Exemple #1
0
static int crypt_set_algorithms1(ssh_session session) {
  int i = 0;
  struct crypto_struct *ssh_ciphertab=ssh_get_ciphertab();

  /* right now, we force 3des-cbc to be taken */
  while (ssh_ciphertab[i].name && strcmp(ssh_ciphertab[i].name,
        "3des-cbc-ssh1")) {
    i++;
  }

  if (ssh_ciphertab[i].name == NULL) {
    ssh_set_error(session, SSH_FATAL, "cipher 3des-cbc-ssh1 not found!");
    return -1;
  }

  session->next_crypto->out_cipher = cipher_new(i);
  if (session->next_crypto->out_cipher == NULL) {
    ssh_set_error(session, SSH_FATAL, "No space left");
    return SSH_ERROR;
  }

  session->next_crypto->in_cipher = cipher_new(i);
  if (session->next_crypto->in_cipher == NULL) {
    ssh_set_error(session, SSH_FATAL, "No space left");
    return SSH_ERROR;
  }

  return SSH_OK;
}
Exemple #2
0
/* it allocates a new cipher structure based on its offset into the global table */
static struct ssh_cipher_struct *cipher_new(int offset) {
  struct ssh_cipher_struct *cipher = NULL;

  cipher = malloc(sizeof(struct ssh_cipher_struct));
  if (cipher == NULL) {
    return NULL;
  }

  /* note the memcpy will copy the pointers : so, you shouldn't free them */
  memcpy(cipher, &ssh_get_ciphertab()[offset], sizeof(*cipher));

  return cipher;
}
Exemple #3
0
int crypt_set_algorithms_server(ssh_session session){
    const char *method = NULL;
    int i = 0;
    struct ssh_cipher_struct *ssh_ciphertab=ssh_get_ciphertab();
    struct ssh_hmac_struct   *ssh_hmactab=ssh_get_hmactab();

    if (session == NULL) {
        return SSH_ERROR;
    }

    /*
     * We must scan the kex entries to find crypto algorithms and set their
     * appropriate structure
     */
    /* out */
    method = session->next_crypto->kex_methods[SSH_CRYPT_S_C];

    for (i = 0; ssh_ciphertab[i].name != NULL; i++) {
        int cmp;

        cmp = strcmp(method, ssh_ciphertab[i].name);
        if (cmp == 0) {
          break;
        }
    }

    if (ssh_ciphertab[i].name == NULL) {
        ssh_set_error(session,SSH_FATAL,"crypt_set_algorithms_server : "
                "no crypto algorithm function found for %s",method);
        return SSH_ERROR;
    }
    SSH_LOG(SSH_LOG_PACKET,"Set output algorithm %s",method);

    session->next_crypto->out_cipher = cipher_new(i);
    if (session->next_crypto->out_cipher == NULL) {
        ssh_set_error_oom(session);
        return SSH_ERROR;
    }
    i=0;
    if (session->next_crypto->out_cipher->aead_encrypt != NULL){
        /* this cipher has integrated MAC */
        method = "aead-poly1305";
    } else {
        /* we must scan the kex entries to find hmac algorithms and set their appropriate structure */
        /* out */
        method = session->next_crypto->kex_methods[SSH_MAC_S_C];
    }
    /* HMAC algorithm selection */

    while (ssh_hmactab[i].name && strcmp(method, ssh_hmactab[i].name)) {
      i++;
    }

    if (ssh_hmactab[i].name == NULL) {
      ssh_set_error(session, SSH_FATAL,
          "crypt_set_algorithms_server: no hmac algorithm function found for %s",
          method);
        return SSH_ERROR;
    }
    SSH_LOG(SSH_LOG_PACKET, "Set HMAC output algorithm to %s", method);

    session->next_crypto->out_hmac = ssh_hmactab[i].hmac_type;

    /* in */
    i=0;
    method = session->next_crypto->kex_methods[SSH_CRYPT_C_S];

    for (i = 0; ssh_ciphertab[i].name; i++) {
      int cmp;

      cmp = strcmp(method, ssh_ciphertab[i].name);
      if (cmp == 0) {
        break;
      }
    }

    if (ssh_ciphertab[i].name == NULL) {
        ssh_set_error(session,SSH_FATAL,"Crypt_set_algorithms_server :"
                "no crypto algorithm function found for %s",method);
        return SSH_ERROR;
    }
    SSH_LOG(SSH_LOG_PACKET,"Set input algorithm %s",method);

    session->next_crypto->in_cipher = cipher_new(i);
    if (session->next_crypto->in_cipher == NULL) {
        ssh_set_error_oom(session);
        return SSH_ERROR;
    }
    i=0;

    if (session->next_crypto->in_cipher->aead_encrypt != NULL){
        /* this cipher has integrated MAC */
        method = "aead-poly1305";
    } else {
        /* we must scan the kex entries to find hmac algorithms and set their appropriate structure */
        method = session->next_crypto->kex_methods[SSH_MAC_C_S];
    }

    for (i = 0; ssh_hmactab[i].name != NULL; i++) {
      int cmp;

      cmp = strcmp(method, ssh_hmactab[i].name);
      if (cmp == 0) {
        break;
      }
    }

    if (ssh_hmactab[i].name == NULL) {
      ssh_set_error(session, SSH_FATAL,
          "crypt_set_algorithms_server: no hmac algorithm function found for %s",
          method);
        return SSH_ERROR;
    }
    SSH_LOG(SSH_LOG_PACKET, "Set HMAC input algorithm to %s", method);

    session->next_crypto->in_hmac = ssh_hmactab[i].hmac_type;
    i=0;

    /* compression */
    method = session->next_crypto->kex_methods[SSH_COMP_C_S];
    if(strcmp(method,"zlib") == 0){
        SSH_LOG(SSH_LOG_PACKET,"enabling C->S compression");
        session->next_crypto->do_compress_in=1;
    }
    if(strcmp(method,"*****@*****.**") == 0){
        SSH_LOG(SSH_LOG_PACKET,"enabling C->S delayed compression");

        if (session->flags & SSH_SESSION_FLAG_AUTHENTICATED) {
            session->next_crypto->do_compress_in = 1;
        } else {
            session->next_crypto->delayed_compress_in = 1;
        }
    }

    method = session->next_crypto->kex_methods[SSH_COMP_S_C];
    if(strcmp(method,"zlib") == 0){
        SSH_LOG(SSH_LOG_PACKET, "enabling S->C compression");
        session->next_crypto->do_compress_out=1;
    }
    if(strcmp(method,"*****@*****.**") == 0){
        SSH_LOG(SSH_LOG_PACKET,"enabling S->C delayed compression");

        if (session->flags & SSH_SESSION_FLAG_AUTHENTICATED) {
            session->next_crypto->do_compress_out = 1;
        } else {
            session->next_crypto->delayed_compress_out = 1;
        }
    }

    method = session->next_crypto->kex_methods[SSH_HOSTKEYS];
    session->srv.hostkey = ssh_key_type_from_name(method);

    return SSH_OK;
}
Exemple #4
0
static int crypt_set_algorithms2(ssh_session session){
  const char *wanted;
  int i = 0;
  struct ssh_cipher_struct *ssh_ciphertab=ssh_get_ciphertab();
  struct ssh_hmac_struct *ssh_hmactab=ssh_get_hmactab();
  int cmp;

  /*
   * We must scan the kex entries to find crypto algorithms and set their
   * appropriate structure.
   */

  /* out */
  wanted = session->next_crypto->kex_methods[SSH_CRYPT_C_S];
  while (ssh_ciphertab[i].name && strcmp(wanted, ssh_ciphertab[i].name)) {
    i++;
  }

  if (ssh_ciphertab[i].name == NULL) {
    ssh_set_error(session, SSH_FATAL,
        "crypt_set_algorithms2: no crypto algorithm function found for %s",
        wanted);
      return SSH_ERROR;
  }
  SSH_LOG(SSH_LOG_PACKET, "Set output algorithm to %s", wanted);

  session->next_crypto->out_cipher = cipher_new(i);
  if (session->next_crypto->out_cipher == NULL) {
      ssh_set_error_oom(session);
      return SSH_ERROR;
  }
  i = 0;

  if (session->next_crypto->out_cipher->aead_encrypt != NULL){
      /* this cipher has integrated MAC */
      wanted = "aead-poly1305";
  } else {
      /*
       * We must scan the kex entries to find hmac algorithms and set their
       * appropriate structure.
       */

      /* out */
      wanted = session->next_crypto->kex_methods[SSH_MAC_C_S];
  }

  for (i = 0; ssh_hmactab[i].name != NULL; i++) {
      cmp = strcmp(wanted, ssh_hmactab[i].name);
      if (cmp == 0) {
          break;
      }
  }

  if (ssh_hmactab[i].name == NULL) {
    ssh_set_error(session, SSH_FATAL,
        "crypt_set_algorithms2: no hmac algorithm function found for %s",
        wanted);
      return SSH_ERROR;
  }
  SSH_LOG(SSH_LOG_PACKET, "Set HMAC output algorithm to %s", wanted);

  session->next_crypto->out_hmac = ssh_hmactab[i].hmac_type;

  /* in */
  wanted = session->next_crypto->kex_methods[SSH_CRYPT_S_C];

  for (i = 0; ssh_ciphertab[i].name != NULL; i++) {
      cmp = strcmp(wanted, ssh_ciphertab[i].name);
      if (cmp == 0) {
        break;
      }
  }

  if (ssh_ciphertab[i].name == NULL) {
      ssh_set_error(session, SSH_FATAL,
          "Crypt_set_algorithms: no crypto algorithm function found for %s",
          wanted);
      return SSH_ERROR;
  }
  SSH_LOG(SSH_LOG_PACKET, "Set input algorithm to %s", wanted);

  session->next_crypto->in_cipher = cipher_new(i);
  if (session->next_crypto->in_cipher == NULL) {
      ssh_set_error_oom(session);
      return SSH_ERROR;
  }

  if (session->next_crypto->in_cipher->aead_encrypt != NULL){
      /* this cipher has integrated MAC */
      wanted = "aead-poly1305";
  } else {
      /* we must scan the kex entries to find hmac algorithms and set their appropriate structure */
      wanted = session->next_crypto->kex_methods[SSH_MAC_S_C];
  }

  for (i = 0; ssh_hmactab[i].name != NULL; i++) {
      cmp = strcmp(wanted, ssh_hmactab[i].name);
      if (cmp == 0) {
          break;
      }
  }

  if (ssh_hmactab[i].name == NULL) {
    ssh_set_error(session, SSH_FATAL,
        "crypt_set_algorithms2: no hmac algorithm function found for %s",
        wanted);
      return SSH_ERROR;
  }
  SSH_LOG(SSH_LOG_PACKET, "Set HMAC input algorithm to %s", wanted);

  session->next_crypto->in_hmac = ssh_hmactab[i].hmac_type;
  i = 0;

  /* compression */
  if (strcmp(session->next_crypto->kex_methods[SSH_COMP_C_S], "zlib") == 0) {
    session->next_crypto->do_compress_out = 1;
  }
  if (strcmp(session->next_crypto->kex_methods[SSH_COMP_S_C], "zlib") == 0) {
    session->next_crypto->do_compress_in = 1;
  }
  if (strcmp(session->next_crypto->kex_methods[SSH_COMP_C_S], "*****@*****.**") == 0) {
    session->next_crypto->delayed_compress_out = 1;
  }
  if (strcmp(session->next_crypto->kex_methods[SSH_COMP_S_C], "*****@*****.**") == 0) {
    session->next_crypto->delayed_compress_in = 1;
  }

  return SSH_OK;
}
Exemple #5
0
// TODO Obviously too much cut and paste here
int crypt_set_algorithms_server(ssh_session session){
    char *server = NULL;
    char *client = NULL;
    char *match = NULL;
    int i = 0;
    struct crypto_struct *ssh_ciphertab=ssh_get_ciphertab();

    if (session == NULL) {
        return SSH_ERROR;
    }

    /* we must scan the kex entries to find crypto algorithms and set their appropriate structure */
    enter_function();
    /* out */
    server = session->server_kex.methods[SSH_CRYPT_S_C];
    if(session->client_kex.methods) {
        client = session->client_kex.methods[SSH_CRYPT_S_C];
    } else {
        ssh_log(session,SSH_LOG_PROTOCOL, "Client KEX empty");
    }
    /* That's the client algorithms that are more important */
    match = ssh_find_matching(server,client);


    if(!match){
        ssh_set_error(session,SSH_FATAL,"Crypt_set_algorithms_server : no matching algorithm function found for %s",server);
        free(match);
        leave_function();
        return SSH_ERROR;
    }
    while(ssh_ciphertab[i].name && strcmp(match,ssh_ciphertab[i].name))
        i++;
    if(!ssh_ciphertab[i].name){
        ssh_set_error(session,SSH_FATAL,"Crypt_set_algorithms_server : no crypto algorithm function found for %s",server);
        free(match);
        leave_function();
        return SSH_ERROR;
    }
    ssh_log(session,SSH_LOG_PACKET,"Set output algorithm %s",match);
    SAFE_FREE(match);

    session->next_crypto->out_cipher = cipher_new(i);
    if (session->next_crypto->out_cipher == NULL) {
      ssh_set_error(session, SSH_FATAL, "No space left");
      leave_function();
      return SSH_ERROR;
    }
    i=0;
    /* in */
    client=session->client_kex.methods[SSH_CRYPT_C_S];
    server=session->server_kex.methods[SSH_CRYPT_S_C];
    match=ssh_find_matching(server,client);
    if(!match){
        ssh_set_error(session,SSH_FATAL,"Crypt_set_algorithms_server : no matching algorithm function found for %s",server);
        free(match);
        leave_function();
        return SSH_ERROR;
    }
    while(ssh_ciphertab[i].name && strcmp(match,ssh_ciphertab[i].name))
        i++;
    if(!ssh_ciphertab[i].name){
        ssh_set_error(session,SSH_FATAL,"Crypt_set_algorithms_server : no crypto algorithm function found for %s",server);
        free(match);
        leave_function();
        return SSH_ERROR;
    }
    ssh_log(session,SSH_LOG_PACKET,"Set input algorithm %s",match);
    SAFE_FREE(match);

    session->next_crypto->in_cipher = cipher_new(i);
    if (session->next_crypto->in_cipher == NULL) {
      ssh_set_error(session, SSH_FATAL, "No space left");
      leave_function();
      return SSH_ERROR;
    }

    /* compression */
    client=session->client_kex.methods[SSH_CRYPT_C_S];
    server=session->server_kex.methods[SSH_CRYPT_C_S];
    match=ssh_find_matching(server,client);
    if(match && !strcmp(match,"zlib")){
        ssh_log(session,SSH_LOG_PACKET,"enabling C->S compression");
        session->next_crypto->do_compress_in=1;
    }
    SAFE_FREE(match);

    client=session->client_kex.methods[SSH_CRYPT_S_C];
    server=session->server_kex.methods[SSH_CRYPT_S_C];
    match=ssh_find_matching(server,client);
    if(match && !strcmp(match,"zlib")){
        ssh_log(session,SSH_LOG_PACKET,"enabling S->C compression\n");
        session->next_crypto->do_compress_out=1;
    }
    SAFE_FREE(match);

    server=session->server_kex.methods[SSH_HOSTKEYS];
    client=session->client_kex.methods[SSH_HOSTKEYS];
    match=ssh_find_matching(server,client);
    if(match && !strcmp(match,"ssh-dss"))
        session->hostkeys=SSH_KEYTYPE_DSS;
    else if(match && !strcmp(match,"ssh-rsa"))
        session->hostkeys=SSH_KEYTYPE_RSA;
    else {
        ssh_set_error(session, SSH_FATAL, "Cannot know what %s is into %s",
            match ? match : NULL, server);
        SAFE_FREE(match);
        leave_function();
        return SSH_ERROR;
    }
    SAFE_FREE(match);
    leave_function();
    return SSH_OK;
}
Exemple #6
0
static int crypt_set_algorithms2(ssh_session session){
  const char *wanted;
  int i = 0;
  struct crypto_struct *ssh_ciphertab=ssh_get_ciphertab();
  /* we must scan the kex entries to find crypto algorithms and set their appropriate structure */
  /* out */
  wanted = session->client_kex.methods[SSH_CRYPT_C_S];
  while (ssh_ciphertab[i].name && strcmp(wanted, ssh_ciphertab[i].name)) {
    i++;
  }

  if (ssh_ciphertab[i].name == NULL) {
    ssh_set_error(session, SSH_FATAL,
        "Crypt_set_algorithms2: no crypto algorithm function found for %s",
        wanted);
    return SSH_ERROR;
  }
  ssh_log(session, SSH_LOG_PACKET, "Set output algorithm to %s", wanted);

  session->next_crypto->out_cipher = cipher_new(i);
  if (session->next_crypto->out_cipher == NULL) {
    ssh_set_error(session, SSH_FATAL, "No space left");
    return SSH_ERROR;
  }
  i = 0;

  /* in */
  wanted = session->client_kex.methods[SSH_CRYPT_S_C];
  while (ssh_ciphertab[i].name && strcmp(wanted, ssh_ciphertab[i].name)) {
    i++;
  }

  if (ssh_ciphertab[i].name == NULL) {
    ssh_set_error(session, SSH_FATAL,
        "Crypt_set_algorithms: no crypto algorithm function found for %s",
        wanted);
    return SSH_ERROR;
  }
  ssh_log(session, SSH_LOG_PACKET, "Set input algorithm to %s", wanted);

  session->next_crypto->in_cipher = cipher_new(i);
  if (session->next_crypto->in_cipher == NULL) {
    ssh_set_error(session, SSH_FATAL, "Not enough space");
    return SSH_ERROR;
  }

  /* compression */
  if (strcmp(session->client_kex.methods[SSH_COMP_C_S], "zlib") == 0) {
    session->next_crypto->do_compress_out = 1;
  }
  if (strcmp(session->client_kex.methods[SSH_COMP_S_C], "zlib") == 0) {
    session->next_crypto->do_compress_in = 1;
  }
  if (strcmp(session->client_kex.methods[SSH_COMP_C_S], "*****@*****.**") == 0) {
    session->next_crypto->delayed_compress_out = 1;
  }
  if (strcmp(session->client_kex.methods[SSH_COMP_S_C], "*****@*****.**") == 0) {
    session->next_crypto->delayed_compress_in = 1;
  }
  return SSH_OK;
}
/** @internal
 * @brief encrypts an ed25519 private key blob
 *
 */
static int pki_private_key_encrypt(ssh_buffer privkey_buffer,
                                   const char* passphrase,
                                   const char *ciphername,
                                   const char *kdfname,
                                   ssh_auth_callback auth_fn,
                                   void *auth_data,
                                   uint32_t rounds,
                                   ssh_string salt)
{
    struct ssh_cipher_struct *ciphers = ssh_get_ciphertab();
    struct ssh_cipher_struct cipher;
    uint8_t key_material[128];
    size_t key_material_len;
    char passphrase_buffer[128];
    int rc;
    int i;
    uint8_t padding = 1;
    int cmp;

    cmp = strcmp(ciphername, "none");
    if (cmp == 0){
        /* no encryption required */
        return SSH_OK;
    }

    for (i = 0; ciphers[i].name != NULL; i++) {
        cmp = strcmp(ciphername, ciphers[i].name);
        if (cmp == 0){
            memcpy(&cipher, &ciphers[i], sizeof(cipher));
            break;
        }
    }

    if (ciphers[i].name == NULL){
        SSH_LOG(SSH_LOG_WARN, "Unsupported cipher %s", ciphername);
        return SSH_ERROR;
    }

    cmp = strcmp(kdfname, "bcrypt");
    if (cmp != 0){
        SSH_LOG(SSH_LOG_WARN, "Unsupported KDF %s", kdfname);
        return SSH_ERROR;
    }
    while (ssh_buffer_get_len(privkey_buffer) % cipher.blocksize != 0) {
        rc = buffer_add_u8(privkey_buffer, padding);
        if (rc < 0) {
            return SSH_ERROR;
        }
        padding++;
    }

    /* We need material for key (keysize bits / 8) and IV (blocksize)  */
    key_material_len =  cipher.keysize/8 + cipher.blocksize;
    if (key_material_len > sizeof(key_material)){
        ssh_pki_log("Key material too big");
        return SSH_ERROR;
    }

    ssh_pki_log("Encryption: %d key, %d IV, %d rounds, %zu bytes salt",
                cipher.keysize/8,
                cipher.blocksize, rounds, ssh_string_len(salt));

    if (passphrase == NULL){
        if (auth_fn == NULL){
            ssh_pki_log("No passphrase provided");
            return SSH_ERROR;
        }
        rc = auth_fn("Passphrase",
                     passphrase_buffer,
                     sizeof(passphrase_buffer),
                     0,
                     0,
                     auth_data);
        if (rc != SSH_OK){
            return SSH_ERROR;
        }
        passphrase = passphrase_buffer;
    }

    rc = bcrypt_pbkdf(passphrase,
                      strlen(passphrase),
                      ssh_string_data(salt),
                      ssh_string_len(salt),
                      key_material,
                      key_material_len,
                      rounds);
    if (rc < 0){
        return SSH_ERROR;
    }

    cipher.set_encrypt_key(&cipher,
                           key_material,
                           key_material + cipher.keysize/8);
    cipher.encrypt(&cipher,
                   ssh_buffer_get_begin(privkey_buffer),
                   ssh_buffer_get_begin(privkey_buffer),
                   ssh_buffer_get_len(privkey_buffer));
    ssh_cipher_clear(&cipher);
    BURN_BUFFER(passphrase_buffer, sizeof(passphrase_buffer));

    return SSH_OK;
}
/**
 * @brief decrypts an encrypted ed25519 private key blob
 *
 */
static int pki_private_key_decrypt(ssh_string blob,
                                   const char* passphrase,
                                   const char *ciphername,
                                   const char *kdfname,
                                   ssh_string kdfoptions,
                                   ssh_auth_callback auth_fn,
                                   void *auth_data)
{
    struct ssh_cipher_struct *ciphers = ssh_get_ciphertab();
    struct ssh_cipher_struct cipher;
    uint8_t key_material[128];
    char passphrase_buffer[128];
    size_t key_material_len;
    ssh_buffer buffer;
    ssh_string salt;
    uint32_t rounds;
    int cmp;
    int rc;
    int i;

    cmp = strcmp(ciphername, "none");
    if (cmp == 0){
        /* no decryption required */
        return SSH_OK;
    }

    for (i = 0; ciphers[i].name != NULL; i++) {
        cmp = strcmp(ciphername, ciphers[i].name);
        if (cmp == 0){
            memcpy(&cipher, &ciphers[i], sizeof(cipher));
            break;
        }
    }

    if (ciphers[i].name == NULL){
        SSH_LOG(SSH_LOG_WARN, "Unsupported cipher %s", ciphername);
        return SSH_ERROR;
    }

    cmp = strcmp(kdfname, "bcrypt");
    if (cmp != 0) {
        SSH_LOG(SSH_LOG_WARN, "Unsupported KDF %s", kdfname);
        return SSH_ERROR;
    }
    if (ssh_string_len(blob) % cipher.blocksize != 0) {
        SSH_LOG(SSH_LOG_WARN,
                "Encrypted string not multiple of blocksize: %zu",
                ssh_string_len(blob));
        return SSH_ERROR;
    }

    buffer = ssh_buffer_new();
    if (buffer == NULL){
        return SSH_ERROR;
    }
    rc = ssh_buffer_add_data(buffer,
                             ssh_string_data(kdfoptions),
                             ssh_string_len(kdfoptions));
    if (rc != SSH_ERROR){
        rc = ssh_buffer_unpack(buffer, "Sd", &salt, &rounds);
    }
    ssh_buffer_free(buffer);
    if (rc == SSH_ERROR){
        return SSH_ERROR;
    }

    /* We need material for key (keysize bits / 8) and IV (blocksize)  */
    key_material_len =  cipher.keysize/8 + cipher.blocksize;
    if (key_material_len > sizeof(key_material)) {
        ssh_pki_log("Key material too big");
        return SSH_ERROR;
    }

    ssh_pki_log("Decryption: %d key, %d IV, %d rounds, %zu bytes salt",
                cipher.keysize/8,
                cipher.blocksize, rounds, ssh_string_len(salt));

    if (passphrase == NULL) {
        if (auth_fn == NULL) {
            SAFE_FREE(salt);
            ssh_pki_log("No passphrase provided");
            return SSH_ERROR;
        }
        rc = auth_fn("Passphrase",
                     passphrase_buffer,
                     sizeof(passphrase_buffer),
                     0,
                     0,
                     auth_data);
        if (rc != SSH_OK) {
            SAFE_FREE(salt);
            return SSH_ERROR;
        }
        passphrase = passphrase_buffer;
    }

    rc = bcrypt_pbkdf(passphrase,
                      strlen(passphrase),
                      ssh_string_data(salt),
                      ssh_string_len(salt),
                      key_material,
                      key_material_len,
                      rounds);
    SAFE_FREE(salt);
    if (rc < 0){
        return SSH_ERROR;
    }
    BURN_BUFFER(passphrase_buffer, sizeof(passphrase_buffer));

    cipher.set_decrypt_key(&cipher,
                           key_material,
                           key_material + cipher.keysize/8);
    cipher.decrypt(&cipher,
                   ssh_string_data(blob),
                   ssh_string_data(blob),
                   ssh_string_len(blob));
    ssh_cipher_clear(&cipher);
    return SSH_OK;
}
Exemple #9
0
int crypt_set_algorithms_server(ssh_session session){
    char *method = NULL;
    int i = 0;
    int rc = SSH_ERROR;
    struct ssh_cipher_struct *ssh_ciphertab=ssh_get_ciphertab();

    if (session == NULL) {
        return SSH_ERROR;
    }

    /* we must scan the kex entries to find crypto algorithms and set their appropriate structure */
    enter_function();
    /* out */
    method = session->next_crypto->kex_methods[SSH_CRYPT_S_C];
    while(ssh_ciphertab[i].name && strcmp(method,ssh_ciphertab[i].name))
        i++;
    if(!ssh_ciphertab[i].name){
        ssh_set_error(session,SSH_FATAL,"crypt_set_algorithms_server : "
                "no crypto algorithm function found for %s",method);
        goto error;
    }
    ssh_log(session,SSH_LOG_PACKET,"Set output algorithm %s",method);

    session->next_crypto->out_cipher = cipher_new(i);
    if (session->next_crypto->out_cipher == NULL) {
      ssh_set_error_oom(session);
      goto error;
    }
    i=0;
    /* in */
    method = session->next_crypto->kex_methods[SSH_CRYPT_C_S];
    while(ssh_ciphertab[i].name && strcmp(method,ssh_ciphertab[i].name))
        i++;
    if(!ssh_ciphertab[i].name){
        ssh_set_error(session,SSH_FATAL,"Crypt_set_algorithms_server :"
                "no crypto algorithm function found for %s",method);
        goto error;
    }
    ssh_log(session,SSH_LOG_PACKET,"Set input algorithm %s",method);

    session->next_crypto->in_cipher = cipher_new(i);
    if (session->next_crypto->in_cipher == NULL) {
      ssh_set_error_oom(session);
      goto error;
    }

    /* compression */
    method = session->next_crypto->kex_methods[SSH_CRYPT_C_S];
    if(strcmp(method,"zlib") == 0){
        ssh_log(session,SSH_LOG_PACKET,"enabling C->S compression");
        session->next_crypto->do_compress_in=1;
    }
    if(strcmp(method,"*****@*****.**") == 0){
        ssh_set_error(session,SSH_FATAL,"[email protected] not supported");
        goto error;
    }
    method = session->next_crypto->kex_methods[SSH_CRYPT_S_C];
    if(strcmp(method,"zlib") == 0){
        ssh_log(session,SSH_LOG_PACKET,"enabling S->C compression\n");
        session->next_crypto->do_compress_out=1;
    }
    if(strcmp(method,"*****@*****.**") == 0){
        ssh_set_error(session,SSH_FATAL,"[email protected] not supported");
        goto error;
    }

    method = session->next_crypto->kex_methods[SSH_HOSTKEYS];
    session->srv.hostkey = ssh_key_type_from_name(method);
    rc = SSH_OK;
    error:
    leave_function();
    return rc;
}