Exemple #1
0
/*************************************************************************
* This function is the entry point of refinement
**************************************************************************/
void MocRefineKWayHorizontal(CtrlType *ctrl, GraphType *orggraph, GraphType *graph, int nparts, 
       float *ubvec)
{

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->UncoarsenTmr));

  /* Compute the parameters of the coarsest graph */
  MocComputeKWayPartitionParams(ctrl, graph, nparts);

  for (;;) {
    IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->RefTmr));

    if (!MocIsHBalanced(graph->ncon, nparts, graph->npwgts, ubvec)) {
      MocComputeKWayBalanceBoundary(ctrl, graph, nparts);
      MCGreedy_KWayEdgeBalanceHorizontal(ctrl, graph, nparts, ubvec, 4); 
      ComputeKWayBoundary(ctrl, graph, nparts);
    }

    MCRandom_KWayEdgeRefineHorizontal(ctrl, graph, nparts, ubvec, 10); 

    IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->RefTmr));

    if (graph == orggraph)
      break;

    graph = graph->finer;
    IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->ProjectTmr));
    MocProjectKWayPartition(ctrl, graph, nparts);
    IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->ProjectTmr));
  }

  if (!MocIsHBalanced(graph->ncon, nparts, graph->npwgts, ubvec)) {
    MocComputeKWayBalanceBoundary(ctrl, graph, nparts);
    MCGreedy_KWayEdgeBalanceHorizontal(ctrl, graph, nparts, ubvec, 4); 
    ComputeKWayBoundary(ctrl, graph, nparts);
    MCRandom_KWayEdgeRefineHorizontal(ctrl, graph, nparts, ubvec, 10); 
  }

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->UncoarsenTmr));
}
Exemple #2
0
/*************************************************************************
* This function is the entry point for PWMETIS that accepts exact weights
* for the target partitions
**************************************************************************/
void METIS_WPartGraphRecursive(int *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, 
                               idxtype *adjwgt, int *wgtflag, int *numflag, int *nparts, 
                               floattype *tpwgts, int *options, int *edgecut, idxtype *part)
{
  int i, j;
  GraphType graph;
  CtrlType ctrl;
  floattype *mytpwgts;

  if (*numflag == 1)
    Change2CNumbering(*nvtxs, xadj, adjncy);

  SetUpGraph(&graph, OP_PMETIS, *nvtxs, 1, xadj, adjncy, vwgt, adjwgt, *wgtflag);

  if (options[0] == 0) {  /* Use the default parameters */
    ctrl.CType = PMETIS_CTYPE;
    ctrl.IType = PMETIS_ITYPE;
    ctrl.RType = PMETIS_RTYPE;
    ctrl.dbglvl = PMETIS_DBGLVL;
  }
  else {
    ctrl.CType = options[OPTION_CTYPE];
    ctrl.IType = options[OPTION_ITYPE];
    ctrl.RType = options[OPTION_RTYPE];
    ctrl.dbglvl = options[OPTION_DBGLVL];
  }
  ctrl.optype = OP_PMETIS;
  ctrl.CoarsenTo = 20;
  ctrl.maxvwgt = 1.5*(idxsum(*nvtxs, graph.vwgt)/ctrl.CoarsenTo);

  mytpwgts = fmalloc(*nparts, "PWMETIS: mytpwgts");
  for (i=0; i<*nparts; i++) 
    mytpwgts[i] = tpwgts[i];

  InitRandom(-1);

  AllocateWorkSpace(&ctrl, &graph, *nparts);

  IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl));
  IFSET(ctrl.dbglvl, DBG_TIME, starttimer(ctrl.TotalTmr));

  *edgecut = MlevelRecursiveBisection(&ctrl, &graph, *nparts, part, mytpwgts, 1.000, 0);

  IFSET(ctrl.dbglvl, DBG_TIME, stoptimer(ctrl.TotalTmr));
  IFSET(ctrl.dbglvl, DBG_TIME, PrintTimers(&ctrl));

  FreeWorkSpace(&ctrl, &graph);
  free(mytpwgts);

  if (*numflag == 1)
    Change2FNumbering(*nvtxs, xadj, adjncy, part);
}
Exemple #3
0
/*************************************************************************
* This function is the entry point for OEMETIS
**************************************************************************/
void METIS_EdgeND(int *nvtxs, idxtype *xadj, idxtype *adjncy, int *numflag, int *options, 
                  idxtype *perm, idxtype *iperm) 
{
  int i, j;
  GraphType graph;
  CtrlType ctrl;

  if (*numflag == 1)
    Change2CNumbering(*nvtxs, xadj, adjncy);

  SetUpGraph(&graph, OP_OEMETIS, *nvtxs, 1, xadj, adjncy, NULL, NULL, 0);

  if (options[0] == 0) {  /* Use the default parameters */
    ctrl.CType = OEMETIS_CTYPE;
    ctrl.IType = OEMETIS_ITYPE;
    ctrl.RType = OEMETIS_RTYPE;
    ctrl.dbglvl = OEMETIS_DBGLVL;
  }
  else {
    ctrl.CType = options[OPTION_CTYPE];
    ctrl.IType = options[OPTION_ITYPE];
    ctrl.RType = options[OPTION_RTYPE];
    ctrl.dbglvl = options[OPTION_DBGLVL];
  }
  ctrl.oflags  = 0;
  ctrl.pfactor = -1;
  ctrl.nseps   = 1;

  ctrl.optype = OP_OEMETIS;
  ctrl.CoarsenTo = 20;
  ctrl.maxvwgt = 1.5*(idxsum(*nvtxs, graph.vwgt)/ctrl.CoarsenTo);

  InitRandom(-1);

  AllocateWorkSpace(&ctrl, &graph, 2);

  IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl));
  IFSET(ctrl.dbglvl, DBG_TIME, starttimer(ctrl.TotalTmr));

  MlevelNestedDissection(&ctrl, &graph, iperm, ORDER_UNBALANCE_FRACTION, *nvtxs);

  IFSET(ctrl.dbglvl, DBG_TIME, stoptimer(ctrl.TotalTmr));
  IFSET(ctrl.dbglvl, DBG_TIME, PrintTimers(&ctrl));

  for (i=0; i<*nvtxs; i++)
    perm[iperm[i]] = i;

  FreeWorkSpace(&ctrl, &graph);

  if (*numflag == 1)
    Change2FNumberingOrder(*nvtxs, xadj, adjncy, perm, iperm);
}
Exemple #4
0
/* called from layer 3, when a packet arrives for layer 4 
   In this practical this will always be an ACK as B never sends data.
*/
void A_input(struct pkt packet)
{
  int ackcount = 0;
  int i;

  /* if received ACK is not corrupted */ 
  if (!IsCorrupted(packet)) {
    if (TRACE > 0)
      printf("----A: uncorrupted ACK %d is received\n",packet.acknum);
    total_ACKs_received++;

    /* check if new ACK or duplicate */
    if (windowcount != 0) {
          int seqfirst = buffer[windowfirst].seqnum;
          int seqlast = buffer[windowlast].seqnum;
          /* check case when seqnum has and hasn't wrapped */
          if (((seqfirst <= seqlast) && (packet.acknum >= seqfirst && packet.acknum <= seqlast)) ||
              ((seqfirst > seqlast) && (packet.acknum >= seqfirst || packet.acknum <= seqlast))) {

            /* packet is a new ACK */
            if (TRACE > 0)
              printf("----A: ACK %d is not a duplicate\n",packet.acknum);
            new_ACKs++;

            /* cumulative acknowledgement - determine how many packets are ACKed */
            if (packet.acknum >= seqfirst)
              ackcount = packet.acknum + 1 - seqfirst;
            else
              ackcount = SEQSPACE - seqfirst + packet.acknum;

	    /* slide window by the number of packets ACKed */
            windowfirst = (windowfirst + ackcount) % WINDOWSIZE;

            /* delete the acked packets from window buffer */
            for (i=0; i<ackcount; i++)
              windowcount--;

	    /* start timer again if there are still more unacked packets in window */
            stoptimer(A);
            if (windowcount > 0)
              starttimer(A, RTT);

          }
        }
        else
          if (TRACE > 0)
        printf ("----A: duplicate ACK received, do nothing!\n");
  }
  else 
    if (TRACE > 0)
      printf ("----A: corrupted ACK is received, do nothing!\n");
}
Exemple #5
0
void main(int argc, char *argv[])
{
   FILE *fp;
   char infile[96]="in.txt", outfile[96]="out.txt";
   int propternary=0;

   if(argc>1) strcpy(infile, argv[1]);
   if(argc>2) strcpy(outfile,argv[2]);
   fp = (FILE*)gfopen(outfile,"w");
   puts("results go into out.txt");
   starttimer();
   DescriptiveStatistics(fp, infile, 50, 100, propternary);
}
/*Initial Sender State*/
void A_Initial_State()
{
	//printf("before if loop nextseq %d, base+window %d\n",nextSequenceNum,(base+windowSize));
		if(nextSequenceNum<(base+windowSize))
		{
			//printf("Entered if loop\n");
			tolayer3(A,senderBuffer[nextSequenceNum]);
			if(base==nextSequenceNum)
				starttimer(A,timeout);
			nextSequenceNum++;
		}

}
Exemple #7
0
/*************************************************************************
* This function finds a matching using the HEM heuristic
**************************************************************************/
void MCMatch_RM(CtrlType *ctrl, GraphType *graph)
{
  int i, ii, j, k, nvtxs, ncon, cnvtxs, maxidx;
  idxtype *xadj, *adjncy, *adjwgt;
  idxtype *match, *cmap, *perm;
  float *nvwgt;

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr));

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  nvwgt = graph->nvwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  cmap = graph->cmap;
  match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs));

  perm = idxwspacemalloc(ctrl, nvtxs);
  RandomPermute(nvtxs, perm, 1);

  cnvtxs = 0;
  for (ii=0; ii<nvtxs; ii++) {
    i = perm[ii];

    if (match[i] == UNMATCHED) {  /* Unmatched */
      maxidx = i;

      /* Find a random matching, subject to maxvwgt constraints */
      for (j=xadj[i]; j<xadj[i+1]; j++) {
        k = adjncy[j];
        if (match[k] == UNMATCHED && AreAllVwgtsBelowFast(ncon, nvwgt+i*ncon, nvwgt+k*ncon, ctrl->nmaxvwgt)) {
          maxidx = k;
          break;
        }
      }

      cmap[i] = cmap[maxidx] = cnvtxs++;
      match[i] = maxidx;
      match[maxidx] = i;
    }
  }

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr));

  CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm);

  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
}
/* called when A's timer goes off */
void A_timerinterrupt() //ram's comment - changed the return type to void.
{
	//printf("\n in A_timerinterrupt.. Calling startimer");
	starttimer(0,TIMEOUT);
	timer_A_started=1;
	int i;

	for(i=base;i<nextseqnum;i++)// send packets in window
	{
		tolayer3(0,my_packet[i]);
		A_transport++;
	}

}
Exemple #9
0
/*************************************************************************
* This function finds a matching using the HEM heuristic
**************************************************************************/
void Match_HEM(CtrlType *ctrl, GraphType *graph)
{
  int i, ii, j, k, nvtxs, cnvtxs, maxidx, maxwgt;
  idxtype *xadj, *vwgt, *adjncy, *adjwgt;
  idxtype *match, *cmap, *perm;

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr));

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  vwgt = graph->vwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  cmap = graph->cmap;
  match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs));

  perm = idxwspacemalloc(ctrl, nvtxs);
  RandomPermute(nvtxs, perm, 1);

  cnvtxs = 0;
  for (ii=0; ii<nvtxs; ii++) {
    i = perm[ii];

    if (match[i] == UNMATCHED) {  /* Unmatched */
      maxidx = i;
      maxwgt = 0;

      /* Find a heavy-edge matching, subject to maxvwgt constraints */
      for (j=xadj[i]; j<xadj[i+1]; j++) {
        k = adjncy[j];
        if (match[k] == UNMATCHED && maxwgt < adjwgt[j] && vwgt[i]+vwgt[k] <= ctrl->maxvwgt) {
          maxwgt = adjwgt[j];
          maxidx = adjncy[j];
        }
      }

      cmap[i] = cmap[maxidx] = cnvtxs++;
      match[i] = maxidx;
      match[maxidx] = i;
    }
  }

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr));

  CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm);

  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
}
Exemple #10
0
/*************************************************************************
* This function is the entry point for KWMETIS
**************************************************************************/
void METIS_mCPartGraphKway(int *nvtxs, int *ncon, idxtype *xadj, idxtype *adjncy, 
                          idxtype *vwgt, idxtype *adjwgt, int *wgtflag, int *numflag, 
                          int *nparts, floattype *rubvec, int *options, int *edgecut, 
                          idxtype *part)
{
  int i, j;
  GraphType graph;
  CtrlType ctrl;

  if (*numflag == 1)
    Change2CNumbering(*nvtxs, xadj, adjncy);

  SetUpGraph(&graph, OP_KMETIS, *nvtxs, *ncon, xadj, adjncy, vwgt, adjwgt, *wgtflag);

  if (options[0] == 0) {  /* Use the default parameters */
    ctrl.CType  = McKMETIS_CTYPE;
    ctrl.IType  = McKMETIS_ITYPE;
    ctrl.RType  = McKMETIS_RTYPE;
    ctrl.dbglvl = McKMETIS_DBGLVL;
  }
  else {
    ctrl.CType  = options[OPTION_CTYPE];
    ctrl.IType  = options[OPTION_ITYPE];
    ctrl.RType  = options[OPTION_RTYPE];
    ctrl.dbglvl = options[OPTION_DBGLVL];
  }
  ctrl.optype = OP_KMETIS;
  ctrl.CoarsenTo = amax((*nvtxs)/(20*log2Int(*nparts)), 30*(*nparts));

  ctrl.nmaxvwgt = 1.5/(1.0*ctrl.CoarsenTo);

  InitRandom(-1);

  AllocateWorkSpace(&ctrl, &graph, *nparts);

  IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl));
  IFSET(ctrl.dbglvl, DBG_TIME, starttimer(ctrl.TotalTmr));

  ASSERT(CheckGraph(&graph));
  *edgecut = MCMlevelKWayPartitioning(&ctrl, &graph, *nparts, part, rubvec);

  IFSET(ctrl.dbglvl, DBG_TIME, stoptimer(ctrl.TotalTmr));
  IFSET(ctrl.dbglvl, DBG_TIME, PrintTimers(&ctrl));

  FreeWorkSpace(&ctrl, &graph);

  if (*numflag == 1)
    Change2FNumbering(*nvtxs, xadj, adjncy, part);
}
Exemple #11
0
/* Write a 1 */
void ringwriteone (void)
{
  /* Set to output, expecting high */
  spit->dra = 0xE0;
  spit->ddra = 0xE0;
  starttimer (10000000);
  /* Pull low for 10 us - this works... */
  spit->dra = 0xC0;
  spit->dra = 0xC0;
  spit->dra = 0xC0;
  /* Set to input */
  spit->ddra = 0xC0;
  /* Wait for a total of 120 us */
  while (gettimer () > 10000000 - 40);
}
/*Function sends packet with "Id" nextSeqNumber, Also add event to timer List*/
void A_sendPacket(int sequence) {

	insertLinkedList(sequence, get_sim_time());

	tolayer3(A, senderBuffer[sequence]);

	//printf("Packet sent from A to B Sequence Number : %d \n",sequence);

	if (nextSequenceNum == base) //whenever it starts fresh after receiving all Acks, start the timer
		{
		//printf("TIMER HAS BEEN STARTED at %f\n",get_sim_time());
		//stoptimer(A);
		starttimer(A, timeout);
		}

}
Exemple #13
0
/*************************************************************************
* This function takes a graph and produces a bisection of it
**************************************************************************/
int MCMlevelKWayPartitioning(CtrlType *ctrl, GraphType *graph, int nparts, idxtype *part, 
      float *rubvec)
{
  int i, j, nvtxs;
  GraphType *cgraph;
  int options[10], edgecut;

  cgraph = MCCoarsen2Way(ctrl, graph);

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->InitPartTmr));
  MocAllocateKWayPartitionMemory(ctrl, cgraph, nparts);

  options[0] = 1; 
  options[OPTION_CTYPE] = MATCH_SBHEM_INFNORM;
  options[OPTION_ITYPE] = IPART_RANDOM;
  options[OPTION_RTYPE] = RTYPE_FM;
  options[OPTION_DBGLVL] = 0;

  /* Determine what you will use as the initial partitioner, based on tolerances */
  for (i=0; i<graph->ncon; i++) {
    if (rubvec[i] > 1.2)
      break;
  }
  if (i == graph->ncon)
    METIS_mCPartGraphRecursiveInternal(&cgraph->nvtxs, &cgraph->ncon, 
          cgraph->xadj, cgraph->adjncy, cgraph->nvwgt, cgraph->adjwgt, &nparts, 
          options, &edgecut, cgraph->where);
  else
    METIS_mCHPartGraphRecursiveInternal(&cgraph->nvtxs, &cgraph->ncon, 
          cgraph->xadj, cgraph->adjncy, cgraph->nvwgt, cgraph->adjwgt, &nparts, 
          rubvec, options, &edgecut, cgraph->where);


  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->InitPartTmr));
  IFSET(ctrl->dbglvl, DBG_IPART, printf("Initial %d-way partitioning cut: %d\n", nparts, edgecut));

  IFSET(ctrl->dbglvl, DBG_KWAYPINFO, ComputePartitionInfo(cgraph, nparts, cgraph->where));

  MocRefineKWayHorizontal(ctrl, graph, cgraph, nparts, rubvec);

  idxcopy(graph->nvtxs, graph->where, part);

  GKfree(&graph->nvwgt, &graph->npwgts, &graph->gdata, &graph->rdata, LTERM);

  return graph->mincut;

}
Exemple #14
0
void plot() {
    printf("Plotting %i ...\n",bs.len);
    RGBmp out=RGBmp(rm.width,rm.height,myRGB::black);
    starttimer();
    for (int i=1;i<=bs.len;i++) {
      Blob *b=bs.p2num(i);
      if (!b->blobbed) {
        b->plot(&out);
      }
    }
    printf("%.1f seconds\n",gettimer());
    String fname=getnextfilename("out","bmp");
    out.writefile(fname);
    out.freedom();
    if (usexv)
      system(Sconc("xv ",fname," &"));
}
Exemple #15
0
/* called when A's timer goes off */
void A_timerinterrupt(void)
{
  int i;

  if (TRACE > 0)
    printf("----A: time out,resend packets!\n");

  for(i=0; i<windowcount; i++) {

    if (TRACE > 0)
      printf ("---A: resending packet %d\n", (buffer[(windowfirst+i) % WINDOWSIZE]).seqnum);

    tolayer3(A,buffer[(windowfirst+i) % WINDOWSIZE]);
    packets_resent++;
    if (i==0) starttimer(A,RTT);
  }
}       
Exemple #16
0
/*************************************************************************
* This function is the entry point for KWMETIS
**************************************************************************/
void METIS_WPartGraphVKway(int *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, 
                          idxtype *vsize, int *wgtflag, int *numflag, int *nparts, 
                          float *tpwgts, int *options, int *volume, idxtype *part)
{
  int i, j;
  GraphType graph;
  CtrlType ctrl;

  if (*numflag == 1)
    Change2CNumbering(*nvtxs, xadj, adjncy);

  VolSetUpGraph(&graph, OP_KVMETIS, *nvtxs, 1, xadj, adjncy, vwgt, vsize, *wgtflag);

  if (options[0] == 0) {  /* Use the default parameters */
    ctrl.CType = KVMETIS_CTYPE;
    ctrl.IType = KVMETIS_ITYPE;
    ctrl.RType = KVMETIS_RTYPE;
    ctrl.dbglvl = KVMETIS_DBGLVL;
  }
  else {
    ctrl.CType = options[OPTION_CTYPE];
    ctrl.IType = options[OPTION_ITYPE];
    ctrl.RType = options[OPTION_RTYPE];
    ctrl.dbglvl = options[OPTION_DBGLVL];
  }
  ctrl.optype = OP_KVMETIS;
  ctrl.CoarsenTo = amax((*nvtxs)/(40*log2Int(*nparts)), 20*(*nparts));
  ctrl.maxvwgt = 1.5*((graph.vwgt ? idxsum(*nvtxs, graph.vwgt) : (*nvtxs))/ctrl.CoarsenTo);

  InitRandom(-1);

  AllocateWorkSpace(&ctrl, &graph, *nparts);

  IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl));
  IFSET(ctrl.dbglvl, DBG_TIME, starttimer(ctrl.TotalTmr));

  *volume = MlevelVolKWayPartitioning(&ctrl, &graph, *nparts, part, tpwgts, 1.03);

  IFSET(ctrl.dbglvl, DBG_TIME, stoptimer(ctrl.TotalTmr));
  IFSET(ctrl.dbglvl, DBG_TIME, PrintTimers(&ctrl));

  FreeWorkSpace(&ctrl, &graph);

  if (*numflag == 1)
    Change2FNumbering(*nvtxs, xadj, adjncy, part);
}
Exemple #17
0
/*************************************************************************
* This function finds a matching using the HEM heuristic
**************************************************************************/
void Match_RM_NVW(CtrlType *ctrl, GraphType *graph)
{
  int i, ii, j, nvtxs, cnvtxs, maxidx;
  idxtype *xadj, *adjncy;
  idxtype *match, *cmap, *perm;

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr));

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;

  cmap = graph->cmap;
  match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs));

  perm = idxwspacemalloc(ctrl, nvtxs);
  RandomPermute(nvtxs, perm, 1);

  cnvtxs = 0;
  for (ii=0; ii<nvtxs; ii++) {
    i = perm[ii];

    if (match[i] == UNMATCHED) {  /* Unmatched */
      maxidx = i;

      /* Find a random matching, subject to maxvwgt constraints */
      for (j=xadj[i]; j<xadj[i+1]; j++) {
        if (match[adjncy[j]] == UNMATCHED) {
          maxidx = adjncy[j];
          break;
        }
      }

      cmap[i] = cmap[maxidx] = cnvtxs++;
      match[i] = maxidx;
      match[maxidx] = i;
    }
  }

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr));

  CreateCoarseGraph_NVW(ctrl, graph, cnvtxs, match, perm);

  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
}
Exemple #18
0
/***********************************************************************************
* This function creates the fused-element-graph and returns the partition
************************************************************************************/
void ParMETIS_FusedElementGraph(idxtype *vtxdist, idxtype *xadj, realtype *vvol,
              realtype *vsurf, idxtype *adjncy, idxtype *vwgt, realtype *adjwgt,
              int *wgtflag, int *numflag, int *nparts, int *options,
              idxtype *part, MPI_Comm *comm)
{
  int npes, mype, nvtxs;
  CtrlType ctrl;
  WorkSpaceType wspace;
  GraphType *graph;

  MPI_Comm_size(*comm, &npes);
  MPI_Comm_rank(*comm, &mype);

  nvtxs = vtxdist[mype+1]-vtxdist[mype];

  /* IFSET(options[OPTION_DBGLVL], DBG_TRACK, printf("%d ParMETIS_FEG npes=%d\n",mype, npes)); */

  SetUpCtrl(&ctrl, *nparts, options, *comm);
  ctrl.CoarsenTo = amin(vtxdist[npes]+1, 25*amax(npes, *nparts));

  graph = SetUpGraph(&ctrl, vtxdist, xadj, vwgt, adjncy, adjwgt, *wgtflag);

  graph->where = part;

  PreAllocateMemory(&ctrl, graph, &wspace);

  IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl));
  IFSET(ctrl.dbglvl, DBG_TIME, MPI_Barrier(ctrl.gcomm));
  IFSET(ctrl.dbglvl, DBG_TIME, starttimer(ctrl.TotalTmr));

  CreateFusedElementGraph(&ctrl, graph, &wspace, numflag);

  idxcopy(nvtxs, graph->where, part);

  IFSET(ctrl.dbglvl, DBG_TIME, MPI_Barrier(ctrl.gcomm));
  IFSET(ctrl.dbglvl, DBG_TIME, stoptimer(ctrl.TotalTmr));

  if (((*wgtflag)&2) == 0)
    IMfree((void**)&graph->vwgt, LTERM);
  IMfree((void**)&graph->lperm, &graph->peind, &graph->pexadj, &graph->peadjncy,
         &graph->peadjloc, &graph->recvptr, &graph->recvind, &graph->sendptr,
         &graph->imap, &graph->sendind, &graph, LTERM);
  FreeWSpace(&wspace);
  FreeCtrl(&ctrl);
}
Exemple #19
0
void informdoorbell (void)
{
  packet pkt;
  char buzzer_pressed=BUZZER_PRESSED;

  /* Make a noise */
  starttimer(40000);
  buzzerled(BUZZER);
  while(gettimer()>10000);
  buzzerled(ALLOFF);
  stoptimer();

  /* Send packet */
  pkt.datatype=CONTROL;
  pkt.data=&(buzzer_pressed);
  pkt.length=1;
  senddata(&pkt);
}
Exemple #20
0
/*************************************************************************
* This function computes the initial bisection of the coarsest graph
**************************************************************************/
void InitSeparator(CtrlType *ctrl, GraphType *graph, float ubfactor) 
{
  int dbglvl;

  dbglvl = ctrl->dbglvl;
  IFSET(ctrl->dbglvl, DBG_REFINE, ctrl->dbglvl -= DBG_REFINE);
  IFSET(ctrl->dbglvl, DBG_MOVEINFO, ctrl->dbglvl -= DBG_MOVEINFO);

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->InitPartTmr));

  GrowBisectionNode(ctrl, graph, ubfactor);
  Compute2WayNodePartitionParams(ctrl, graph);

  IFSET(ctrl->dbglvl, DBG_IPART, printf("Initial Sep: %d\n", graph->mincut));
  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->InitPartTmr));

  ctrl->dbglvl = dbglvl;

}
/* called from layer 5, passed the data to be sent to other side */
void A_output(struct msg message) //ram's comment - students can change the return type of the function from struct to pointers if necessary
{



	//Buffer 1000 packets, used it to send when window moves ahead
	if(SND_BUFSIZE<1000)
	{
		A_application++;

		strncpy(buffer[SND_BUFSIZE].data, message.data,20);
		SND_BUFSIZE++;
	}

	if(nextseqnum<(base+WINSIZE)){


		struct pkt packet_a;
		strncpy(packet_a.payload,buffer[nextseqnum].data,20);

		packet_a.seqnum=nextseqnum;
		packet_a.acknum=-1;//it is not acknowledgment
		packet_a.checksum=packet_a.seqnum+packet_a.acknum;
		for(int i=0;i<20;i++)
			packet_a.checksum+=packet_a.payload[i];

		my_packet[my_packet_no++]=packet_a;
		tolayer3(0,packet_a);
		A_transport++;


		if(base==nextseqnum)
		{

			starttimer(0,TIMEOUT);
			timer_A_started=1;
		}
		nextseqnum++;
	}


}
Exemple #22
0
/* called from layer 5 (application layer), passed the message to be sent to other side */
void A_output(struct msg message)
{
  struct pkt sendpkt;
  int i;

  /* if not blocked waiting on ACK */
  if ( windowcount < WINDOWSIZE) {
    if (TRACE > 1)
      printf("----A: New message arrives, send window is not full, send new messge to layer3!\n");

    /* create packet */
    sendpkt.seqnum = A_nextseqnum;
    sendpkt.acknum = NOTINUSE;
    for ( i=0; i<20 ; i++ ) 
      sendpkt.payload[i] = message.data[i];
    sendpkt.checksum = ComputeChecksum(sendpkt); 

    /* put packet in window buffer */
    /* windowlast will always be 0 for alternating bit; but not for GoBackN */
    windowlast = (windowlast + 1) % WINDOWSIZE; 
    buffer[windowlast] = sendpkt;
    windowcount++;

    /* send out packet */
    if (TRACE > 0)
      printf("Sending packet %d to layer 3\n", sendpkt.seqnum);
    tolayer3 (A, sendpkt);

    /* start timer if first packet in window */
    if (windowcount == 1)
      starttimer(A,RTT);

    /* get next sequence number, wrap back to 0 */
    A_nextseqnum = (A_nextseqnum + 1) % SEQSPACE;  
  }
  /* if blocked,  window is full */
  else {
    if (TRACE > 0)
      printf("----A: New message arrives, send window is full\n");
    window_full++;
  }
}
Exemple #23
0
/***********************************************************************************
* This function is the testing routine for the adaptive multilevel partitioning code.
* It computes a partition from scratch, it then moves the graph and changes some
* of the vertex weights and then call the adaptive code.
************************************************************************************/
void TestParMGridGen(char *filename, int *options, int minsize, int maxsize, MPI_Comm comm)
{
  int i, nparts, npes, mype;
  MGridGraphType graph;
  idxtype *part;
  double tmr;


  MPI_Comm_size(comm, &npes);
  MPI_Comm_rank(comm, &mype);

  MGridReadTestGraph(&graph, filename, comm);

  part = idxmalloc(graph.nvtxs, "TestParMGridGen: part");

  /*======================================================================
  / ParMETIS_AspectRatio
  /=======================================================================*/
  if (mype==0)
    printf("------------------------ PARAMETERS --------------------------------------\n");
  for (i=0; i<npes; i++)
    if (mype == i)
      printf("%s, Dim=%d [%2d %2d] CType=%d RType=%d Nvtxs=%d Nedges=%d\n", filename,
              options[OPTION_DIM], minsize, maxsize, options[OPTION_CTYPE],
              options[OPTION_RTYPE], graph.nvtxs, graph.nedges);

  cleartimer(tmr);
  MPI_Barrier(comm);
  starttimer(tmr);
  ParMGridGen(graph.vtxdist, graph.xadj, graph.vvol, graph.vsurf, graph.adjncy,
              graph.adjwgt, &nparts, minsize, maxsize, options, part, &comm);
  MPI_Barrier(comm);
  stoptimer(tmr);

  printf("Total Time = %lf\n", gettimer(tmr));

  WriteParallelPartition(filename, part, graph.vtxdist, nparts, mype, npes);

  IMfree(&graph.vtxdist, &graph.xadj, &graph.vvol, &graph.vsurf, &graph.vwgt,
         &graph.adjncy, &graph.adjwgt, &part, LTERM);
} 
Exemple #24
0
void real_main() {

	init_candy();

  bool should_quit = false;
	
  starttimer();

  while (!should_quit) {

    iterate_candy();

    #ifdef X11GFX
    bool ev_occ=XCheckMaskEvent(d,ExposureMask | KeyPressMask | ButtonPressMask | StructureNotifyMask,
															&ev);
		if (ev_occ) {
			switch (ev.type) {
				case Expose: 			break;
				case ButtonPress: should_quit=true; break;
				case KeyPress: 		break;
				default: 					break;
			}
		}
    #endif

    #ifdef ALLEGRO
      if (key[KEY_ESC] || key[KEY_SPACE])
        should_quit=true;
    #endif
	
  }

  savetimer();

  #ifdef ALLEGRO
    allegro_exit();
  #endif

	displayframespersecond();

}
Exemple #25
0
int state10(void)
{
  unsigned char RecBuf[2];
  char v=1;
  int otime,ctime;
  unsigned char Data_next;
  int Control=0;
  serialinit();
  initAudio();
  initCompr();
  
  /* Synch with PC... */
  serialtransmit('A');
  otime=10000000;
  starttimer(SAMPLE_DELAY);
  ctime=gettimer();
  while ( otime > ctime ) {
    otime=ctime;
    ctime=gettimer();
  }
  RecBuf[0] = (getsample());
  otime=1000;
  while (1) {
    /*starttimer(SAMPLE_DELAY);*/
    while ( otime > (otime= gettimer() > 0) );
    RecBuf[v] = (getsample());
    if (v) {
      Control = compress(RecBuf[0],RecBuf[1]);
    } else {
      Control = serialtransmit(Control);
      if (Control) {
	serialclose();
	return Control;
      }
    }
    v=1-v;
  }
}
Exemple #26
0
/*************************************************************************
* This function takes a graph and produces a bisection of it
**************************************************************************/
int MlevelVolKWayPartitioning(CtrlType *ctrl, GraphType *graph, int nparts, idxtype *part, 
                              float *tpwgts, float ubfactor)
{
  int i, j, nvtxs, tvwgt, tpwgts2[2];
  GraphType *cgraph;
  int wgtflag=3, numflag=0, options[10], edgecut;

  cgraph = Coarsen2Way(ctrl, graph);

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->InitPartTmr));
  AllocateVolKWayPartitionMemory(ctrl, cgraph, nparts);

  options[0] = 1; 
  options[OPTION_CTYPE] = MATCH_SHEMKWAY;
  options[OPTION_ITYPE] = IPART_GGPKL;
  options[OPTION_RTYPE] = RTYPE_FM;
  options[OPTION_DBGLVL] = 0;

  METIS_WPartGraphRecursive(&cgraph->nvtxs, cgraph->xadj, cgraph->adjncy, cgraph->vwgt, 
                            cgraph->adjwgt, &wgtflag, &numflag, &nparts, tpwgts, options, 
                            &edgecut, cgraph->where);

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->InitPartTmr));
  IFSET(ctrl->dbglvl, DBG_IPART, printf("Initial %d-way partitioning cut: %d\n", nparts, edgecut));

  IFSET(ctrl->dbglvl, DBG_KWAYPINFO, ComputePartitionInfo(cgraph, nparts, cgraph->where));

  RefineVolKWay(ctrl, graph, cgraph, nparts, tpwgts, ubfactor);

  idxcopy(graph->nvtxs, graph->where, part);

  GKfree((void**)&graph->gdata, &graph->rdata, LTERM);

  return graph->minvol;

}
Exemple #27
0
/*************************************************************************
* This function creates the coarser graph
**************************************************************************/
void CreateCoarseGraph_NVW(CtrlType *ctrl, GraphType *graph, int cnvtxs, idxtype *match, idxtype *perm)
{
  int i, j, jj, k, kk, l, m, istart, iend, nvtxs, nedges, ncon, cnedges, v, u, mask;
  idxtype *xadj, *adjncy, *adjwgtsum, *auxadj;
  idxtype *cmap, *htable;
  idxtype *cxadj, *cvwgt, *cadjncy, *cadjwgt, *cadjwgtsum;
  float *nvwgt, *cnvwgt;
  GraphType *cgraph;


  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->ContractTmr));

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  nvwgt = graph->nvwgt;
  adjncy = graph->adjncy;
  adjwgtsum = graph->adjwgtsum;
  cmap = graph->cmap;

  /* Initialize the coarser graph */
  cgraph = SetUpCoarseGraph(graph, cnvtxs, 0);
  cxadj = cgraph->xadj;
  cvwgt = cgraph->vwgt;
  cnvwgt = cgraph->nvwgt;
  cadjwgtsum = cgraph->adjwgtsum;
  cadjncy = cgraph->adjncy;
  cadjwgt = cgraph->adjwgt;


  iend = xadj[nvtxs];
  auxadj = ctrl->wspace.auxcore; 
  memcpy(auxadj, adjncy, iend*sizeof(idxtype)); 
  for (i=0; i<iend; i++)
    auxadj[i] = cmap[auxadj[i]];

  mask = HTLENGTH;
  htable = idxset(mask+1, -1, idxwspacemalloc(ctrl, mask+1)); 

  cxadj[0] = cnvtxs = cnedges = 0;
  for (i=0; i<nvtxs; i++) {
    v = perm[i];
    if (cmap[v] != cnvtxs) 
      continue;

    u = match[v];
    cvwgt[cnvtxs] = 1;
    cadjwgtsum[cnvtxs] = adjwgtsum[v];
    nedges = 0;

    istart = xadj[v];
    iend = xadj[v+1];
    for (j=istart; j<iend; j++) {
      k = auxadj[j];
      kk = k&mask;
      if ((m = htable[kk]) == -1) {
        cadjncy[nedges] = k;
        cadjwgt[nedges] = 1;
        htable[kk] = nedges++;
      }
      else if (cadjncy[m] == k) {
        cadjwgt[m]++;
      }
      else {
        for (jj=0; jj<nedges; jj++) {
          if (cadjncy[jj] == k) {
            cadjwgt[jj]++;
            break;
          }
        }
        if (jj == nedges) {
          cadjncy[nedges] = k;
          cadjwgt[nedges++] = 1;
        }
      }
    }

    if (v != u) { 
      cvwgt[cnvtxs]++;
      cadjwgtsum[cnvtxs] += adjwgtsum[u];

      istart = xadj[u];
      iend = xadj[u+1];
      for (j=istart; j<iend; j++) {
        k = auxadj[j];
        kk = k&mask;
        if ((m = htable[kk]) == -1) {
          cadjncy[nedges] = k;
          cadjwgt[nedges] = 1;
          htable[kk] = nedges++;
        }
        else if (cadjncy[m] == k) {
          cadjwgt[m]++;
        }
        else {
          for (jj=0; jj<nedges; jj++) {
            if (cadjncy[jj] == k) {
              cadjwgt[jj]++;
              break;
            }
          }
          if (jj == nedges) {
            cadjncy[nedges] = k;
            cadjwgt[nedges++] = 1;
          }
        }
      }

      /* Remove the contracted adjacency weight */
      jj = htable[cnvtxs&mask];
      if (jj >= 0 && cadjncy[jj] != cnvtxs) {
        for (jj=0; jj<nedges; jj++) {
          if (cadjncy[jj] == cnvtxs) 
            break;
        }
      }
      if (jj >= 0 && cadjncy[jj] == cnvtxs) { /* This 2nd check is needed for non-adjacent matchings */
        cadjwgtsum[cnvtxs] -= cadjwgt[jj];
        cadjncy[jj] = cadjncy[--nedges];
        cadjwgt[jj] = cadjwgt[nedges];
      }
    }

    ASSERTP(cadjwgtsum[cnvtxs] == idxsum(nedges, cadjwgt), ("%d %d %d %d %d\n", cnvtxs, cadjwgtsum[cnvtxs], idxsum(nedges, cadjwgt), adjwgtsum[u], adjwgtsum[v]));

    for (j=0; j<nedges; j++)
      htable[cadjncy[j]&mask] = -1;  /* Zero out the htable */
    htable[cnvtxs&mask] = -1;

    cnedges += nedges;
    cxadj[++cnvtxs] = cnedges;
    cadjncy += nedges;
    cadjwgt += nedges;
  }

  cgraph->nedges = cnedges;

  ReAdjustMemory(graph, cgraph, 0);

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->ContractTmr));

  idxwspacefree(ctrl, mask+1);

}
Exemple #28
0
/*************************************************************************
* This function creates the coarser graph
**************************************************************************/
void CreateCoarseGraphNoMask(CtrlType *ctrl, GraphType *graph, int cnvtxs, idxtype *match, idxtype *perm)
{
  int i, j, k, m, istart, iend, nvtxs, nedges, ncon, cnedges, v, u, dovsize;
  idxtype *xadj, *vwgt, *vsize, *adjncy, *adjwgt, *adjwgtsum, *auxadj;
  idxtype *cmap, *htable;
  idxtype *cxadj, *cvwgt, *cvsize, *cadjncy, *cadjwgt, *cadjwgtsum;
  float *nvwgt, *cnvwgt;
  GraphType *cgraph;

  dovsize = (ctrl->optype == OP_KVMETIS ? 1 : 0);

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->ContractTmr));

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  vwgt = graph->vwgt;
  vsize = graph->vsize;
  nvwgt = graph->nvwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  adjwgtsum = graph->adjwgtsum;
  cmap = graph->cmap;


  /* Initialize the coarser graph */
  cgraph = SetUpCoarseGraph(graph, cnvtxs, dovsize);
  cxadj = cgraph->xadj;
  cvwgt = cgraph->vwgt;
  cvsize = cgraph->vsize;
  cnvwgt = cgraph->nvwgt;
  cadjwgtsum = cgraph->adjwgtsum;
  cadjncy = cgraph->adjncy;
  cadjwgt = cgraph->adjwgt;


  htable = idxset(cnvtxs, -1, idxwspacemalloc(ctrl, cnvtxs));

  iend = xadj[nvtxs];
  auxadj = ctrl->wspace.auxcore; 
  memcpy(auxadj, adjncy, iend*sizeof(idxtype)); 
  for (i=0; i<iend; i++)
    auxadj[i] = cmap[auxadj[i]];

  cxadj[0] = cnvtxs = cnedges = 0;
  for (i=0; i<nvtxs; i++) {
    v = perm[i];
    if (cmap[v] != cnvtxs) 
      continue;

    u = match[v];
    if (ncon == 1)
      cvwgt[cnvtxs] = vwgt[v];
    else
      scopy(ncon, nvwgt+v*ncon, cnvwgt+cnvtxs*ncon);

    if (dovsize)
      cvsize[cnvtxs] = vsize[v];

    cadjwgtsum[cnvtxs] = adjwgtsum[v];
    nedges = 0;

    istart = xadj[v];
    iend = xadj[v+1];
    for (j=istart; j<iend; j++) {
      k = auxadj[j];
      if ((m = htable[k]) == -1) {
        cadjncy[nedges] = k;
        cadjwgt[nedges] = adjwgt[j];
        htable[k] = nedges++;
      }
      else {
        cadjwgt[m] += adjwgt[j];
      }
    }

    if (v != u) { 
      if (ncon == 1)
        cvwgt[cnvtxs] += vwgt[u];
      else
        saxpy(ncon, 1.0, nvwgt+u*ncon, 1, cnvwgt+cnvtxs*ncon, 1);

      if (dovsize)
        cvsize[cnvtxs] += vsize[u];

      cadjwgtsum[cnvtxs] += adjwgtsum[u];

      istart = xadj[u];
      iend = xadj[u+1];
      for (j=istart; j<iend; j++) {
        k = auxadj[j];
        if ((m = htable[k]) == -1) {
          cadjncy[nedges] = k;
          cadjwgt[nedges] = adjwgt[j];
          htable[k] = nedges++;
        }
        else {
          cadjwgt[m] += adjwgt[j];
        }
      }

      /* Remove the contracted adjacency weight */
      if ((j = htable[cnvtxs]) != -1) {
        ASSERT(cadjncy[j] == cnvtxs);
        cadjwgtsum[cnvtxs] -= cadjwgt[j];
        cadjncy[j] = cadjncy[--nedges];
        cadjwgt[j] = cadjwgt[nedges];
        htable[cnvtxs] = -1;
      }
    }

    ASSERTP(cadjwgtsum[cnvtxs] == idxsum(nedges, cadjwgt), ("%d %d\n", cadjwgtsum[cnvtxs], idxsum(nedges, cadjwgt)));

    for (j=0; j<nedges; j++)
      htable[cadjncy[j]] = -1;  /* Zero out the htable */

    cnedges += nedges;
    cxadj[++cnvtxs] = cnedges;
    cadjncy += nedges;
    cadjwgt += nedges;
  }

  cgraph->nedges = cnedges;

  ReAdjustMemory(graph, cgraph, dovsize);

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->ContractTmr));

  idxwspacefree(ctrl, cnvtxs);
}
Exemple #29
0
/*************************************************************************
* This function is the entry point of the initial partition algorithm
* that does recursive bissection.
* This algorithm assembles the graph to all the processors and preceeds
* by parallelizing the recursive bisection step.
**************************************************************************/
void InitPartition(ctrl_t *ctrl, graph_t *graph)
{
  idx_t i, j, ncon, mype, npes, gnvtxs, ngroups;
  idx_t *xadj, *adjncy, *adjwgt, *vwgt;
  idx_t *part, *gwhere0, *gwhere1;
  idx_t *tmpwhere, *tmpvwgt, *tmpxadj, *tmpadjncy, *tmpadjwgt;
  graph_t *agraph;
  idx_t lnparts, fpart, fpe, lnpes; 
  idx_t twoparts=2, moptions[METIS_NOPTIONS], edgecut, max_cut;
  real_t *tpwgts, *tpwgts2, *lbvec, lbsum, min_lbsum, wsum;
  MPI_Comm ipcomm;
  struct {
    double sum;
    int rank;
  } lpesum, gpesum;

  WCOREPUSH;

  ncon = graph->ncon;

  ngroups = gk_max(gk_min(RIP_SPLIT_FACTOR, ctrl->npes), 1);

  IFSET(ctrl->dbglvl, DBG_TIME, gkMPI_Barrier(ctrl->comm));
  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->InitPartTmr));

  lbvec = rwspacemalloc(ctrl, ncon);

  /* assemble the graph to all the processors */
  agraph = AssembleAdaptiveGraph(ctrl, graph);
  gnvtxs = agraph->nvtxs;

  /* make a copy of the graph's structure for later */
  xadj   = icopy(gnvtxs+1, agraph->xadj, iwspacemalloc(ctrl, gnvtxs+1));
  vwgt   = icopy(gnvtxs*ncon, agraph->vwgt, iwspacemalloc(ctrl, gnvtxs*ncon));
  adjncy = icopy(agraph->nedges, agraph->adjncy, iwspacemalloc(ctrl, agraph->nedges));
  adjwgt = icopy(agraph->nedges, agraph->adjwgt, iwspacemalloc(ctrl, agraph->nedges));
  part   = iwspacemalloc(ctrl, gnvtxs);

  /* create different processor groups */
  gkMPI_Comm_split(ctrl->gcomm, ctrl->mype % ngroups, 0, &ipcomm);
  gkMPI_Comm_rank(ipcomm, &mype);
  gkMPI_Comm_size(ipcomm, &npes);


  /* Go into the recursive bisection */
  METIS_SetDefaultOptions(moptions);
  moptions[METIS_OPTION_SEED] = ctrl->sync + (ctrl->mype % ngroups) + 1;

  tpwgts  = ctrl->tpwgts;
  tpwgts2 = rwspacemalloc(ctrl, 2*ncon);

  lnparts = ctrl->nparts;
  fpart = fpe = 0;
  lnpes = npes;
  while (lnpes > 1 && lnparts > 1) {
    /* determine the weights of the two partitions as a function of the 
       weight of the target partition weights */
    for (j=(lnparts>>1), i=0; i<ncon; i++) {
      tpwgts2[i]      = rsum(j, tpwgts+fpart*ncon+i, ncon);
      tpwgts2[ncon+i] = rsum(lnparts-j, tpwgts+(fpart+j)*ncon+i, ncon);
      wsum            = 1.0/(tpwgts2[i] + tpwgts2[ncon+i]);
      tpwgts2[i]      *= wsum;
      tpwgts2[ncon+i] *= wsum;
    }

    METIS_PartGraphRecursive(&agraph->nvtxs, &ncon, agraph->xadj, agraph->adjncy, 
          agraph->vwgt, NULL, agraph->adjwgt, &twoparts, tpwgts2, NULL, moptions, 
          &edgecut, part);

    /* pick one of the branches */
    if (mype < fpe+lnpes/2) {
      KeepPart(ctrl, agraph, part, 0);
      lnpes   = lnpes/2;
      lnparts = lnparts/2;
    }
    else {
      KeepPart(ctrl, agraph, part, 1);
      fpart   = fpart + lnparts/2;
      fpe     = fpe + lnpes/2;
      lnpes   = lnpes - lnpes/2;
      lnparts = lnparts - lnparts/2;
    }
  }

  gwhere0 = iset(gnvtxs, 0, iwspacemalloc(ctrl, gnvtxs));
  gwhere1 = iwspacemalloc(ctrl, gnvtxs);

  if (lnparts == 1) { /* Case npes is greater than or equal to nparts */
    /* Only the first process will assign labels (for the reduction to work) */
    if (mype == fpe) {
      for (i=0; i<agraph->nvtxs; i++) 
        gwhere0[agraph->label[i]] = fpart;
    }
  }
  else { /* Case in which npes is smaller than nparts */
    /* create the normalized tpwgts for the lnparts from ctrl->tpwgts */
    tpwgts = rwspacemalloc(ctrl, lnparts*ncon);
    for (j=0; j<ncon; j++) {
      for (wsum=0.0, i=0; i<lnparts; i++) {
        tpwgts[i*ncon+j] = ctrl->tpwgts[(fpart+i)*ncon+j];
        wsum += tpwgts[i*ncon+j];
      }
      for (wsum=1.0/wsum, i=0; i<lnparts; i++) 
        tpwgts[i*ncon+j] *= wsum;
    }

    METIS_PartGraphKway(&agraph->nvtxs, &ncon, agraph->xadj, agraph->adjncy, 
          agraph->vwgt, NULL, agraph->adjwgt, &lnparts, tpwgts, NULL, moptions, 
          &edgecut, part);

    for (i=0; i<agraph->nvtxs; i++) 
      gwhere0[agraph->label[i]] = fpart + part[i];
  }

  gkMPI_Allreduce((void *)gwhere0, (void *)gwhere1, gnvtxs, IDX_T, MPI_SUM, ipcomm);

  if (ngroups > 1) {
    tmpxadj   = agraph->xadj;
    tmpadjncy = agraph->adjncy;
    tmpadjwgt = agraph->adjwgt;
    tmpvwgt   = agraph->vwgt;
    tmpwhere  = agraph->where;

    agraph->xadj   = xadj;
    agraph->adjncy = adjncy;
    agraph->adjwgt = adjwgt;
    agraph->vwgt   = vwgt;
    agraph->where  = gwhere1;
    agraph->vwgt   = vwgt;
    agraph->nvtxs  = gnvtxs;

    edgecut = ComputeSerialEdgeCut(agraph);
    ComputeSerialBalance(ctrl, agraph, gwhere1, lbvec);
    lbsum = rsum(ncon, lbvec, 1);

    gkMPI_Allreduce((void *)&edgecut, (void *)&max_cut,   1, IDX_T,  MPI_MAX, ctrl->gcomm);
    gkMPI_Allreduce((void *)&lbsum,   (void *)&min_lbsum, 1, REAL_T, MPI_MIN, ctrl->gcomm);

    lpesum.sum = lbsum;
    if (min_lbsum < UNBALANCE_FRACTION*ncon) {
      if (lbsum < UNBALANCE_FRACTION*ncon)
        lpesum.sum = edgecut;
      else
        lpesum.sum = max_cut;
    } 
    lpesum.rank = ctrl->mype;
    
    gkMPI_Allreduce((void *)&lpesum, (void *)&gpesum, 1, MPI_DOUBLE_INT,
        MPI_MINLOC, ctrl->gcomm);
    gkMPI_Bcast((void *)gwhere1, gnvtxs, IDX_T, gpesum.rank, ctrl->gcomm);

    agraph->xadj   = tmpxadj;
    agraph->adjncy = tmpadjncy;
    agraph->adjwgt = tmpadjwgt;
    agraph->vwgt   = tmpvwgt;
    agraph->where  = tmpwhere;
  }

  icopy(graph->nvtxs, gwhere1+graph->vtxdist[ctrl->mype], graph->where);

  FreeGraph(agraph);
  gkMPI_Comm_free(&ipcomm);

  IFSET(ctrl->dbglvl, DBG_TIME, gkMPI_Barrier(ctrl->comm));
  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->InitPartTmr));

  WCOREPOP;
}
Exemple #30
0
/*************************************************************************
* This function performs k-way refinement
**************************************************************************/
void Moc_KWayFM(CtrlType *ctrl, GraphType *graph, WorkSpaceType *wspace, int npasses)
{
  int h, i, ii, iii, j, k, c;
  int pass, nvtxs, nedges, ncon;
  int nmoves, nmoved, nswaps, nzgswaps;
/*  int gnswaps, gnzgswaps; */
  int me, firstvtx, lastvtx, yourlastvtx;
  int from, to = -1, oldto, oldcut, mydomain, yourdomain, imbalanced, overweight;
  int npes = ctrl->npes, mype = ctrl->mype, nparts = ctrl->nparts;
  int nlupd, nsupd, nnbrs, nchanged;
  idxtype *xadj, *ladjncy, *adjwgt, *vtxdist;
  idxtype *where, *tmp_where, *moved;
  floattype *lnpwgts, *gnpwgts, *ognpwgts, *pgnpwgts, *movewgts, *overfill;
  idxtype *update, *supdate, *rupdate, *pe_updates;
  idxtype *changed, *perm, *pperm, *htable;
  idxtype *peind, *recvptr, *sendptr;
  KeyValueType *swchanges, *rwchanges;
  RInfoType *rinfo, *myrinfo, *tmp_myrinfo, *tmp_rinfo;
  EdgeType *tmp_edegrees, *my_edegrees, *your_edegrees;
  floattype lbvec[MAXNCON], *nvwgt, *badmaxpwgt, *ubvec, *tpwgts, lbavg, ubavg;
  int *nupds_pe;

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->KWayTmr));

  /*************************/
  /* set up common aliases */
  /*************************/
  nvtxs = graph->nvtxs;
  nedges = graph->nedges;
  ncon = graph->ncon;

  vtxdist = graph->vtxdist;
  xadj = graph->xadj;
  ladjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  firstvtx = vtxdist[mype];
  lastvtx = vtxdist[mype+1];

  where   = graph->where;
  rinfo   = graph->rinfo;
  lnpwgts = graph->lnpwgts;
  gnpwgts = graph->gnpwgts;
  ubvec   = ctrl->ubvec;
  tpwgts  = ctrl->tpwgts;

  nnbrs = graph->nnbrs;
  peind = graph->peind;
  recvptr = graph->recvptr;
  sendptr = graph->sendptr;

  changed = idxmalloc(nvtxs, "KWR: changed");
  rwchanges = wspace->pairs;
  swchanges = rwchanges + recvptr[nnbrs];

  /************************************/
  /* set up important data structures */
  /************************************/
  perm = idxmalloc(nvtxs, "KWR: perm");
  pperm = idxmalloc(nparts, "KWR: pperm");

  update = idxmalloc(nvtxs, "KWR: update");
  supdate = wspace->indices;
  rupdate = supdate + recvptr[nnbrs];
  nupds_pe = imalloc(npes, "KWR: nupds_pe");
  htable = idxsmalloc(nvtxs+graph->nrecv, 0, "KWR: lhtable");
  badmaxpwgt = fmalloc(nparts*ncon, "badmaxpwgt");

  for (i=0; i<nparts; i++) {
    for (h=0; h<ncon; h++) {
      badmaxpwgt[i*ncon+h] = ubvec[h]*tpwgts[i*ncon+h];
    }
  }

  movewgts = fmalloc(nparts*ncon, "KWR: movewgts");
  ognpwgts = fmalloc(nparts*ncon, "KWR: ognpwgts");
  pgnpwgts = fmalloc(nparts*ncon, "KWR: pgnpwgts");
  overfill = fmalloc(nparts*ncon, "KWR: overfill");
  moved = idxmalloc(nvtxs, "KWR: moved");
  tmp_where = idxmalloc(nvtxs+graph->nrecv, "KWR: tmp_where");
  tmp_rinfo = (RInfoType *)GKmalloc(sizeof(RInfoType)*nvtxs, "KWR: tmp_rinfo");
  tmp_edegrees = (EdgeType *)GKmalloc(sizeof(EdgeType)*nedges, "KWR: tmp_edegrees");

  idxcopy(nvtxs+graph->nrecv, where, tmp_where);
  for (i=0; i<nvtxs; i++) {
    tmp_rinfo[i].id = rinfo[i].id;
    tmp_rinfo[i].ed = rinfo[i].ed;
    tmp_rinfo[i].ndegrees = rinfo[i].ndegrees;
    tmp_rinfo[i].degrees = tmp_edegrees+xadj[i];

    for (j=0; j<rinfo[i].ndegrees; j++) {
      tmp_rinfo[i].degrees[j].edge = rinfo[i].degrees[j].edge;
      tmp_rinfo[i].degrees[j].ewgt = rinfo[i].degrees[j].ewgt;
    }
  }

  nswaps = nzgswaps = 0;
  /*********************************************************/
  /* perform a small number of passes through the vertices */
  /*********************************************************/
  for (pass=0; pass<npasses; pass++) {
    if (mype == 0)
      RandomPermute(nparts, pperm, 1);
    MPI_Bcast((void *)pperm, nparts, IDX_DATATYPE, 0, ctrl->comm);
    FastRandomPermute(nvtxs, perm, 1);
    oldcut = graph->mincut;

    /* check to see if the partitioning is imbalanced */
    Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec);
    ubavg = savg(ncon, ubvec);
    lbavg = savg(ncon, lbvec);
    imbalanced = (lbavg > ubavg) ? 1 : 0;

    for (c=0; c<2; c++) {
      scopy(ncon*nparts, gnpwgts, ognpwgts);
      sset(ncon*nparts, 0.0, movewgts);
      nmoved = 0;

      /**********************************************/
      /* PASS ONE -- record stats for desired moves */
      /**********************************************/
      for (iii=0; iii<nvtxs; iii++) {
        i = perm[iii];
        from = tmp_where[i];
        nvwgt = graph->nvwgt+i*ncon;

        for (h=0; h<ncon; h++)
          if (fabs(nvwgt[h]-gnpwgts[from*ncon+h]) < SMALLFLOAT)
            break;

        if (h < ncon) {
          continue;
        }

        /* check for a potential improvement */
        if (tmp_rinfo[i].ed >= tmp_rinfo[i].id) {
          my_edegrees = tmp_rinfo[i].degrees;

          for (k=0; k<tmp_rinfo[i].ndegrees; k++) {
            to = my_edegrees[k].edge;
            if (ProperSide(c, pperm[from], pperm[to])) {
              for (h=0; h<ncon; h++)
                if (gnpwgts[to*ncon+h]+nvwgt[h] > badmaxpwgt[to*ncon+h] && nvwgt[h] > 0.0)
                  break;

              if (h == ncon)
                break;
            }
          }
          oldto = to;

          /* check if a subdomain was found that fits */
          if (k < tmp_rinfo[i].ndegrees) {
            for (j=k+1; j<tmp_rinfo[i].ndegrees; j++) {
              to = my_edegrees[j].edge;
              if (ProperSide(c, pperm[from], pperm[to])) {
                for (h=0; h<ncon; h++)
                  if (gnpwgts[to*ncon+h]+nvwgt[h] > badmaxpwgt[to*ncon+h] && nvwgt[h] > 0.0)
                    break;

                if (h == ncon) {
                  if (my_edegrees[j].ewgt > my_edegrees[k].ewgt ||
                   (my_edegrees[j].ewgt == my_edegrees[k].ewgt &&
                   IsHBalanceBetterTT(ncon,gnpwgts+oldto*ncon,gnpwgts+to*ncon,nvwgt,ubvec))){
                    k = j;
                    oldto = my_edegrees[k].edge;
                  }
                }
              }
            }
            to = oldto;

            if (my_edegrees[k].ewgt > tmp_rinfo[i].id ||
            (my_edegrees[k].ewgt == tmp_rinfo[i].id &&
            (imbalanced ||  graph->level > 3  || iii % 8 == 0) &&
            IsHBalanceBetterFT(ncon,gnpwgts+from*ncon,gnpwgts+to*ncon,nvwgt,ubvec))){

              /****************************************/
              /* Update tmp arrays of the moved vertex */
              /****************************************/
              tmp_where[i] = to;
              moved[nmoved++] = i;
              for (h=0; h<ncon; h++) {
                lnpwgts[to*ncon+h] += nvwgt[h];
                lnpwgts[from*ncon+h] -= nvwgt[h];
                gnpwgts[to*ncon+h] += nvwgt[h];
                gnpwgts[from*ncon+h] -= nvwgt[h];
                movewgts[to*ncon+h] += nvwgt[h];
                movewgts[from*ncon+h] -= nvwgt[h];
              }

              tmp_rinfo[i].ed += tmp_rinfo[i].id-my_edegrees[k].ewgt;
              SWAP(tmp_rinfo[i].id, my_edegrees[k].ewgt, j);
              if (my_edegrees[k].ewgt == 0) {
                tmp_rinfo[i].ndegrees--;
                my_edegrees[k].edge = my_edegrees[tmp_rinfo[i].ndegrees].edge;
                my_edegrees[k].ewgt = my_edegrees[tmp_rinfo[i].ndegrees].ewgt;
              }
              else {
                my_edegrees[k].edge = from;
              }

              /* Update the degrees of adjacent vertices */
              for (j=xadj[i]; j<xadj[i+1]; j++) {
                /* no need to bother about vertices on different pe's */
                if (ladjncy[j] >= nvtxs)
                  continue;

                me = ladjncy[j];
                mydomain = tmp_where[me];

                myrinfo = tmp_rinfo+me;
                your_edegrees = myrinfo->degrees;

                if (mydomain == from) {
                  INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);
                }
                else {
                  if (mydomain == to) {
                    INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);
                  }
                }

                /* Remove contribution from the .ed of 'from' */
                if (mydomain != from) {
                  for (k=0; k<myrinfo->ndegrees; k++) {
                    if (your_edegrees[k].edge == from) {
                      if (your_edegrees[k].ewgt == adjwgt[j]) {
                        myrinfo->ndegrees--;
                        your_edegrees[k].edge = your_edegrees[myrinfo->ndegrees].edge;
                        your_edegrees[k].ewgt = your_edegrees[myrinfo->ndegrees].ewgt;
                      }
                      else {
                        your_edegrees[k].ewgt -= adjwgt[j];
                      }
                      break;
                    }
                  }
                }

                /* Add contribution to the .ed of 'to' */
                if (mydomain != to) {
                  for (k=0; k<myrinfo->ndegrees; k++) {
                    if (your_edegrees[k].edge == to) {
                      your_edegrees[k].ewgt += adjwgt[j];
                      break;
                    }
                  }
                  if (k == myrinfo->ndegrees) {
                    your_edegrees[myrinfo->ndegrees].edge = to;
                    your_edegrees[myrinfo->ndegrees++].ewgt = adjwgt[j];
                  }
                }
              }
            }
          }
        }
      }

      /******************************************/
      /* Let processors know the subdomain wgts */
      /* if all proposed moves commit.          */
      /******************************************/
      MPI_Allreduce((void *)lnpwgts, (void *)pgnpwgts, nparts*ncon,
      MPI_DOUBLE, MPI_SUM, ctrl->comm);

      /**************************/
      /* compute overfill array */
      /**************************/
      overweight = 0;
      for (j=0; j<nparts; j++) {
        for (h=0; h<ncon; h++) {
          if (pgnpwgts[j*ncon+h] > ognpwgts[j*ncon+h]) {
            overfill[j*ncon+h] =
            (pgnpwgts[j*ncon+h]-badmaxpwgt[j*ncon+h]) /
            (pgnpwgts[j*ncon+h]-ognpwgts[j*ncon+h]);
          }
          else {
            overfill[j*ncon+h] = 0.0;
          }

          overfill[j*ncon+h] = amax(overfill[j*ncon+h], 0.0);
          overfill[j*ncon+h] *= movewgts[j*ncon+h];

          if (overfill[j*ncon+h] > 0.0)
            overweight = 1;

          ASSERTP(ctrl, ognpwgts[j*ncon+h] <= badmaxpwgt[j*ncon+h] ||
          pgnpwgts[j*ncon+h] <= ognpwgts[j*ncon+h],
          (ctrl, "%.4f %.4f %.4f\n", ognpwgts[j*ncon+h],
          badmaxpwgt[j*ncon+h], pgnpwgts[j*ncon+h]));
        }
      }

      /****************************************************/
      /* select moves to undo according to overfill array */
      /****************************************************/
      if (overweight == 1) {
        for (iii=0; iii<nmoved; iii++) {
          i = moved[iii];
          oldto = tmp_where[i];
          nvwgt = graph->nvwgt+i*ncon;
          my_edegrees = tmp_rinfo[i].degrees;

          for (k=0; k<tmp_rinfo[i].ndegrees; k++)
            if (my_edegrees[k].edge == where[i])
              break;

          for (h=0; h<ncon; h++)
            if (nvwgt[h] > 0.0 && overfill[oldto*ncon+h] > nvwgt[h]/4.0)
              break;

          /**********************************/
          /* nullify this move if necessary */
          /**********************************/
          if (k != tmp_rinfo[i].ndegrees && h != ncon) {
            moved[iii] = -1;
            from = oldto;
            to = where[i];

            for (h=0; h<ncon; h++) {
              overfill[oldto*ncon+h] = amax(overfill[oldto*ncon+h]-nvwgt[h], 0.0);
            }

            tmp_where[i] = to;
            tmp_rinfo[i].ed += tmp_rinfo[i].id-my_edegrees[k].ewgt;
            SWAP(tmp_rinfo[i].id, my_edegrees[k].ewgt, j);
            if (my_edegrees[k].ewgt == 0) {
              tmp_rinfo[i].ndegrees--;
              my_edegrees[k].edge = my_edegrees[tmp_rinfo[i].ndegrees].edge;
              my_edegrees[k].ewgt = my_edegrees[tmp_rinfo[i].ndegrees].ewgt;
            }
            else {
              my_edegrees[k].edge = from;
            }

            for (h=0; h<ncon; h++) {
              lnpwgts[to*ncon+h] += nvwgt[h];
              lnpwgts[from*ncon+h] -= nvwgt[h];
            }

            /* Update the degrees of adjacent vertices */
            for (j=xadj[i]; j<xadj[i+1]; j++) {
              /* no need to bother about vertices on different pe's */
              if (ladjncy[j] >= nvtxs)
                continue;

              me = ladjncy[j];
              mydomain = tmp_where[me];

              myrinfo = tmp_rinfo+me;
              your_edegrees = myrinfo->degrees;

              if (mydomain == from) {
                INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);
              }
              else {
                if (mydomain == to) {
                  INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);
                }
              }

              /* Remove contribution from the .ed of 'from' */
              if (mydomain != from) {
                for (k=0; k<myrinfo->ndegrees; k++) {
                  if (your_edegrees[k].edge == from) {
                    if (your_edegrees[k].ewgt == adjwgt[j]) {
                      myrinfo->ndegrees--;
                      your_edegrees[k].edge = your_edegrees[myrinfo->ndegrees].edge;
                      your_edegrees[k].ewgt = your_edegrees[myrinfo->ndegrees].ewgt;
                    }
                    else {
                      your_edegrees[k].ewgt -= adjwgt[j];
                    }
                    break;
                  }
                }
              }

              /* Add contribution to the .ed of 'to' */
              if (mydomain != to) {
                for (k=0; k<myrinfo->ndegrees; k++) {
                  if (your_edegrees[k].edge == to) {
                    your_edegrees[k].ewgt += adjwgt[j];
                    break;
                  }
                }
                if (k == myrinfo->ndegrees) {
                  your_edegrees[myrinfo->ndegrees].edge = to;
                  your_edegrees[myrinfo->ndegrees++].ewgt = adjwgt[j];
                }
              }
            }
          }
        }
      }

      /*************************************************/
      /* PASS TWO -- commit the remainder of the moves */
      /*************************************************/
      nlupd = nsupd = nmoves = nchanged = 0;
      for (iii=0; iii<nmoved; iii++) {
        i = moved[iii];
        if (i == -1)
          continue;

        where[i] = tmp_where[i];

        /* Make sure to update the vertex information */
        if (htable[i] == 0) {
          /* make sure you do the update */
          htable[i] = 1;
          update[nlupd++] = i;
        }

        /* Put the vertices adjacent to i into the update array */
        for (j=xadj[i]; j<xadj[i+1]; j++) {
          k = ladjncy[j];
          if (htable[k] == 0) {
            htable[k] = 1;
            if (k<nvtxs)
              update[nlupd++] = k;
            else
              supdate[nsupd++] = k;
          }
        }
        nmoves++;
        nswaps++;

        /* check number of zero-gain moves */
        for (k=0; k<rinfo[i].ndegrees; k++)
          if (rinfo[i].degrees[k].edge == to)
            break;
        if (rinfo[i].id == rinfo[i].degrees[k].ewgt)
          nzgswaps++;

        if (graph->pexadj[i+1]-graph->pexadj[i] > 0)
          changed[nchanged++] = i;
      }

      /* Tell interested pe's the new where[] info for the interface vertices */
      CommChangedInterfaceData(ctrl, graph, nchanged, changed, where,
      swchanges, rwchanges, wspace->pv4); 


      IFSET(ctrl->dbglvl, DBG_RMOVEINFO,
      rprintf(ctrl, "\t[%d %d], [%.4f],  [%d %d %d]\n",
      pass, c, badmaxpwgt[0],
      GlobalSESum(ctrl, nmoves),
      GlobalSESum(ctrl, nsupd),
      GlobalSESum(ctrl, nlupd)));

      /*-------------------------------------------------------------
      / Time to communicate with processors to send the vertices
      / whose degrees need to be update.
      /-------------------------------------------------------------*/
      /* Issue the receives first */
      for (i=0; i<nnbrs; i++) {
        MPI_Irecv((void *)(rupdate+sendptr[i]), sendptr[i+1]-sendptr[i], IDX_DATATYPE,
                  peind[i], 1, ctrl->comm, ctrl->rreq+i);
      }

      /* Issue the sends next. This needs some preporcessing */
      for (i=0; i<nsupd; i++) {
        htable[supdate[i]] = 0;
        supdate[i] = graph->imap[supdate[i]];
      }
      iidxsort(nsupd, supdate);

      for (j=i=0; i<nnbrs; i++) {
        yourlastvtx = vtxdist[peind[i]+1];
        for (k=j; k<nsupd && supdate[k] < yourlastvtx; k++); 
        MPI_Isend((void *)(supdate+j), k-j, IDX_DATATYPE, peind[i], 1, ctrl->comm, ctrl->sreq+i);
        j = k;
      }

      /* OK, now get into the loop waiting for the send/recv operations to finish */
      MPI_Waitall(nnbrs, ctrl->rreq, ctrl->statuses);
      for (i=0; i<nnbrs; i++) 
        MPI_Get_count(ctrl->statuses+i, IDX_DATATYPE, nupds_pe+i);
      MPI_Waitall(nnbrs, ctrl->sreq, ctrl->statuses);


      /*-------------------------------------------------------------
      / Place the recieved to-be updated vertices into update[] 
      /-------------------------------------------------------------*/
      for (i=0; i<nnbrs; i++) {
        pe_updates = rupdate+sendptr[i];
        for (j=0; j<nupds_pe[i]; j++) {
          k = pe_updates[j];
          if (htable[k-firstvtx] == 0) {
            htable[k-firstvtx] = 1;
            update[nlupd++] = k-firstvtx;
          }
        }
      }


      /*-------------------------------------------------------------
      / Update the rinfo of the vertices in the update[] array
      /-------------------------------------------------------------*/
      for (ii=0; ii<nlupd; ii++) {
        i = update[ii];
        ASSERT(ctrl, htable[i] == 1);

        htable[i] = 0;

        mydomain = where[i];
        myrinfo = rinfo+i;
        tmp_myrinfo = tmp_rinfo+i;
        my_edegrees = myrinfo->degrees;
        your_edegrees = tmp_myrinfo->degrees;

        graph->lmincut -= myrinfo->ed;
        myrinfo->ndegrees = 0;
        myrinfo->id = 0;
        myrinfo->ed = 0;

        for (j=xadj[i]; j<xadj[i+1]; j++) {
          yourdomain = where[ladjncy[j]];
          if (mydomain != yourdomain) {
            myrinfo->ed += adjwgt[j];

            for (k=0; k<myrinfo->ndegrees; k++) {
              if (my_edegrees[k].edge == yourdomain) {
                my_edegrees[k].ewgt += adjwgt[j];
                your_edegrees[k].ewgt += adjwgt[j];
                break;
              }
            }
            if (k == myrinfo->ndegrees) {
              my_edegrees[k].edge = yourdomain;
              my_edegrees[k].ewgt = adjwgt[j];
              your_edegrees[k].edge = yourdomain;
              your_edegrees[k].ewgt = adjwgt[j];
              myrinfo->ndegrees++;
            }
            ASSERT(ctrl, myrinfo->ndegrees <= xadj[i+1]-xadj[i]);
            ASSERT(ctrl, tmp_myrinfo->ndegrees <= xadj[i+1]-xadj[i]);

          }
          else {
            myrinfo->id += adjwgt[j];
          }
        }
        graph->lmincut += myrinfo->ed;

        tmp_myrinfo->id = myrinfo->id;
        tmp_myrinfo->ed = myrinfo->ed;
        tmp_myrinfo->ndegrees = myrinfo->ndegrees;
      }

      /* finally, sum-up the partition weights */
      MPI_Allreduce((void *)lnpwgts, (void *)gnpwgts, nparts*ncon,
      MPI_DOUBLE, MPI_SUM, ctrl->comm);
    }
    graph->mincut = GlobalSESum(ctrl, graph->lmincut)/2;

    if (graph->mincut == oldcut)
      break;
  }

/*
  gnswaps = GlobalSESum(ctrl, nswaps);
  gnzgswaps = GlobalSESum(ctrl, nzgswaps);
  if (mype == 0)
    printf("niters: %d, nswaps: %d, nzgswaps: %d\n", pass+1, gnswaps, gnzgswaps);
*/

  GKfree((void **)&badmaxpwgt, (void **)&update, (void **)&nupds_pe, (void **)&htable, LTERM);
  GKfree((void **)&changed, (void **)&pperm, (void **)&perm, (void **)&moved, LTERM);
  GKfree((void **)&pgnpwgts, (void **)&ognpwgts, (void **)&overfill, (void **)&movewgts, LTERM);
  GKfree((void **)&tmp_where, (void **)&tmp_rinfo, (void **)&tmp_edegrees, LTERM);

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->KWayTmr));
}