trieq0, trieq1, MERGE ); vec_uchar16 combi = spu_orc(first, trieq); vec_uchar16 canmerge = spu_cmpgt( spu_nor(spu_or(next, nextnext), combi), 256-CHUNKNEXT_BUSY_BIT ); vec_uint4 gather = spu_gather( canmerge ); vec_uint4 mergeid = spu_sub( spu_cntlz( gather ), spu_promote((unsigned int)16, 0)); if( !spu_extract(gather, 0) ) { return; } // unsigned int firstchunk = spu_extract(mergeid, 0); // unsigned int nextchunk = cache->chunkNextArray[firstchunk]; vec_uint4 v_chunkNext = (vec_uint4) si_rotqby( (qword) next, (qword) spu_add(mergeid,13) ); vec_uint4 v_chunkNextNext = (vec_uint4) si_rotqby( (qword) next, (qword) spu_add(v_chunkNext,13) ); // cache->chunkNextArray[firstchunk] = cache->chunkNextArray[nextchunk]; next = spu_shuffle( (vec_uchar16) v_chunkNextNext, next, (vec_uchar16) si_cbd( (qword) mergeid, 0 ) ); // cache->chunkNextArray[nextchunk] = CHUNKNEXT_FREE_BLOCK; next = spu_shuffle( spu_splats( (unsigned char) CHUNKNEXT_FREE_BLOCK), next, (vec_uchar16) si_cbd( (qword) v_chunkNext, 0 ) ); // this is for debug use only, it's not really needed... // cache->chunkStartArray[nextchunk] = -1; cache->chunkStartArray[ spu_extract(v_chunkNext,0) & 255 ] = -1; cache->chunkNext = next; } }
void add() { int i, j, n; n = SIZE * sizeof(float); for (i = 0; (i + SIZE) < args.N; i += SIZE) { mfc_get((void *)&ls1[0], (unsigned int )&args.a[i], n, TAG, 0, 0); mfc_get((void *)&ls2[0], (unsigned int )&args.b[i], n, TAG, 0, 0); mfc_write_tag_mask(1 << TAG); mfc_read_tag_status_all(); for (j = 0; j < (SIZE / 4); ++j) ls3[j] = spu_add(ls1[j], ls2[j]); mfc_put((void *)&ls3[0], (unsigned int )&args.c[i], n, TAG, 0, 0); } mfc_write_tag_mask(1 << TAG); mfc_read_tag_status_all(); if (unlikely(i < args.N)) { /* * args.N - i will be smaller than SIZE at this point so * it is safe to do a DMA transfer. * We need to make sure that size is a multiple of 16. */ n = ((args.N - i) * sizeof(float)) & (~127); mfc_get((void *)&ls1[0], (unsigned int )&args.a[i], n, TAG, 0, 0); mfc_get((void *)&ls2[0], (unsigned int )&args.b[i], n, TAG, 0, 0); mfc_write_tag_mask(1 << TAG); mfc_read_tag_status_all(); /* n must be divisible by 4. */ for (j = 0; j < ((args.N - i) / 4); ++j) ls3[j] = spu_add(ls1[j], ls2[j]); mfc_put((void *)&ls3[0], (unsigned int )&args.c[i], n, TAG, 0, 0); mfc_write_tag_mask(1 << TAG); mfc_read_tag_status_all(); } /* * At this point it may be that i is still smaller than args.N if the length * was not divisible by the number of SPUs times 16. */ }
void process_data_simd (float* buf_in, float* buf_out, unsigned int size) { unsigned int i; vector float *vbuf_in, *vbuf_out; vector float v1 = (vector float) {1.0f, 1.0f, 1.0f, 1.0f}; vbuf_in = (vector float*) buf_in; vbuf_out = (vector float*) buf_out; for (i = 0; i < (size / 4); i++) { vbuf_out[i] = spu_add (vbuf_in[i], v1); } } /* * This routine fills a dma list with the appropriate effective address * and size for the dma list element. * * @param dma_list: the dma list to be filled * @param num_elements: number of elements in list * @param base_addr: base effective address * @param elem size: size of each dma element * */ void fill_dma_list (mfc_list_element_t* list, int num_elements, unsigned long long base_addr, unsigned int elem_size) { int i; for (i = 0; i < num_elements; i++) { list[i].notify = 0; list[i].size = elem_size; list[i].eal = base_addr + i*elem_size; } }
unsigned int __mfc_multi_tag_reserve (unsigned int number_of_tags) { vector unsigned int table_copy; vector unsigned int one = (vector unsigned int) { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; vector unsigned int count_busy, is_valid; vector unsigned int count_total; vector unsigned int count_avail = (vector unsigned int) { 0, 0, 0, 0 }; vector unsigned int index = (vector unsigned int) { 0, 0, 0, 0 }; table_copy = __mfc_tag_table; /* count_busy: number of consecutive busy tags count_avail: number of consecutive free tags table_copy: temporary copy of the tag table count_total: sum of count_busy and count_avail index: index of the current working tag */ do { table_copy = spu_sl (table_copy, count_avail); count_busy = spu_cntlz (table_copy); table_copy = spu_sl (table_copy, count_busy); count_avail = spu_cntlz (spu_xor(table_copy, -1)); count_total = spu_add (count_busy, count_avail); index = spu_add (index, count_total); } while (spu_extract (count_avail, 0) < number_of_tags && spu_extract (table_copy, 0) != 0); index = spu_sub (index, count_avail); /* is_valid is set to 0xFFFFFFFF if table_copy == 0, 0 otherwise. */ is_valid = spu_cmpeq (table_copy, 0); index = spu_sel (index, is_valid, is_valid); /* Now I need to actually mark the tags as used. */ table_copy = spu_sl (one, number_of_tags); table_copy = spu_rl (table_copy, -number_of_tags - spu_extract (index, 0)); table_copy = spu_sel (table_copy, __mfc_tag_table, table_copy); __mfc_tag_table = spu_sel (table_copy, __mfc_tag_table, is_valid); return spu_extract (index, 0); }
void cp_buffer(int side){ int avail_out = num_free_in_buffer(OUT); int avail_side = num_in_buffer(side); int max = avail_out < avail_side ? avail_out : avail_side; vector signed int *out_head; if(mcb[am].local[OUT] < 255) out_head = (vector signed int*) &md[ mcb[am].local[OUT] ].idx[ (mcb[am].id+1)&1 ][HEAD]; else out_head = (vector signed int*) &md[am].idx[OUT][HEAD]; vector unsigned int cmp_v; vector signed int from_size = spu_splats( mcb[am].buffer_size[side] ); vector signed int out_size = spu_splats( mcb[ mcb[am].local[OUT] ].buffer_size[ (mcb[am].id+1)&1 ] ); vector signed int ones = {1,1,1,1}; vector signed int zeros = {0,0,0,0}; int i; for(i = 0; i < max; i++){ md[am].buffer[OUT][spu_extract( *out_head,0)] = md[am].buffer[side][spu_extract(md[am].idx[side][TAIL],0)]; // update idx md[am].idx[side][TAIL] = spu_add(md[am].idx[side][TAIL], ones); cmp_v = spu_cmpeq(md[am].idx[side][TAIL],from_size); md[am].idx[side][TAIL] = spu_sel(md[am].idx[side][TAIL], zeros, cmp_v); *out_head = spu_add(*out_head,ones); cmp_v = spu_cmpeq(*out_head, out_size); *out_head = spu_sel(*out_head,zeros,cmp_v); } update_tail(side); md[am].consumed[side] += max; if(mcb[am].local[OUT] < 255 && md[am].consumed[side] == mcb[am].data_size[side]){ md[am].depleted[side] = 1; md[am].done = 1; --num_active_mergers; } }
void push(){ int avail_out = num_in_buffer(OUT); if(!avail_out) return; int avail_parent = num_free_in_buffer(PARENT); if(mcb[am].id == 0) avail_parent = mcb[am].data_size[LEFT] + mcb[am].data_size[RIGHT]; int num_send = avail_out < avail_parent ? avail_out : avail_parent; num_send = num_send < MAX_DMA_SIZE ? num_send : MAX_DMA_SIZE; if(!num_send) return; int tag = mfc_tag_reserve(); if(tag == MFC_TAG_INVALID){ return; } else md[am].held_tag[OUT] = tag; // send num_send vectors, in up to three DMA-put's while(num_send > 0){ int parent_head = spu_extract(md[am].idx[PARENT][HEAD],0); int free_from_head = mcb[am].buffer_size[PARENT] - parent_head; int tail = spu_extract(md[am].idx[OUT][TAIL],0); int avail_from_tail = mcb[am].buffer_size[OUT] - tail; int part_send = num_send < free_from_head ? num_send : free_from_head; part_send = part_send < avail_from_tail ? part_send : avail_from_tail; unsigned int to = mcb[am].block_addr[OUT] + parent_head*sizeof(vector signed int); mfc_put(&md[am].buffer[OUT][tail], to, part_send * sizeof(vector signed int), md[am].held_tag[OUT], 0,0); md[am].idx[PARENT][HEAD] = spu_add(md[am].idx[PARENT][HEAD], part_send); parent_head = spu_extract(md[am].idx[PARENT][HEAD],0); if(parent_head == mcb[am].buffer_size[PARENT]) md[am].idx[PARENT][HEAD] = spu_splats(0); md[am].idx[OUT][TAIL] = spu_add(md[am].idx[OUT][TAIL], part_send); tail = spu_extract(md[am].idx[OUT][TAIL],0); if(tail == mcb[am].buffer_size[OUT]) md[am].idx[OUT][TAIL] = spu_splats(0); num_send -= part_send; } // Inner nodes updates parent in buffer head idx if(mcb[am].id) mfc_putf(&md[am].idx[PARENT][HEAD], mcb[am].idx_addr[OUT], sizeof(vector signed int), md[am].held_tag[OUT], 0,0); }
void MinMaxBinFindBest3SIMD(minmaxbin_t *mmb, kdbuffer_t *result) { int i; for(i=1; i < mmb->numbins; i++) { int j = mmb->numbins - i - 1; vector float *min = (vector float *)mmb->minbins[i].b; vector float *max = (vector float *)mmb->maxbins[j].b; min[0] = spu_add(min[0], min[-1]); max[0] = spu_add(max[0], max[1]); } vector float *vmax = (vector float*)result->baabb.max; vector float *vmin = (vector float*)result->baabb.min; vector float vwidth = spu_abs( spu_sub(*vmax, *vmin) ); vector float vnumbins = spu_splats(1/(float)mmb->numbins); vector float vdelta = spu_mul(vwidth, vnumbins); vector float vx = spu_add(*vmin, vdelta); vector float vside = { vwidth[1] * vwidth[2], vwidth[0] * vwidth[2], vwidth[0] * vwidth[1], 0 }; vector float invarea = spu_splats( 1/(vwidth[0] * vside[0])); vector float vctravers = spu_splats(2.0f); vector float vbestcost = spu_splats(mmb->bestcost); vector int vbesti = spu_splats(0); vector float vbestx = vx; for(i=0; i < mmb->numbins-1; i++) { vector float aleft, aright; AreaLeftRight(*vmin, *vmax, vside, vx, &aleft, &aright); vector float *vminbin = (vector float *)mmb->minbins[i].b; vector float *vmaxbin = (vector float *)mmb->maxbins[i+1].b; vector float cost = SAHCostSIMD(invarea, vctravers, *vminbin, aleft, *vmaxbin, aright); vector unsigned int cmp = spu_cmpgt(cost, vbestcost); vbestcost = spu_sel(cost, vbestcost, cmp); vbesti = spu_sel(spu_splats(i), vbesti, cmp); vbestx = spu_sel(vx, vbestx, cmp); vx = spu_add(vx, vdelta); } int axis = 0; float bestcost = vbestcost[axis]; if(vbestcost[1] < bestcost) { axis = 1; bestcost = vbestcost[1]; } if(vbestcost[2] < bestcost) { axis = 2; bestcost = vbestcost[2]; } int index = vbesti[axis]; result->plane = vbestx[axis]; result->axis = axis; result->left_size = (int)mmb->minbins[ index ].b[axis]; result->right_size = (int)mmb->maxbins[ index+1 ].b[axis]; mmb->bestcost = vbestcost[axis]; }
void process_data_simd (float* buf_in, float* buf_out, unsigned int size) { unsigned int i; vector float *vbuf_in, *vbuf_out; vector float v1 = (vector float) {1.0f, 1.0f, 1.0f, 1.0f}; vbuf_in = (vector float*) buf_in; vbuf_out = (vector float*) buf_out; for (i = 0; i < (size / 4); i++) { vbuf_out[i] = spu_add (vbuf_in[i], v1); } } int main(unsigned long long speid __attribute__ ((unused)), unsigned long long argp, unsigned long long envp __attribute__ ((unused))) { unsigned int tag; unsigned long long in_addr, out_addr; int i, num_chunks; #ifdef USE_TIMER uint64_t start, time_working; spu_slih_register (MFC_DECREMENTER_EVENT, spu_clock_slih); spu_clock_start(); start = spu_clock_read(); #endif /* USE_TIMER */ /* First, we reserve a MFC tag for use */ tag = mfc_tag_reserve(); if (tag == MFC_TAG_INVALID) { printf ("SPU ERROR, unable to reserve tag\n"); return 1; } /* issue DMA transfer to get the control block information from * system memory */ mfc_get (&control_block, argp, sizeof (control_block_t), tag, 0, 0); /* wait for the DMA to complete */ mfc_write_tag_mask (1 << tag); mfc_read_tag_status_all (); /* calculate the number of blocks (chunks) that this spe is assigned * to process */ num_chunks = control_block.num_elements_per_spe/CHUNK_SIZE; /* * This is the main loop. We basically goes through the num_chunks * and fetches one 'chunk' of data at a time, process it, and write * it back to system memory until done. */ for (i = 0; i < num_chunks; i++) { /* set the in_addr and out_addr variables, we will use these for * issuing DMA get and put commands */ in_addr = control_block.in_addr + (i* CHUNK_SIZE * sizeof(float)); out_addr = control_block.out_addr + (i * CHUNK_SIZE * sizeof(float)); /* issue a DMA get command to fetch the chunk of data from system memory */ mfc_get (local_buffer_in, in_addr, CHUNK_SIZE * sizeof(float), tag, 0, 0); /* wait for the DMA get to complete */ mfc_write_tag_mask (1 << tag); mfc_read_tag_status_all (); /* invoke process_data to work on the data that's just been moved into * local store*/ process_data_simd (local_buffer_in, local_buffer_out, CHUNK_SIZE); /* issue the DMA put command to transfer result from local memory to * system memory */ mfc_put (local_buffer_out, out_addr, CHUNK_SIZE * sizeof(float), tag, 0, 0); /* wait for the DMA put to complete */ mfc_write_tag_mask (1 << tag); mfc_read_tag_status_all (); } #ifdef USE_TIMER time_working = (spu_clock_read() - start); spu_clock_stop(); printf ("SPE time_working = %lld\n", time_working); #endif /* USE_TIMER */ return 0; }
static inline void build_blit_list( vec_uint4* dma_list_buffer, unsigned long eal, unsigned long stride) { #ifdef DEBUG_1 printf("build_blit_list: eal=%lx stride=%d\n", eal, stride); #endif unsigned long eal1 = eal + stride; unsigned long stride2 = 2 * stride; unsigned long stride8 = 8 * stride; vec_uint4 block0 = { 128, eal, 128, eal1 }; vec_uint4 step2 = { 0, stride2, 0, stride2}; vec_uint4 step4 = spu_add(step2, step2); vec_uint4 step6 = spu_add(step4, step2); vec_uint4 step8 = { 0, stride8, 0, stride8}; vec_uint4 step16 = spu_add(step8, step8); vec_uint4 block2 = spu_add(block0, step2); vec_uint4 block4 = spu_add(block0, step4); vec_uint4 block6 = spu_add(block0, step6); vec_uint4 block8 = spu_add(block0, step8); vec_uint4 block10 = spu_add(block8, step2); vec_uint4 block12 = spu_add(block8, step4); vec_uint4 block14 = spu_add(block8, step6); vec_uint4 block16 = spu_add(block8, step8); vec_uint4 block18 = spu_add(step16, block2); vec_uint4 block20 = spu_add(step16, block4); vec_uint4 block22 = spu_add(step16, block6); vec_uint4 block24 = spu_add(step16, block8); vec_uint4 block26 = spu_add(step16, block10); vec_uint4 block28 = spu_add(step16, block12); vec_uint4 block30 = spu_add(step16, block14); dma_list_buffer[0] = block0; dma_list_buffer[1] = block2; dma_list_buffer[2] = block4; dma_list_buffer[3] = block6; dma_list_buffer[4] = block8; dma_list_buffer[5] = block10; dma_list_buffer[6] = block12; dma_list_buffer[7] = block14; dma_list_buffer[8] = block16; dma_list_buffer[9] = block18; dma_list_buffer[10] = block20; dma_list_buffer[11] = block22; dma_list_buffer[12] = block24; dma_list_buffer[13] = block26; dma_list_buffer[14] = block28; dma_list_buffer[15] = block30; #ifdef DEBUG_1 int i,j; for (i=0;i<16;i++) { printf("%lx(%x): ", &dma_list_buffer[i], i); for (j=0; j<4; j++) { printf("%lx ", spu_extract(dma_list_buffer[i], j)); } printf("\n"); } #endif }
inline vector real_t advec_diff_v(vector real_t cell_size, vector real_t c2l, vector real_t w2l, vector real_t d2l, vector real_t c1l, vector real_t w1l, vector real_t d1l, vector real_t c, vector real_t w, vector real_t d, vector real_t c1r, vector real_t w1r, vector real_t d1r, vector real_t c2r, vector real_t w2r, vector real_t d2r) { vector real_t acc1, acc2, acc3; vector real_t wind, diff_term, advec_term; vector real_t advec_term_pos, advec_term_neg; vector real_t advec_termR, advec_termL; acc1 = spu_add(w1l, w); wind = spu_mul(acc1, HALF); acc1 = spu_mul(c1l, FIVE); acc2 = spu_mul(c, TWO); advec_term_pos = spu_add(acc1, acc2); advec_term_pos = spu_sub(advec_term_pos, c2l); acc1 = spu_mul(c1l, TWO); acc2 = spu_mul(c, FIVE); advec_term_neg = spu_add(acc1, acc2); advec_term_neg = spu_sub(advec_term_neg, c1r); acc1 = (vector real_t)spu_cmpgt(wind, ZERO); acc1 = spu_and(acc1, advec_term_pos); acc2 = (vector real_t)spu_cmpgt(ZERO, wind); acc2 = spu_and(acc2, advec_term_neg); advec_termL = spu_add(acc1, acc2); advec_termL = spu_mul(advec_termL, SIXTH); advec_termL = spu_mul(advec_termL, wind); acc1 = spu_add(w1r, w); wind = spu_mul(acc1, HALF); acc1 = spu_mul(c, FIVE); acc2 = spu_mul(c1r, TWO); advec_term_pos = spu_add(acc1, acc2); advec_term_pos = spu_sub(advec_term_pos, c1l); acc1 = spu_mul(c, TWO); acc2 = spu_mul(c1r, FIVE); advec_term_neg = spu_add(acc1, acc2); advec_term_neg = spu_sub(advec_term_neg, c2r); acc1 = (vector real_t)spu_cmpgt(wind, ZERO); acc1 = spu_and(acc1, advec_term_pos); acc2 = (vector real_t)spu_cmpgt(ZERO, wind); acc2 = spu_and(acc2, advec_term_neg); advec_termR = spu_add(acc1, acc2); advec_termR = spu_mul(advec_termR, SIXTH); advec_termR = spu_mul(advec_termR, wind); acc1 = spu_sub(advec_termL, advec_termR); advec_term = VEC_DIVIDE(acc1, cell_size); acc1 = spu_add(d1l, d); acc1 = spu_mul(acc1, HALF); acc3 = spu_sub(c1l, c); acc1 = spu_mul(acc1, acc3); acc2 = spu_add(d, d1r); acc2 = spu_mul(acc2, HALF); acc3 = spu_sub(c, c1r); acc2 = spu_mul(acc2, acc3); acc1 = spu_sub(acc1, acc2); acc2 = spu_mul(cell_size, cell_size); diff_term = VEC_DIVIDE(acc1, acc2); return spu_add(advec_term, diff_term); }
int kernel(lwp_functions* pf, void* params, void* inout, unsigned int iter, unsigned int n) { Ternary_params* p = (Ternary_params*)params; switch (p->cmd) { case AM: { int length = p->length / 4; vector float *a = (vector float *)inout; vector float *b = a + length; vector float *c = a + 2 * length; unsigned int i; for (i = 0; i != length; ++i, ++a, ++b, ++c) *a = spu_mul(spu_add(*a, *b), *c); return 0; } case MA: { int length = p->length / 4; vector float *a = (vector float *)inout; vector float *b = a + length; vector float *c = a + 2 * length; unsigned int i; for (i = 0; i != length; ++i, ++a, ++b, ++c) *a = spu_madd(*a, *b, *c); return 0; } case CAM: { static vector unsigned char lo = (vector unsigned char) { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}; static vector unsigned char hi = (vector unsigned char) { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}; int length = p->length / 4; float *a = (float *)inout; float *b = a + 8 * length; float *c = a + 16 * length; unsigned int i; // (a + b) * c: // r.r = (a.r+b.r)*c.r - (a.i+b.i)*c.i // r.i = (a.r+b.r)*c.i + (a.i+b.i)*c.r for (i = 0; i != length; ++i, a+=8, b+=8, c+=8) { vector float av = {*a, *(a+2), *(a+4), *(a+6)}; // a.r vector float bv = {*b, *(b+2), *(b+4), *(b+6)}; // b.r vector float cv = {*c, *(c+2), *(c+4), *(c+6)}; // c.r vector float dv = {*(a+1), *(a+3), *(a+5), *(a+7)}; // a.i vector float ev = {*(b+1), *(b+3), *(b+5), *(b+7)}; // b.i vector float fv = {*(c+1), *(c+3), *(c+5), *(c+7)}; // c.i vector float trv = spu_add(av, bv); // a.r+b.r vector float tiv = spu_add(dv, ev); // a.i+b.i vector float sv = spu_mul(trv, cv); // (a.r+b.r)*c.r vector float tv = spu_mul(trv, fv); // (a.r+b.r)*c.i vector float real = spu_nmsub(tiv, fv, sv); // r.r vector float imag = spu_madd(tiv, cv, tv); // r.i // interleave result *(vector float *)a = spu_shuffle(real, imag, lo); *(vector float *)(a+4) = spu_shuffle(real, imag, hi); } return 0; } case CMA: { static vector unsigned char lo = (vector unsigned char) { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}; static vector unsigned char hi = (vector unsigned char) { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}; int length = p->length / 4; float *a = (float *)inout; float *b = a + 8 * length; float *c = a + 16 * length; unsigned int i; // a * b + c: // r.r = a.r*b.r + c.r - a.i*b.i // r.i = a.r*b.i + c.i + a.i*b.r for (i = 0; i != length; ++i, a+=8, b+=8, c+=8) { vector float av = {*a, *(a+2), *(a+4), *(a+6)}; // a.r vector float bv = {*b, *(b+2), *(b+4), *(b+6)}; // b.r vector float cv = {*c, *(c+2), *(c+4), *(c+6)}; // c.r vector float dv = {*(a+1), *(a+3), *(a+5), *(a+7)}; // a.i vector float ev = {*(b+1), *(b+3), *(b+5), *(b+7)}; // b.i vector float fv = {*(c+1), *(c+3), *(c+5), *(c+7)}; // c.i vector float real = spu_nmsub(dv, ev, spu_madd(av, bv, cv)); // r.r vector float imag = spu_madd(dv, bv, spu_madd(av, ev, fv)); // r.i // interleave result *(vector float *)a = spu_shuffle(real, imag, lo); *(vector float *)(a+4) = spu_shuffle(real, imag, hi); } return 0; } case ZAM: { int length = p->length / 4; float *a_re = (float *)inout; float *a_im = a_re + 4 * length; float *b_re = a_re + 8 * length; float *b_im = a_re + 12 * length; float *c_re = a_re + 16 * length; float *c_im = a_re + 20 * length; unsigned int i; // (a + b) * c: // r.r = (a.r+b.r)*c.r - (a.i+b.i)*c.i // r.i = (a.r+b.r)*c.i + (a.i+b.i)*c.r for (i = 0; i != length; ++i, a_re+=4, b_re+=4, c_re+=4, a_im+=4, b_im+=4, c_im+=4) { vector float *av = (vector float *)a_re; vector float *bv = (vector float *)b_re; vector float *cv = (vector float *)c_re; vector float *dv = (vector float *)a_im; vector float *ev = (vector float *)b_im; vector float *fv = (vector float *)c_im; vector float trv = spu_add(*av, *bv); // a.r+b.r vector float tiv = spu_add(*dv, *ev); // a.i+b.i vector float sv = spu_mul(trv, *cv); // (a.r+b.r)*c.r vector float tv = spu_mul(trv, *fv); // (a.r+b.r)*c.i *av = spu_nmsub(tiv, *fv, sv); // r.r *dv = spu_madd(tiv, *cv, tv); // r.i } return 0; } case ZMA: { int length = p->length / 4; float *a_re = (float *)inout; float *a_im = a_re + 4 * length; float *b_re = a_re + 8 * length; float *b_im = a_re + 12 * length; float *c_re = a_re + 16 * length; float *c_im = a_re + 20 * length; unsigned int i; // a * b + c: // r.r = a.r*b.r + c.r - a.i*b.i // r.i = a.r*b.i + c.i + a.i*b.r for (i = 0; i != length; ++i, a_re+=4, b_re+=4, c_re+=4, a_im+=4, b_im+=4, c_im+=4) { vector float *av = (vector float *)a_re; vector float *bv = (vector float *)b_re; vector float *cv = (vector float *)c_re; vector float *dv = (vector float *)a_im; vector float *ev = (vector float *)b_im; vector float *fv = (vector float *)c_im; vector float tmp = spu_nmsub(*dv, *ev, spu_madd(*av, *bv, *cv)); *dv = spu_madd(*dv, *bv, spu_madd(*av, *ev, *fv)); *av = tmp; } return 0; } } return 1; }
vector double __divv2df3 (vector double a_in, vector double b_in) { /* Variables */ vec_int4 exp, exp_bias; vec_uint4 no_underflow, overflow; vec_float4 mant_bf, inv_bf; vec_ullong2 exp_a, exp_b; vec_ullong2 a_nan, a_zero, a_inf, a_denorm, a_denorm0; vec_ullong2 b_nan, b_zero, b_inf, b_denorm, b_denorm0; vec_ullong2 nan; vec_uint4 a_exp, b_exp; vec_ullong2 a_mant_0, b_mant_0; vec_ullong2 a_exp_1s, b_exp_1s; vec_ullong2 sign_exp_mask; vec_double2 a, b; vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult; /* Constants */ vec_uint4 exp_mask_u32 = spu_splats((unsigned int)0x7FF00000); vec_uchar16 splat_hi = (vec_uchar16) { 0,1,2,3, 0,1,2,3, 8, 9,10,11, 8,9,10,11 }; vec_uchar16 swap_32 = (vec_uchar16) { 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 }; vec_ullong2 exp_mask = spu_splats(0x7FF0000000000000ULL); vec_ullong2 sign_mask = spu_splats(0x8000000000000000ULL); vec_float4 onef = spu_splats(1.0f); vec_double2 one = spu_splats(1.0); vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL); sign_exp_mask = spu_or(sign_mask, exp_mask); /* Extract the floating point components from each of the operands including * exponent and mantissa. */ a_exp = (vec_uint4)spu_and((vec_uint4)a_in, exp_mask_u32); a_exp = spu_shuffle(a_exp, a_exp, splat_hi); b_exp = (vec_uint4)spu_and((vec_uint4)b_in, exp_mask_u32); b_exp = spu_shuffle(b_exp, b_exp, splat_hi); a_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)a_in, sign_exp_mask), 0); a_mant_0 = spu_and(a_mant_0, spu_shuffle(a_mant_0, a_mant_0, swap_32)); b_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)b_in, sign_exp_mask), 0); b_mant_0 = spu_and(b_mant_0, spu_shuffle(b_mant_0, b_mant_0, swap_32)); a_exp_1s = (vec_ullong2)spu_cmpeq(a_exp, exp_mask_u32); b_exp_1s = (vec_ullong2)spu_cmpeq(b_exp, exp_mask_u32); /* Identify all possible special values that must be accommodated including: * +-denorm, +-0, +-infinity, and NaNs. */ a_denorm0= (vec_ullong2)spu_cmpeq(a_exp, 0); a_nan = spu_andc(a_exp_1s, a_mant_0); a_zero = spu_and (a_denorm0, a_mant_0); a_inf = spu_and (a_exp_1s, a_mant_0); a_denorm = spu_andc(a_denorm0, a_zero); b_denorm0= (vec_ullong2)spu_cmpeq(b_exp, 0); b_nan = spu_andc(b_exp_1s, b_mant_0); b_zero = spu_and (b_denorm0, b_mant_0); b_inf = spu_and (b_exp_1s, b_mant_0); b_denorm = spu_andc(b_denorm0, b_zero); /* Scale denorm inputs to into normalized numbers by conditionally scaling the * input parameters. */ a = spu_sub(spu_or(a_in, exp_53), spu_sel(exp_53, a_in, sign_mask)); a = spu_sel(a_in, a, a_denorm); b = spu_sub(spu_or(b_in, exp_53), spu_sel(exp_53, b_in, sign_mask)); b = spu_sel(b_in, b, b_denorm); /* Extract the divisor and dividend exponent and force parameters into the signed * range [1.0,2.0) or [-1.0,2.0). */ exp_a = spu_and((vec_ullong2)a, exp_mask); exp_b = spu_and((vec_ullong2)b, exp_mask); mant_a = spu_sel(a, one, (vec_ullong2)exp_mask); mant_b = spu_sel(b, one, (vec_ullong2)exp_mask); /* Approximate the single reciprocal of b by using * the single precision reciprocal estimate followed by one * single precision iteration of Newton-Raphson. */ mant_bf = spu_roundtf(mant_b); inv_bf = spu_re(mant_bf); inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf); /* Perform 2 more Newton-Raphson iterations in double precision. The * result (q1) is in the range (0.5, 2.0). */ inv_b = spu_extend(inv_bf); inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b); q0 = spu_mul(mant_a, inv_b); q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0); /* Determine the exponent correction factor that must be applied * to q1 by taking into account the exponent of the normalized inputs * and the scale factors that were applied to normalize them. */ exp = spu_rlmaska(spu_sub((vec_int4)exp_a, (vec_int4)exp_b), -20); exp = spu_add(exp, (vec_int4)spu_add(spu_and((vec_int4)a_denorm, -0x34), spu_and((vec_int4)b_denorm, 0x34))); /* Bias the quotient exponent depending on the sign of the exponent correction * factor so that a single multiplier will ensure the entire double precision * domain (including denorms) can be achieved. * * exp bias q1 adjust exp * ===== ======== ========== * positive 2^+65 -65 * negative 2^-64 +64 */ exp_bias = spu_xor(spu_rlmaska(exp, -31), 64); exp = spu_sub(exp, exp_bias); q1 = spu_sel(q1, (vec_double2)spu_add((vec_int4)q1, spu_sl(exp_bias, 20)), exp_mask); /* Compute a multiplier (mult) to applied to the quotient (q1) to produce the * expected result. On overflow, clamp the multiplier to the maximum non-infinite * number in case the rounding mode is not round-to-nearest. */ exp = spu_add(exp, 0x3FF); no_underflow = spu_cmpgt(exp, 0); overflow = spu_cmpgt(exp, 0x7FE); exp = spu_and(spu_sl(exp, 20), (vec_int4)no_underflow); exp = spu_and(exp, (vec_int4)exp_mask); mult = spu_sel((vec_double2)exp, (vec_double2)(spu_add((vec_uint4)exp_mask, -1)), (vec_ullong2)overflow); /* Handle special value conditions. These include: * * 1) IF either operand is a NaN OR both operands are 0 or INFINITY THEN a NaN * results. * 2) ELSE IF the dividend is an INFINITY OR the divisor is 0 THEN a INFINITY results. * 3) ELSE IF the dividend is 0 OR the divisor is INFINITY THEN a 0 results. */ mult = spu_andc(mult, (vec_double2)spu_or(a_zero, b_inf)); mult = spu_sel(mult, (vec_double2)exp_mask, spu_or(a_inf, b_zero)); nan = spu_or(a_nan, b_nan); nan = spu_or(nan, spu_and(a_zero, b_zero)); nan = spu_or(nan, spu_and(a_inf, b_inf)); mult = spu_or(mult, (vec_double2)nan); /* Scale the final quotient */ q2 = spu_mul(q1, mult); return (q2); }
void* libvector_pointwise_multiply_32fc_unaligned(void* target, void* src0, void* src1, unsigned int num_bytes){ //loop iterator i int i = 0; void* retval = target; //put the target and source addresses into qwords vector unsigned int address_counter_tgt = {(unsigned int)target, 0, 0, 0}; vector unsigned int address_counter_src0 = {(unsigned int)src0, 0, 0 ,0}; vector unsigned int address_counter_src1 = {(unsigned int)src1, 0, 0, 0}; //create shuffle masks //shuffle mask building blocks: //all from the first vector vector unsigned char oneup = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}; //all from the second vector vector unsigned char second_oneup = {0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f}; //gamma: second half of the second, first half of the first, break at (unsigned int)src0%16 vector unsigned char src_cmp = spu_splats((unsigned char)((unsigned int)src0%16)); vector unsigned char gt_res = spu_cmpgt(oneup, src_cmp); vector unsigned char eq_res = spu_cmpeq(oneup, src_cmp); vector unsigned char cmp_res = spu_or(gt_res, eq_res); vector unsigned char sixteen_uchar = spu_splats((unsigned char)16); vector unsigned char phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_gamma = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); shuffle_mask_gamma = spu_rlqwbyte(shuffle_mask_gamma, (unsigned int)src0%16); //eta: second half of the second, first half of the first, break at (unsigned int)src1%16 src_cmp = spu_splats((unsigned char)((unsigned int)src1%16)); gt_res = spu_cmpgt(oneup, src_cmp); eq_res = spu_cmpeq(oneup, src_cmp); cmp_res = spu_or(gt_res, eq_res); sixteen_uchar = spu_splats((unsigned char)16); phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_eta = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); shuffle_mask_eta = spu_rlqwbyte(shuffle_mask_eta, (unsigned int)src1%16); vector unsigned char tgt_second = spu_rlqwbyte(second_oneup, -((unsigned int)target%16)); vector unsigned char tgt_first = spu_rlqwbyte(oneup, -((unsigned int)target%16)); //alpha: first half of first, second half of second, break at (unsigned int)target%16 src_cmp = spu_splats((unsigned char)((unsigned int)target%16)); gt_res = spu_cmpgt(oneup, src_cmp); eq_res = spu_cmpeq(oneup, src_cmp); cmp_res = spu_or(gt_res, eq_res); phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_alpha = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); //delta: first half of first, first half of second, break at (unsigned int)target%16 vector unsigned char shuffle_mask_delta = spu_shuffle(oneup, tgt_second, (vector unsigned char)shuffle_mask_alpha); //epsilon: second half of second, second half of first, break at (unsigned int)target%16 vector unsigned char shuffle_mask_epsilon = spu_shuffle(tgt_second, oneup, (vector unsigned char)shuffle_mask_alpha); //zeta: second half of second, first half of first, break at 16 - (unsigned int)target%16 vector unsigned int shuffle_mask_zeta = spu_rlqwbyte(shuffle_mask_alpha, (unsigned int)target%16); //beta: first half of first, second half of second, break at num_bytes%16 src_cmp = spu_splats((unsigned char)(num_bytes%16)); gt_res = spu_cmpgt(oneup, src_cmp); eq_res = spu_cmpeq(oneup, src_cmp); cmp_res = spu_or(gt_res, eq_res); phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_beta = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); qword src0_past; qword src0_present; qword src1_past; qword src1_present; qword tgt_past; qword tgt_present; qword in_temp0; qword in_temp1; qword out_temp0; qword out_temp1; src0_past = si_lqd((qword)address_counter_src0, 0); src1_past = si_lqd((qword)address_counter_src1, 0); tgt_past = si_lqd((qword)address_counter_tgt, 0); vector unsigned char shuffle_mask_complexprod0 = {0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x0c, 0x0d, 0x0e, 0x0f, 0x08, 0x09, 0x0a, 0x0b}; vector unsigned char shuffle_mask_complexprod1 = {0x00, 0x01, 0x02, 0x03, 0x10, 0x11, 0x12, 0x13, 0x08, 0x09, 0x0a, 0x0b, 0x18, 0x19, 0x1a, 0x1b}; vector unsigned char shuffle_mask_complexprod2 = {0x04, 0x05, 0x06, 0x07, 0x14, 0x15, 0x16, 0x17, 0x0c, 0x0d, 0x0e, 0x0f, 0x1c, 0x1d, 0x1e, 0x1f}; vector unsigned char sign_changer = {0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00}; vector float prod0; qword shuf0; vector float prod1; vector float sign_change; qword summand0; qword summand1; vector float sum; for(i = 0; i < num_bytes/16; ++i) { src0_present = si_lqd((qword)address_counter_src0, 16); src1_present = si_lqd((qword)address_counter_src1, 16); tgt_present = si_lqd((qword)address_counter_tgt, 16); in_temp0 = spu_shuffle(src0_present, src0_past, (vector unsigned char)shuffle_mask_gamma); in_temp1 = spu_shuffle(src1_present, src1_past, (vector unsigned char)shuffle_mask_eta); prod0 = spu_mul((vector float)in_temp0, (vector float)in_temp1); shuf0 = spu_shuffle((qword)in_temp1, (qword)in_temp1, shuffle_mask_complexprod0); prod1 = spu_mul((vector float)in_temp0, (vector float)shuf0); sign_change = spu_xor(prod0, (vector float)sign_changer); summand0 = spu_shuffle((qword)sign_change, (qword)prod1, shuffle_mask_complexprod1); summand1 = spu_shuffle((qword)sign_change, (qword)prod1, shuffle_mask_complexprod2); sum = spu_add((vector float)summand0, (vector float)summand1); out_temp0 = spu_shuffle(tgt_past, (qword)sum, shuffle_mask_delta); out_temp1 = spu_shuffle(tgt_present, (qword)sum, shuffle_mask_epsilon); si_stqd(out_temp0, (qword)address_counter_tgt, 0); si_stqd(out_temp1, (qword)address_counter_tgt, 16); tgt_past = out_temp1; src0_past = src0_present; src1_past = src1_present; address_counter_src0 = spu_add(address_counter_src0, 16); address_counter_src1 = spu_add(address_counter_src1, 16); address_counter_tgt = spu_add(address_counter_tgt, 16); } src0_present = si_lqd((qword)address_counter_src0, 16); src1_present = si_lqd((qword)address_counter_src1, 16); tgt_present = si_lqd((qword)address_counter_tgt, 16); in_temp0 = spu_shuffle(src0_present, src0_past, (vector unsigned char) shuffle_mask_gamma); in_temp1 = spu_shuffle(src1_present, src1_past, (vector unsigned char) shuffle_mask_eta); prod0 = spu_mul((vector float)in_temp0, (vector float)in_temp1); shuf0 = spu_shuffle((qword)in_temp1, (qword)in_temp1, shuffle_mask_complexprod0); prod1 = spu_mul(prod0, (vector float)shuf0); sign_change = spu_xor(prod0, (vector float)sign_changer); summand0 = spu_shuffle((qword)sign_change, (qword)prod1, shuffle_mask_complexprod1); summand1 = spu_shuffle((qword)sign_change, (qword)prod1, shuffle_mask_complexprod2); sum = spu_add((vector float)summand0, (vector float)summand1); qword target_temp = spu_shuffle(tgt_present, tgt_past, (vector unsigned char) shuffle_mask_zeta); qword meld = spu_shuffle((qword)sum, target_temp, (vector unsigned char)shuffle_mask_beta); out_temp0 = spu_shuffle(tgt_past, meld, shuffle_mask_delta); out_temp1 = spu_shuffle(tgt_present, meld, shuffle_mask_epsilon); si_stqd(out_temp0, (qword)address_counter_tgt, 0); si_stqd(out_temp1, (qword)address_counter_tgt, 16); return retval; }
void merge_buffers(){ vector unsigned int cmp_v, cmp_v2; const vector signed int one_at_0 = {1,0,0,0}; const vector signed int one_at_1 = {0,1,0,0}; const vector signed int one_at_2 = {0,0,1,0}; const vector signed int ones = {1,1,1,1}; const vector signed int zeros = {0,0,0,0}; const vector unsigned char cmp_v_shuffle_mask = {31,31,31,31, 31,31,31,31, 31,31,31,31, 31,31,31,31}; vector unsigned char rev_mask; const vector unsigned char rev_left = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3}; const vector unsigned char rev_right = {28,29,30,31, 24,25,26,27, 20,21,22,23, 16,17,18,19}; vector signed int *out_head_idx; if(mcb[am].local[OUT] < 255){ int parent_idx = mcb[am].local[OUT]; int side = (mcb[am].id+1)&1; out_head_idx = (vector signed int*) &md[parent_idx].idx[side][HEAD]; } else { out_head_idx = (vector signed int*) &md[am].idx[OUT][HEAD]; } vector signed int *left_tail_idx = (vector signed int*) &md[am].idx[LEFT][TAIL]; vector signed int *right_tail_idx = (vector signed int*) &md[am].idx[RIGHT][TAIL]; vector signed int size_v = {mcb[am].buffer_size[LEFT], mcb[am].buffer_size[RIGHT], mcb[am].buffer_size[OUT], 0}; vector signed int avail_v = {num_in_buffer(LEFT), num_in_buffer(RIGHT), num_free_in_buffer(OUT), 1}; vector signed int avail_before = { spu_extract(avail_v, 0), spu_extract(avail_v, 1), 0, 0 }; vector unsigned int avail = spu_gather( spu_cmpgt(avail_v, zeros) ); // avail = 0x0F if all avail_v > zeros vector signed int *left, *right, *out; left = (vector signed int*) &md[am].buffer[LEFT][ spu_extract(*left_tail_idx,0) ]; right = (vector signed int*) &md[am].buffer[RIGHT][ spu_extract(*right_tail_idx,0) ]; out = (vector signed int*) &md[am].buffer[OUT][ spu_extract(*out_head_idx,0) ]; #ifdef TRACE_TIME dec_val2 = spu_read_decrementer(); #endif while(spu_extract(avail,0) == 0x0F){ // cmp left and right to determine who gets eaten cmp_v = spu_cmpgt(*left,*right); cmp_v = spu_shuffle(cmp_v, cmp_v, cmp_v_shuffle_mask); // cmp_v = {FFFF,FFFF,FFFF,FFFF} if left[3] > right[3] *out = spu_sel(*left,*right,cmp_v); rev_mask = spu_sel(rev_right,rev_left,(vector unsigned char)cmp_v); *left = spu_shuffle(*left,*right,rev_mask); // data to be sorted is now in out and left, left in descending order sort_vectors(out,left); // update index of the used side if( spu_extract(cmp_v,0) ){ // left[3] > right[3] *right_tail_idx = spu_add(*right_tail_idx,ones); avail_v = spu_sub(avail_v, one_at_1); right++; // modulus hack cmp_v2 = spu_cmpeq(*right_tail_idx, size_v); if( __builtin_expect( spu_extract(cmp_v2,0) ,0) ){ *right_tail_idx = zeros; right = (vector signed int*) &md[am].buffer[RIGHT][0]; } } else { *right = *left; *left_tail_idx = spu_add(*left_tail_idx,ones); avail_v = spu_sub(avail_v, one_at_0); left++; // modulus hack cmp_v2 = spu_cmpeq(*left_tail_idx, size_v); if( __builtin_expect( spu_extract(cmp_v2,0) ,0) ){ *left_tail_idx = zeros; left = (vector signed int*) &md[am].buffer[LEFT][0]; } } // update out head idx *out_head_idx = spu_add(*out_head_idx,ones); avail_v = spu_sub(avail_v, one_at_2); out++; // modulus hack cmp_v2 = spu_cmpeq(*out_head_idx, size_v); if( __builtin_expect(spu_extract(cmp_v2,0),0) ){ out = (vector signed int*) &md[am].buffer[OUT][0]; *out_head_idx = zeros; } // is there data still available? avail = spu_gather(spu_cmpgt(avail_v, zeros)); } #ifdef TRACE_TIME merge_loop_ticks += -(spu_read_decrementer() - dec_val2); #endif // how much got produced? vector signed int consumed = spu_sub(avail_before, avail_v); int consumed_left = spu_extract(consumed, 0); int consumed_right = spu_extract(consumed, 1); if(consumed_left) update_tail(LEFT); if(consumed_right) update_tail(RIGHT); md[am].consumed[LEFT] += consumed_left; md[am].consumed[RIGHT] += consumed_right; if(md[am].consumed[LEFT] == mcb[am].data_size[LEFT]) md[am].depleted[LEFT] = 1; if(md[am].consumed[RIGHT] == mcb[am].data_size[RIGHT]) md[am].depleted[RIGHT] = 1; if(mcb[am].local[OUT] < 255 && md[am].depleted[LEFT] && md[am].depleted[RIGHT]){ md[am].done = 1; --num_active_mergers; } }
/* Scans the string pointed to by s for the character c and * returns a pointer to the last occurance of c. If * c is not found, then NULL is returned. */ char * strrchr(const char *s, int c) { int nskip; vec_uchar16 *ptr, data, vc; vec_uint4 cmp_c, cmp_0, cmp; vec_uint4 res_ptr, res_cmp; vec_uint4 mask, result; vec_uint4 one = spu_splats(0xffffU); /* Scan memory array a quadword at a time. Skip leading * mis-aligned bytes. */ ptr = (vec_uchar16 *)s; nskip = -((unsigned int)(ptr) & 15); mask = spu_rlmask(one, nskip); vc = spu_splats((unsigned char)(c)); data = *ptr++; ptr = (vec_uchar16 *)((unsigned int)ptr & ~15); cmp_c = spu_and(spu_gather(spu_cmpeq(data, vc)), mask); cmp_0 = spu_and(spu_gather(spu_cmpeq(data, 0)), mask); res_ptr = spu_splats(0U); res_cmp = spu_splats(0U); while (spu_extract(cmp_0, 0) == 0) { cmp = spu_cmpeq(cmp_c, 0); res_ptr = spu_sel(spu_promote((unsigned int)(ptr), 0), res_ptr, cmp); res_cmp = spu_sel(cmp_c, res_cmp, cmp); data = *ptr++; cmp_c = spu_gather(spu_cmpeq(data, vc)); cmp_0 = spu_gather(spu_cmpeq(data, 0)); cmp = spu_cmpeq(cmp_c, 0); } /* Compute the location of the last character before termination * character. * * First mask off compare results following the first termination character. */ mask = spu_sl(one, 31 - spu_extract(spu_cntlz(cmp_0), 0)); cmp_c = spu_and(cmp_c, mask); /* Conditionally update res_ptr and res_cmd if a match was found in the last * quadword. */ cmp = spu_cmpeq(cmp_c, 0); res_ptr = spu_sel(spu_promote((unsigned int)(ptr), 0), res_ptr, cmp); res_cmp = spu_sel(cmp_c, res_cmp, cmp); /* Bit reserve res_cmp for locating last occurance. */ mask = spu_cmpeq(res_cmp, 0); res_cmp = (vec_uint4)spu_maskb(spu_extract(res_cmp, 0)); res_cmp = spu_gather((vec_uchar16)spu_shuffle(res_cmp, res_cmp, VEC_LITERAL(vec_uchar16, 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0))); /* Compute the location (ptr) of the last occurance of c. If no * occurance was found (ie, element 0 of res_cmp == 0, then return * NULL. */ result = spu_sub(spu_add(res_ptr, 15), spu_cntlz(res_cmp)); result = spu_andc(result, mask); return ((char *)spu_extract(result, 0)); }
Triangle* getTriangleBuffer(Context* context) { // if we've already allocated a triangle buffer (and we're in the same context) if (context == _currentTriangleContext && _currentTriangle) return _currentTriangle; // trash the default values _currentTriangleContext = context; _currentTriangle = NULL; // read the current renderable cache line to ensure there is room for the triangle data // in the cache line buffer; we do this by comparing against all 16 cache line blocks // to make sure that extending the write pointer wouldn't clobber the data unsigned long long cache_ea = context->renderableCacheLine; if (cache_ea == 0) return NULL; char cachebuffer[128+127]; RenderableCacheLine* cache = (RenderableCacheLine*) ( ((unsigned int)cachebuffer+127) & ~127 ); // printf("GTB: reading to %x from %x:%x\n", cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea)); spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_GETLLAR_CMD); spu_readch(MFC_RdAtomicStat); // extendvalid = ( read<=write && test<end ) || ( read>write && test<read ) // extendvalid = ( read>write && read>test ) || ( read<=write && end>test ) // simplifies to extendvalid = selb(end, read, read>write) > test // or extendvalid = selb(end>test, read>test, read>write) // rewind = next >= end // rewindvalid = read != 0 // valid = extendvalid && (!rewind || rewindvalid) // = extendvalid && (!rewind || !rewindinvalid) // = extendvalid && !(rewind && rewindinvalid) // invalid = ! (extendvalid && !(rewind && rewindinvalid)) // = (!extendvalid || (rewind && rewindinvalid)) vec_ushort8 v_writeptr = spu_splats( cache->endTriangle ); vec_ushort8 v_readptr0 = cache->chunkTriangle[0]; vec_ushort8 v_readptr1 = cache->chunkTriangle[1]; vec_ushort8 v_testptr = spu_add(v_writeptr, TRIANGLE_MAX_SIZE); vec_ushort8 v_nextptr = spu_add(v_writeptr, 2*TRIANGLE_MAX_SIZE); vec_ushort8 v_endptr = spu_splats( (unsigned short)TRIANGLE_BUFFER_SIZE); vec_ushort8 v_zero = spu_splats( (unsigned short) 0 ); vec_uchar16 v_merger = (vec_uchar16) { 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31 }; vec_ushort8 v_max0_test = spu_sel( v_endptr, v_readptr0, spu_cmpgt( v_readptr0, v_writeptr ) ); vec_ushort8 v_max1_test = spu_sel( v_endptr, v_readptr1, spu_cmpgt( v_readptr1, v_writeptr ) ); vec_ushort8 v_extend0_valid = spu_cmpgt( v_max0_test, v_testptr ); vec_ushort8 v_extend1_valid = spu_cmpgt( v_max1_test, v_testptr ); vec_ushort8 v_rewind0_invalid = spu_cmpeq( v_readptr0, v_zero ); vec_ushort8 v_rewind1_invalid = spu_cmpeq( v_readptr1, v_zero ); vec_ushort8 v_rewind8 = spu_cmpgt( v_nextptr, v_endptr ); vec_uchar16 v_extend_valid = (vec_uchar16) spu_shuffle( v_extend0_valid, v_extend1_valid, v_merger ); vec_uchar16 v_rewind_invalid = (vec_uchar16) spu_shuffle( v_rewind0_invalid, v_rewind1_invalid, v_merger ); vec_uchar16 v_rewind = (vec_uchar16) v_rewind8; vec_uchar16 v_valid_rhs = spu_and( v_rewind_invalid, v_rewind ); vec_uchar16 v_invalid = spu_orc( v_valid_rhs, v_extend_valid ); // check to see if the chunk is being processed vec_uint4 v_free = spu_gather( spu_cmpeq( spu_splats( (unsigned char) CHUNKNEXT_FREE_BLOCK ), cache->chunkNext ) ); vec_uint4 v_invalid_bits = spu_andc( spu_gather( v_invalid ), (vec_uint4) v_free ); // if any of the bits are invalid, then no can do if ( spu_extract(v_invalid_bits, 0) ) { return NULL; } // fetch in the data before this triangle in the cache buffer unsigned int offset = cache->endTriangle; _currentTriangleBufferExtra = offset & 127; unsigned long long trianglebuffer_ea = cache_ea + TRIANGLE_OFFSET_FROM_CACHE_LINE + (offset & ~127); if (_currentTriangleBufferExtra) { spu_mfcdma64(_currentTriangleBuffer, mfc_ea2h(trianglebuffer_ea), mfc_ea2l(trianglebuffer_ea), 128, 0, MFC_GET_CMD); // ensure DMA did actually complete mfc_write_tag_mask(1<<0); mfc_read_tag_status_all(); } // final bit of initialisation _currentTriangle = (Triangle*) (_currentTriangleBuffer+_currentTriangleBufferExtra); _currentTriangleOffset = offset; _currentTriangleRewind = v_rewind8; _currentTriangleCacheEndTriangleEAL = mfc_ea2l(cache_ea) + (((char*)&cache->endTriangle) - ((char*)cache)); _currentTriangleCacheEndTriangleEAH = mfc_ea2h(cache_ea); _currentTriangleBufferEA = trianglebuffer_ea; // printf("Allocated new triangle buffer: %x\n", offset); // and return the buffer ready to go return _currentTriangle; }