Exemple #1
0
void config_setup(char *cfg_file){
	config_init(&userCfg.cfg);
	userCfg.root = config_root_setting(&userCfg.cfg);
	userCfg.show_line_numbers=1;
	userCfg.show_lang=0;
	userCfg.show_spelling_errors=0;
	userCfg.defualt_window_width=800;
	userCfg.default_window_height=900;
	userCfg.undo_level=0;
	userCfg.show_full_path=1;
	#ifdef AUTO_TAB_TOGGLE
	userCfg.auto_tab=0;
	#endif
	userCfg.gave_up=0;

	if(access(cfg_file, R_OK|W_OK ) != -1) cfg_read_in(cfg_file);
	else userCfg.gave_up=store_settings(cfg_file,
	                                    userCfg.show_line_numbers,
	                                    userCfg.show_lang,	                               
	                                    userCfg.show_spelling_errors,
	                                    userCfg.defualt_window_width,
	                                    userCfg.default_window_height,
	                                    userCfg.undo_level,
	                                    userCfg.show_full_path
	                                    #ifdef AUTO_TAB_TOGGLE
	                                    ,
	                                    userCfg.auto_tab
										#endif
	                                    );
										
}
Exemple #2
0
void meastemp_adjust_set(fixpt_t adjustment)
{
#if CONF_ADJ
	measure_adjust_set(MEAS_CHAN_TEMP, adjustment);
	get_settings()->temp_adj = adjustment;
	store_settings();
	menu_request_display_update();
#endif
}
void contrtemp_set_idle_setpoint(fixpt_t w)
{
	struct settings *settings;

	if (CONF_IDLE) {
		settings = get_settings();
		settings->temp_idle_setpoint = w;
		contrtemp_update_setpoint();
		store_settings();
	}
}
Exemple #4
0
void abort_move(int pos) { // {{{
	aborting = true;
	//debug("abort pos %d", pos);
	//debug("abort; cf %d rf %d first %d computing_move %d fragments, regenerating %d ticks", current_fragment, running_fragment, first_fragment, computing_move, pos);
	//debug("try aborting move");
	current_fragment = running_fragment;
	//debug("current abort -> %x", current_fragment);
	restore_settings();
#ifdef DEBUG_MOVE
	debug("move no longer prepared");
#endif
	//debug("free abort reset");
	current_fragment_pos = 0;
	//if (spaces[0].num_axes > 0)
	//	fcpdebug(0, 0, "starting hwpos %x", spaces[0].motor[0]->settings.current_pos + avr_pos_offset[0]);
	computing_move = true;
	//debug("restoring position for fragment %d to position %d", current_fragment, pos);
	while (computing_move && current_fragment_pos < pos) {
		//debug("tick %d %d %d", current_fragment_pos, settings.hwtime, current_fragment);
		apply_tick();
		//if (spaces[0].num_axes > 0)
		//	fcpdebug(0, 0, "current hwpos %x time %d", spaces[0].motor[0]->settings.current_pos + avr_pos_offset[0], settings.hwtime);
	}
	//if (spaces[0].num_axes > 0)
	//	fcpdebug(0, 0, "ending hwpos %x", spaces[0].motor[0]->settings.current_pos + avr_pos_offset[0]);
	//debug("done restoring position");
	// Copy settings back to previous fragment.
	store_settings();
	computing_move = false;
	prepared = false;
	current_fragment_pos = 0;
	//if (spaces[0].num_axes > 0)
	//	fcpdebug(0, 0, "final hwpos %x", spaces[0].motor[0]->settings.current_pos + avr_pos_offset[0]);
	//debug("curf3 %d", current_fragment);
	for (uint8_t s = 0; s < 2; ++s) {
		Space &sp = spaces[s];
		sp.settings.dist[0] = NAN;
		sp.settings.dist[1] = NAN;
		for (uint8_t a = 0; a < sp.num_axes; ++a) {
			//debug("setting axis %d source to %f", a, sp.axis[a]->settings.current);
			sp.axis[a]->settings.source = sp.axis[a]->settings.current;
			sp.axis[a]->settings.dist[0] = NAN;
			sp.axis[a]->settings.dist[1] = NAN;
		}
		for (uint8_t m = 0; m < sp.num_motors; ++m) {
			sp.motor[m]->settings.last_v = 0;
			//debug("setting motor %d pos to %d", m, sp.motor[m]->settings.current_pos);
		}
	}
	//debug("aborted move");
	aborting = false;
} // }}}
Exemple #5
0
void abort_move(int pos) { // {{{
	aborting = true;
	//debug("abort pos %d", pos);
	//debug("abort; cf %d rf %d first %d computing_move %d fragments, regenerating %d ticks", current_fragment, running_fragment, first_fragment, computing_move, pos);
	//debug("try aborting move");
	current_fragment = running_fragment;
	//debug("current_fragment = running_fragment; %d", current_fragment);
	//debug("current abort -> %x", current_fragment);
	while (pos < 0) {
		if (current_fragment == first_fragment) {
			pos = 0;
		}
		else {
			current_fragment = (current_fragment + FRAGMENTS_PER_BUFFER - 1) % FRAGMENTS_PER_BUFFER;
			//debug("current_fragment = (current_fragment + FRAGMENTS_PER_BUFFER - 1) %% FRAGMENTS_PER_BUFFER; %d", current_fragment);
			pos += SAMPLES_PER_FRAGMENT;
			running_fragment = current_fragment;
		}
	}
	restore_settings();
	//debug("free abort reset");
	current_fragment_pos = 0;
	computing_move = true;
	while (computing_move && current_fragment_pos < unsigned(pos)) {
		//debug("abort reconstruct %d %d", current_fragment_pos, pos);
		apply_tick();
	}
	if (spaces[0].num_axes > 0)
		cpdebug(0, 0, "ending hwpos %f", arch_round_pos(0, 0, spaces[0].motor[0]->settings.current_pos) + avr_pos_offset[0]);
	// Flush queue.
	settings.queue_start = 0;
	settings.queue_end = 0;
	settings.queue_full = false;
	// Copy settings back to previous fragment.
	store_settings();
	computing_move = false;
	current_fragment_pos = 0;
	for (int s = 0; s < NUM_SPACES; ++s) {
		Space &sp = spaces[s];
		sp.settings.dist[0] = 0;
		sp.settings.dist[1] = 0;
		for (int a = 0; a < sp.num_axes; ++a) {
			//debug("setting axis %d source to %f", a, sp.axis[a]->settings.current);
			if (!std::isnan(sp.axis[a]->settings.current))
				sp.axis[a]->settings.source = sp.axis[a]->settings.current;
			sp.axis[a]->settings.dist[0] = NAN;
			sp.axis[a]->settings.dist[1] = NAN;
		}
	}
	mdebug("aborted move");
	aborting = false;
} // }}}
Exemple #6
0
static void send_fragment() { // {{{
	if (host_block) {
		current_fragment_pos = 0;
		return;
	}
	if (current_fragment_pos <= 0 || stopping || sending_fragment) {
		//debug("no send fragment %d %d %d", current_fragment_pos, stopping, sending_fragment);
		return;
	}
	if (num_active_motors == 0) {
		if (current_fragment_pos < 1) {
			// TODO: find out why this is attempted and avoid it.
			debug("not sending short fragment for 0 motors; %d %d", current_fragment, running_fragment);
			if (history[current_fragment].cbs) {
				if (settings.queue_start == settings.queue_end && !settings.queue_full) {
					// Send cbs immediately.
					if (!host_block) {
						history[(current_fragment + 1) % FRAGMENTS_PER_BUFFER].cbs += history[current_fragment].cbs;
						//debug("adding %d cbs in send_fragment", history[current_fragment].cbs);
						history[current_fragment].cbs = 0;
					}
				}
			}
			current_fragment_pos = 0;
			return;
		}
		else {
			//debug("sending fragment for 0 motors at position %d", current_fragment_pos);
		}
		//abort();
	}
	//debug("sending %d prevcbs %d", current_fragment, history[(current_fragment + FRAGMENTS_PER_BUFFER - 1) % FRAGMENTS_PER_BUFFER].cbs);
	if (aborting || arch_send_fragment()) {
		current_fragment = (current_fragment + 1) % FRAGMENTS_PER_BUFFER;
		//debug("current_fragment = (current_fragment + 1) %% FRAGMENTS_PER_BUFFER; %d", current_fragment);
		//debug("current send -> %x", current_fragment);
		store_settings();
		if (!aborting && (current_fragment - running_fragment + FRAGMENTS_PER_BUFFER) % FRAGMENTS_PER_BUFFER >= MIN_BUFFER_FILL && !stopping) {
			arch_start_move(0);
		}
	}
} // }}}
Exemple #7
0
void run_file_fill_queue() {
	static bool lock = false;
	if (lock)
		return;
	lock = true;
	rundebug("run queue, wait = %d tempwait = %d q = %d %d %d finish = %d", run_file_wait, run_file_wait_temp, settings.queue_end, settings.queue_start, settings.queue_full, run_file_finishing);
	if (run_file_audio >= 0) {
		while (true) {
			if (!run_file_map || run_file_wait || run_file_finishing)
				break;
			if (settings.run_file_current >= run_file_num_records) {
				run_file_finishing = true;
				//debug("done running audio");
				break;
			}
			int16_t next = (current_fragment + 1) % FRAGMENTS_PER_BUFFER;
			if (next == running_fragment)
				break;
			settings.run_file_current = arch_send_audio(&reinterpret_cast <uint8_t *>(run_file_map)[sizeof(double)], settings.run_file_current, run_file_num_records, run_file_audio);
			current_fragment = next;
			store_settings();
			if ((current_fragment - running_fragment + FRAGMENTS_PER_BUFFER) % FRAGMENTS_PER_BUFFER >= MIN_BUFFER_FILL && !stopping)
				arch_start_move(0);
		}
		lock = false;
		return;
	}
	while (run_file_map	// There is a file to run.
			&& (settings.queue_end - settings.queue_start + QUEUE_LENGTH) % QUEUE_LENGTH < 4	// There is space in the queue.
			&& !settings.queue_full	// Really, there is space in the queue.
			&& settings.run_file_current < run_file_num_records	// There are records to send.
			&& !run_file_wait_temp	// We are not waiting for a temp alarm.
			&& !run_file_wait	// We are not waiting for something else (pause or confirm).
			&& !run_file_finishing) {	// We are not waiting for underflow (should be impossible anyway, if there are commands in the queue).
		int t = run_file_map[settings.run_file_current].type;
		if (t != RUN_LINE && t != RUN_PRE_LINE && t != RUN_PRE_ARC && t != RUN_ARC && (arch_running() || settings.queue_end != settings.queue_start || computing_move))
			break;
		Run_Record &r = run_file_map[settings.run_file_current];
		rundebug("running %d: %d %d", settings.run_file_current, r.type, r.tool);
		switch (r.type) {
			case RUN_SYSTEM:
			{
				char const *cmd = strndupa(&reinterpret_cast<char const *>(run_file_map)[run_file_first_string + strings[r.tool].start], strings[r.tool].len);
				debug("Running system command: %ld %d %s", strings[r.tool].start, strings[r.tool].len, cmd);
				int ret = system(cmd);
				debug("Done running system command, return = %d", ret);
				break;
			}
			case RUN_PRE_ARC:
			{
				double x = r.X * run_file_cosa - r.Y * run_file_sina + run_file_refx;
				double y = r.Y * run_file_cosa + r.X * run_file_sina + run_file_refy;
				double z = r.Z;
				//debug("line %f %f %f", x, y, z);
				queue[settings.queue_end].center[0] = x;
				queue[settings.queue_end].center[1] = y;
				queue[settings.queue_end].center[2] = handle_probe(x, y, z);
				queue[settings.queue_end].normal[0] = r.E;
				queue[settings.queue_end].normal[1] = r.f;
				queue[settings.queue_end].normal[2] = r.F;
				break;
			}
			case RUN_PRE_LINE:
			{
				run_preline.X = r.X;
				run_preline.Y = r.Y;
				run_preline.Z = r.Z;
				run_preline.E = r.E;
				run_preline.tool = r.tool;
				break;
			}
			case RUN_LINE:
			case RUN_ARC:
			{
				queue[settings.queue_end].single = false;
				queue[settings.queue_end].probe = false;
				queue[settings.queue_end].arc = r.type == RUN_ARC;
				queue[settings.queue_end].f[0] = r.f;
				queue[settings.queue_end].f[1] = r.F;
				double x = r.X * run_file_cosa - r.Y * run_file_sina + run_file_refx;
				double y = r.Y * run_file_cosa + r.X * run_file_sina + run_file_refy;
				double z = r.Z;
				//debug("line/arc %f %f %f", x, y, z);
				int num0 = spaces[0].num_axes;
				if (num0 > 0) {
					queue[settings.queue_end].data[0] = x;
					if (num0 > 1) {
						queue[settings.queue_end].data[1] = y;
						if (num0 > 2) {
							queue[settings.queue_end].data[2] = handle_probe(x, y, z);
							if (num0 > 3) {
								queue[settings.queue_end].data[3] = run_preline.X;
								if (num0 > 4) {
									queue[settings.queue_end].data[4] = run_preline.Y;
									if (num0 > 5) {
										queue[settings.queue_end].data[5] = run_preline.Z;
									}
								}
								run_preline.X = NAN;
								run_preline.Y = NAN;
								run_preline.Z = NAN;
							}
						}
					}
				}
				for (int i = 6; i < num0; ++i)
					queue[settings.queue_end].data[i] = NAN;
				for (int i = 0; i < spaces[1].num_axes; ++i) {
					queue[settings.queue_end].data[num0 + i] = (i == r.tool ? r.E : i == run_preline.tool ? run_preline.E : NAN);
					//debug("queue %d + %d = %f", num0, i, queue[settings.queue_end].data[num0 + i]);
				}
				run_preline.E = NAN;
				num0 += spaces[1].num_axes;
				for (int s = 2; s < NUM_SPACES; ++s) {
					for (int i = 0; i < spaces[s].num_axes; ++i)
						queue[settings.queue_end].data[num0 + i] = NAN;
					num0 += spaces[s].num_axes;
				}
				queue[settings.queue_end].time = r.time;
				queue[settings.queue_end].dist = r.dist;
				queue[settings.queue_end].cb = false;
				settings.queue_end = (settings.queue_end + 1) % QUEUE_LENGTH;
				if (!computing_move)
					next_move();
				else
					rundebug("no");
				buffer_refill();
				break;
			}
			case RUN_GPIO:
			{
				int tool = r.tool;
				if (tool == -2)
					tool = fan_id;
				else if (tool == -3)
					tool = spindle_id;
				if (tool < 0 || tool >= num_gpios) {
					if (tool != -1)
						debug("cannot set invalid gpio %d", tool);
					break;
				}
				if (r.X) {
					gpios[tool].state = 1;
					SET(gpios[tool].pin);
				}
				else {
					gpios[tool].state = 0;
					RESET(gpios[tool].pin);
				}
				send_host(CMD_UPDATE_PIN, tool, gpios[tool].state);
				break;
			}
			case RUN_SETTEMP:
			{
				int tool = r.tool;
				if (tool == -1)
					tool = bed_id;
				rundebug("settemp %d %f", tool, r.X);
				settemp(tool, r.X);
				send_host(CMD_UPDATE_TEMP, tool, 0, r.X);
				break;
			}
			case RUN_WAITTEMP:
			{
				int tool = r.tool;
				if (tool == -2)
					tool = bed_id;
				if (tool == -3) {
					for (int i = 0; i < num_temps; ++i) {
						if (temps[i].min_alarm >= 0 || temps[i].max_alarm < MAXINT) {
							run_file_wait_temp += 1;
							waittemp(i, temps[i].min_alarm, temps[i].max_alarm);
						}
					}
					break;
				}
				if (tool < 0 || tool >= num_temps) {
					if (tool != -1)
						debug("cannot wait for invalid temp %d", tool);
					break;
				}
				else
					rundebug("waittemp %d", tool);
				if (temps[tool].adctarget[0] >= 0 && temps[tool].adctarget[0] < MAXINT) {
					rundebug("waiting");
					run_file_wait_temp += 1;
					waittemp(tool, temps[tool].target[0], temps[tool].max_alarm);
				}
				else
					rundebug("not waiting");
				break;
			}
			case RUN_SETPOS:
				if (r.tool >= spaces[1].num_axes) {
					debug("Not setting position of invalid extruder %d", r.tool);
					break;
				}
				setpos(1, r.tool, r.X);
				break;
			case RUN_WAIT:
				if (r.X > 0) {
					run_file_timer.it_value.tv_sec = r.X;
					run_file_timer.it_value.tv_nsec = (r.X - run_file_timer.it_value.tv_sec) * 1e9;
					run_file_wait += 1;
					timerfd_settime(pollfds[0].fd, 0, &run_file_timer, NULL);
				}
				break;
			case RUN_CONFIRM:
			{
				int len = min(strings[r.tool].len, 250);
				memcpy(datastore, &reinterpret_cast<char const *>(run_file_map)[run_file_first_string + strings[r.tool].start], len);
				run_file_wait += 1;
				send_host(CMD_CONFIRM, r.X ? 1 : 0, 0, 0, 0, len);
				break;
			}
			case RUN_PARK:
				run_file_wait += 1;
				send_host(CMD_PARKWAIT);
				break;
			default:
				debug("Invalid record type %d in %s", r.type, run_file_name);
				break;
		}
		settings.run_file_current += 1;
	}
	rundebug("run queue done");
	if (run_file_map && settings.run_file_current >= run_file_num_records && !run_file_wait_temp && !run_file_wait && !run_file_finishing) {
		// Done.
		//debug("done running file");
		if (!computing_move && !sending_fragment && !arch_running()) {
			send_host(CMD_FILE_DONE);
			abort_run_file();
		}
		else
			run_file_finishing = true;
	}
	lock = false;
	return;
}
Exemple #8
0
// Used from previous segment (if prepared): tp, vq.
uint8_t next_move() { // {{{
	settings.probing = false;
	moving_to_current = 0;
	uint8_t num_cbs = 0;
	uint8_t a0;
	run_file_fill_queue();
	if (settings.queue_start == settings.queue_end && !settings.queue_full) {
		//debug("no next move");
		computing_move = false;
		prepared = false;
		return num_cbs;
	}
#ifdef DEBUG_MOVE
	debug("Next move; queue start = %d, end = %d", settings.queue_start, settings.queue_end);
#endif
	// Set everything up for running queue[settings.queue_start].
	uint8_t n = (settings.queue_start + 1) % QUEUE_LENGTH;

	// Make sure printer state is good. {{{
	// If the source is unknown, determine it from current_pos.
	//for (uint8_t a = 0; a < num_axes; ++a)
	//	debug("target %d %f", a, queue[settings.queue_start].data[a]);
	for (uint8_t s = 0; s < 2; ++s) {
		Space &sp = spaces[s];
		for (uint8_t a = 0; a < sp.num_axes; ++a) {
			if (isnan(sp.axis[a]->settings.source)) {
				space_types[sp.type].reset_pos(&sp);
				for (uint8_t aa = 0; aa < sp.num_axes; ++aa)
					sp.axis[aa]->settings.current = sp.axis[aa]->settings.source;
				break;
			}
#ifdef DEBUG_MOVE
			else
				debug("non-nan: %d %d %f %d", s, a, sp.axis[a]->settings.source, sp.motor[a]->settings.current_pos);
#endif
		}
	}
	// }}}

	settings.f0 = settings.fq;
	// If no move is prepared, set dist[1] from the queue; it will be used as dist[0] below. {{{
	if (!prepared) {
#ifdef DEBUG_MOVE
		debug("No move prepared.");
#endif
		settings.f0 = 0;
		a0 = 0;
		change0(settings.queue_start);
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			space_types[sp.type].check_position(&sp, &queue[settings.queue_start].data[a0]);
			sp.settings.dist[0] = 0;
			for (int a = 0; a < sp.num_axes; ++a) {
				sp.axis[a]->settings.dist[0] = 0;
				sp.axis[a]->settings.endpos[0] = sp.axis[a]->settings.source;
			}
			set_from_queue(s, settings.queue_start, a0, false);
			a0 += sp.num_axes;
		}
	}
	// }}}
	// Fill unspecified coordinates with previous values. {{{
	a0 = 0;
	for (uint8_t s = 0; s < 2; ++s) {
		Space &sp = spaces[s];
		for (uint8_t a = 0; a < sp.num_axes; ++a) {
			if (n != settings.queue_end) {
				// If only one of them is set, set the other one as well to make the rounded corner work.
				if (!isnan(queue[settings.queue_start].data[a0 + a]) && isnan(queue[n].data[a0 + a])) {
					queue[n].data[a0 + a] = sp.axis[a]->settings.source + sp.axis[a]->settings.dist[1] - (s == 0 && a == 2 ? zoffset : 0);
#ifdef DEBUG_MOVE
					debug("filling next %d with %f", a0 + a, queue[n].data[a0 + a]);
#endif
				}
				if (isnan(queue[settings.queue_start].data[a]) && !isnan(queue[n].data[a])) {
					queue[settings.queue_start].data[a0 + a] = sp.axis[a]->settings.source;
#ifdef DEBUG_MOVE
					debug("filling %d with %f", a0 + a, queue[settings.queue_start].data[a0 + a]);
#endif
				}
			}
			if ((!isnan(queue[settings.queue_start].data[a0 + a]) || (n != settings.queue_end && !isnan(queue[n].data[a0 + a]))) && isnan(sp.axis[a]->settings.source)) {
				debug("Motor positions are not known, so move cannot take place; aborting move and removing it from the queue: %f %f %f", queue[settings.queue_start].data[a0 + a], queue[n].data[a0 + a], sp.axis[a]->settings.source);
				// This possibly removes one move too many, but it shouldn't happen anyway.
				if (queue[settings.queue_start].cb)
					++num_cbs;
				if (settings.queue_end == settings.queue_start)
					send_host(CMD_CONTINUE, 0);
				settings.queue_start = n;
				settings.queue_full = false;
				abort_move(current_fragment_pos);
				return num_cbs;
			}
		}
		a0 += sp.num_axes;
	}
	// }}}
	// We are prepared and can start the segment.
	bool action = false;
	double vq;
	if (n == settings.queue_end) { // There is no next segment; we should stop at the end. {{{
		prepared = false;
#ifdef DEBUG_MOVE
		debug("Building final segment.");
#endif
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			copy_next(s);
			if (sp.settings.dist[0] != 0)
				action = true;
		}
		vq = 0;
	}
	// }}}
	else { // There is a next segment; we should connect to it. {{{
		prepared = true;
#ifdef DEBUG_MOVE
		debug("Building a connecting segment.");
#endif
		a0 = 0;
		change0(n);
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			space_types[sp.type].check_position(&sp, &queue[n].data[a0]);
			copy_next(s);
			set_from_queue(s, n, a0, true);
			if (sp.settings.dist[1] != 0 || sp.settings.dist[0] != 0)
				action = true;
			a0 += sp.num_axes;
		}
		vq = queue[n].f[0] * feedrate;
	}
	// }}}

	double v0 = queue[settings.queue_start].f[0] * feedrate;
	double vp = queue[settings.queue_start].f[1] * feedrate;
	settings.probing = queue[settings.queue_start].probe;
	settings.run_time = queue[settings.queue_start].time;
	settings.run_dist = queue[settings.queue_start].dist;

	if (queue[settings.queue_start].cb)
		cbs_after_current_move += 1;
	//debug("add cb to current starting at %d", current_fragment);
	if (settings.queue_end == settings.queue_start)
		send_host(CMD_CONTINUE, 0);
	settings.queue_full = false;
	settings.queue_start = n;

	if (!action) {	// Skip zero-distance move. {{{
#ifdef DEBUG_MOVE
		debug("Skipping zero-distance prepared move");
#endif
		num_cbs += cbs_after_current_move;
		cbs_after_current_move = 0;
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			sp.settings.dist[0] = NAN;
			for (uint8_t a = 0; a < sp.num_axes; ++a)
				sp.axis[a]->settings.dist[0] = NAN;
		}
		settings.fq = 0;
		return num_cbs + next_move();
	} // }}}

	// Currently set up:
	// f0: fraction of move already done by connection.
	// v0: this move's requested starting speed.
	// vp: this move's requested ending speed.
	// vq: next move's requested starting speed.
	// cbs_after_current_move: number of cbs that should be fired after this segment is complete.
	// dist[0]: total distance of this segment (mm).
	// dist[1]: total distance of next segment (mm).
	// mtr->dist[0]: motor distance of this segment (mm).
	// mtr->dist[1]: motor distance of next segment (mm).
#ifdef DEBUG_MOVE
	debug("Set up: v0 = %f /s, vp = %f /s, vq = %f /s", v0, vp, vq);
#endif

	// Limit v0, vp, vq. {{{
	for (uint8_t s = 0; s < 2; ++s) {
		Space &sp = spaces[s];
		double limit;
		if (s == 0)
			limit = max_v;
		else if (current_extruder < sp.num_motors)
			limit = sp.motor[current_extruder]->limit_v;
		else
			continue;
		if (isnan(limit) || isinf(limit) || limit <= 0)
			continue;
		// max_mm is the maximum speed in mm/s.
		double max_mm = settings.probing ? space_types[sp.type].probe_speed(&sp) : limit;
		double max = max_mm / sp.settings.dist[0];
		if (v0 < 0)
			v0 = -v0 / sp.settings.dist[0];
		if (vp < 0)
			vp = -vp / sp.settings.dist[0];
		if (vq < 0)
			vq = -vq / sp.settings.dist[1];
		if (v0 > max)
			v0 = max;
		if (vp > max)
			vp = max;
		max = max_mm / sp.settings.dist[1];
		if (vq > max)
			vq = max;
	}
#ifdef DEBUG_MOVE
	debug("After limiting, v0 = %f /s, vp = %f /s and vq = %f /s", v0, vp, vq);
#endif
	// }}}
	// Already set up: f0, v0, vp, vq, dist[0], dist[1], mtr->dist[0], mtr->dist[1].
	// To do: start_time, t0, tp, fmain, fp, fq, mtr->main_dist
#ifdef DEBUG_MOVE
	debug("Preparation did f0 = %f", settings.f0);
#endif

	// Use maximum deviation to find fraction where to start rounded corner. {{{
	double factor = vq / vp;
	done_factor = NAN;
	if (vq == 0) {
		settings.fp = 0;
		settings.fq = 0;
	}
	else {
		settings.fp = factor > 1 ? .5 / factor : .5;
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			if (sp.num_axes < 2)
				continue;
			if (s != 0 || max_deviation == 0) {
				settings.fp = 0;
				break;
			}
			double nd = sp.settings.dist[1] * factor;
			double d = sp.settings.dist[0] - sp.settings.dist[1];
			// Calculate distances and ignore spaces which don't have two segments.
			if (nd <= 0)
				continue;
			if (sp.settings.dist[0] <= 0)
				continue;
			double done = 1 - max_deviation / sp.settings.dist[0];
			// Set it also if done_factor is NaN.
			if (!(done <= done_factor))
				done_factor = done;
			double new_fp = max_deviation / sqrt(nd / (sp.settings.dist[0] + nd) * d);
#ifdef DEBUG_MOVE
			debug("Space %d fp %f dev %f", s, settings.fp, max_deviation);
#endif
			if (new_fp < settings.fp)
				settings.fp = new_fp;
		}
		settings.fq = settings.fp * factor;
	}
	if (isnan(done_factor))
		done_factor = 1;
	// }}}

	settings.t0 = (1 - settings.fp) / (fabs(v0 + vp) / 2);
	settings.tp = settings.fp / (fabs(vp) / 2);
	settings.f1 = .5 * fabs(v0) * settings.t0;
	settings.f2 = 1 - settings.fp - settings.f1;

	// Set up endpos. {{{
	for (uint8_t s = 0; s < 2; ++s) {
		Space &sp = spaces[s];
		for (uint8_t a = 0; a < sp.num_axes; ++a) {
			sp.axis[a]->settings.main_dist = sp.axis[a]->settings.dist[0] * (1 - settings.fp);
			// Fill target for filling endpos below.
			if ((sp.axis[a]->settings.dist[0] > 0 && sp.axis[a]->settings.dist[1] < 0) || (sp.axis[a]->settings.dist[0] < 0 && sp.axis[a]->settings.dist[1] > 0))
				sp.axis[a]->settings.target = sp.axis[a]->settings.source + sp.axis[a]->settings.dist[0];
			else
				sp.axis[a]->settings.target = sp.axis[a]->settings.source + sp.axis[a]->settings.dist[0] + sp.axis[a]->settings.dist[1] * settings.fq;
#ifdef DEBUG_MOVE
			debug("Axis %d %d dist %f main dist = %f, next dist = %f currentpos = %d current = %f", s, a, sp.axis[a]->settings.dist[0], sp.axis[a]->settings.main_dist, sp.axis[a]->settings.dist[1], sp.motor[a]->settings.current_pos, sp.axis[a]->settings.current);
#endif
		}
		bool ok = true;
		// Using NULL as target fills endpos.
		space_types[sp.type].xyz2motors(&sp, NULL, &ok);
	}
	// }}}

	// Enable motors if they weren't. {{{
	if (!motors_busy) {
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			for (uint8_t m = 0; m < sp.num_motors; ++m)
				SET(sp.motor[m]->enable_pin);
		}
		motors_busy = true;
	} // }}}
#ifdef DEBUG_MOVE
	debug("Segment has been set up: f0=%f fp=%f fq=%f v0=%f /s vp=%f /s vq=%f /s t0=%f s tp=%f s", settings.f0, settings.fp, settings.fq, v0, vp, vq, settings.t0, settings.tp);
#endif
	// Reset time. {{{
	settings.hwtime = 0;
	settings.last_time = 0;
	settings.last_current_time = 0;
	settings.start_time = settings.last_time - uint32_t(settings.f0 / fabs(vp) * 1e6);
	// }}}

	if (!computing_move) {	// Set up source if this is a new move. {{{
#ifdef DEBUG_MOVE
		debug("starting new move");
#endif
		//debug("current %d running %d", current_fragment, running_fragment);
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			for (uint8_t a = 0; a < sp.num_axes; ++a)
				sp.axis[a]->settings.source = sp.axis[a]->settings.current;
		}
		store_settings();
#ifdef DEBUG_PATH
		fprintf(stderr, "\n");
#endif
	} // }}}

	first_fragment = current_fragment;	// Do this every time, because otherwise the queue must be regenerated.	TODO: send partial fragment to make sure this hack actually works, or fix it properly.
	computing_move = true;
	return num_cbs;
} // }}}
Exemple #9
0
// For documentation about variables used here, see struct History in cdriver.h
int next_move(int32_t start_time) { // {{{
	// Clean up state before starting the move.
	if (current_fragment_pos > 0) {
		//debug("sending because new move is started");
		send_fragment();
	}
	settings.probing = false;
	settings.factor = 0;
	int num_cbs = 0;
	run_file_fill_queue();
	if (settings.queue_start == settings.queue_end && !settings.queue_full) {
		//debug("no next move");
		computing_move = false;
		return num_cbs;
	}
	mdebug("Next move; queue start = %d, end = %d", settings.queue_start, settings.queue_end);
	// Set everything up for running queue[settings.queue_start].
	int q = settings.queue_start;
	int n = (settings.queue_start + 1) % QUEUE_LENGTH;
	settings.single = queue[q].single;

	if (queue[q].cb)
		++num_cbs;

	// Make sure machine state is good. {{{
	// If the source is unknown, determine it from current_pos.
	for (int s = 0; s < NUM_SPACES; ++s) {
		if (s == 1) {
			// Extruders are handled later.
			continue;
		}
		Space &sp = spaces[s];
		for (int a = 0; a < sp.num_axes; ++a) {
			if (std::isnan(sp.axis[a]->settings.source)) {
				if (!std::isnan(sp.axis[a]->settings.current)) {
					sp.axis[a]->settings.source = sp.axis[a]->settings.current;
					continue;
				}
				reset_pos(&sp);
				for (int aa = 0; aa < sp.num_axes; ++aa)
					sp.axis[aa]->settings.current = sp.axis[aa]->settings.source;
				break;
			}
			else
				mdebug("non-nan: %d %d %f %f", s, a, sp.axis[a]->settings.source, sp.motor[a]->settings.current_pos);
		}
		// Followers don't have good motor data, so initialize them here.
		for (int a = 0; a < sp.num_axes; ++a) {
			if (s == 2)
				sp.motor[a]->settings.current_pos = sp.axis[a]->settings.source;
		}
	}
	// }}}

	change0(q);
	// Fill unspecified coordinates with previous values. {{{
	Space &sp0 = spaces[0];
	for (int a = 0; a < sp0.num_axes; ++a) {
		if (n != settings.queue_end) {
			// If only one of them is set, set the other one as well to make the rounded corner work.
			if (!std::isnan(queue[q].X[a]) && std::isnan(queue[n].X[a])) {
				queue[n].X[a] = queue[q].X[a];
				mdebug("filling next %d with %f", a, queue[n].X[a]);
			}
			if (std::isnan(queue[q].X[a]) && !std::isnan(queue[n].X[a])) {
				queue[q].X[a] = sp0.axis[a]->settings.source;
				mdebug("filling %d with %f", a, queue[q].X[a]);
			}
		}
		if ((!std::isnan(queue[q].X[a]) || (n != settings.queue_end && !std::isnan(queue[n].X[a]))) && std::isnan(sp0.axis[a]->settings.source)) {
			debug("Motor position for axis %d is not known, so move cannot take place; aborting move and removing it from the queue: q1=%f q2=%f src=%f", a, queue[q].X[a], queue[n].X[a], sp0.axis[a]->settings.source);
			// This possibly removes one move too many, but it shouldn't happen anyway.
			settings.queue_start = n;
			settings.queue_full = false;
			abort_move(current_fragment_pos);
			return num_cbs;
		}
	}
	// }}}
	// Reset time. {{{
	if (computing_move) {
		settings.hwtime -= start_time;
		//debug("time -= %d, now %d", start_time, settings.hwtime);
	}
	else {
		settings.hwtime = 0;
	}
	// }}}

	if (!computing_move) {	// Set up source if this is a new move. {{{
		mdebug("starting new move");
		//debug("current %d running %d", current_fragment, running_fragment);
		for (int s = 0; s < NUM_SPACES; ++s) {
			Space &sp = spaces[s];
			for (int a = 0; a < sp.num_axes; ++a) {
				if (!std::isnan(sp.axis[a]->settings.current)) {
					mdebug("setting source for %d %d to current %f (was %f)", s, a, sp.axis[a]->settings.current, sp.axis[a]->settings.source);
					sp.axis[a]->settings.source = sp.axis[a]->settings.current;
				}
			}
		}
	} // }}}

	settings.v0 = queue[q].v0 * feedrate;
	settings.v1 = queue[q].v1 * feedrate;
	double dot = 0, norma = 0, normb = 0, normab = 0;
	for (int i = 0; i < 3; ++i) {
		bool use = i < spaces[0].num_axes;
		double p = (use ? spaces[0].axis[i]->settings.source : 0);
		settings.P[i] = (use ? (std::isnan(queue[q].X[i]) ? p : (queue[q].X[i] + (i == 2 ? zoffset : 0) + p) / 2) : 0);
		settings.A[i] = settings.P[i] - p;
		settings.B[i] = (use ? queue[q].B[i] : 0);
		double ab = settings.A[i] + settings.B[i];
		dot += settings.A[i] * ab;
		norma += settings.A[i] * settings.A[i];
		normb += settings.B[i] * settings.B[i];
		normab += ab * ab;
	}
	norma = sqrt(norma);
	normb = sqrt(normb);
	normab = sqrt(normab);
	settings.alpha_max = acos(dot / (norma * normab));
	if (std::isnan(settings.alpha_max))
		settings.alpha_max = 0;
	settings.dist = (normb > 1e-5 ? norma * (normab / normb) * settings.alpha_max : norma) * 2;
	if (std::isnan(settings.dist) || std::fabs(settings.dist) < 1e-10) {
		//debug("no space dist, using other system. dist=%f a=%f ab=%f b=%f", settings.dist, norma, normab, normb);
		if (queue[q].tool >= 0 && queue[q].tool < spaces[1].num_axes)
			settings.dist = std::fabs(queue[q].e - spaces[1].axis[queue[q].tool]->settings.source);
		else if (queue[q].single && queue[q].tool < 0 && ~queue[q].tool < spaces[2].num_axes)
			settings.dist = std::fabs(queue[q].e - spaces[2].axis[~queue[q].tool]->settings.source);
	}
	double dt = settings.dist / ((settings.v0 + settings.v1) / 2);
	settings.end_time = (std::isnan(dt) ? 0 : 1e6 * dt);
	if (queue[q].tool >= 0 && queue[q].tool < spaces[1].num_axes && !std::isnan(queue[q].e)) {
		spaces[1].axis[queue[q].tool]->settings.endpos = queue[q].e;
		mdebug("move extruder to %f", queue[q].e);
	}
	else if (queue[q].single && queue[q].tool < 0 && ~queue[q].tool < spaces[2].num_axes && !std::isnan(queue[q].e)) {
		spaces[2].axis[~queue[q].tool]->settings.endpos = queue[q].e;
		mdebug("move follower to %f, current=%f source=%f current_pos=%f", queue[q].e, spaces[2].axis[~queue[q].tool]->settings.current, spaces[2].axis[~queue[q].tool]->settings.source, spaces[2].motor[~queue[q].tool]->settings.current_pos);
	}
	auto last_hwtime_step = settings.hwtime_step;
	if (queue[q].pattern_size > 0) {
		memcpy(settings.pattern, queue[q].pattern, queue[q].pattern_size);
		settings.hwtime_step = dt * 1e6 / (queue[q].pattern_size * 8);
		if (settings.hwtime_step < min_hwtime_step)
			settings.hwtime_step = min_hwtime_step;
	}
	settings.pattern_size = queue[q].pattern_size;
	if (settings.hwtime_step != last_hwtime_step)
		arch_globals_change();
	/*
	if (spaces[0].num_axes > 2) {
		debug("move prepared, from=(%f,%f,%f) Q=(%f,%f,%f) P=(%f,%f,%f), A=(%f,%f,%f), B=(%f,%f,%f), max alpha=%f, dist=%f, e=%f, v0=%f, v1=%f, end time=%f, single=%d, UVW=(%f,%f,%f)", spaces[0].axis[0]->settings.source, spaces[0].axis[1]->settings.source, spaces[0].axis[2]->settings.source, queue[q].X[0], queue[q].X[1], queue[q].X[2], settings.P[0], settings.P[1], settings.P[2], settings.A[0], settings.A[1], settings.A[2], settings.B[0], settings.B[1], settings.B[2], settings.alpha_max, settings.dist, queue[q].e, settings.v0, settings.v1, settings.end_time / 1e6, queue[q].single, spaces[0].motor[0]->settings.current_pos, spaces[0].motor[1]->settings.current_pos, spaces[0].motor[2]->settings.current_pos);
	}
	else if (spaces[0].num_axes > 1) {
		debug("move prepared, from=(%f,%f) Q=(%f,%f,%f) P=(%f,%f,%f), A=(%f,%f,%f), B=(%f,%f,%f), max alpha=%f, dist=%f, e=%f, v0=%f, v1=%f, end time=%f, single=%d, UV=(%f,%f)", spaces[0].axis[0]->settings.source, spaces[0].axis[1]->settings.source, queue[q].X[0], queue[q].X[1], queue[q].X[2], settings.P[0], settings.P[1], settings.P[2], settings.A[0], settings.A[1], settings.A[2], settings.B[0], settings.B[1], settings.B[2], settings.alpha_max, settings.dist, queue[q].e, settings.v0, settings.v1, settings.end_time / 1e6, queue[q].single, spaces[0].motor[0]->settings.current_pos, spaces[0].motor[1]->settings.current_pos);
	}
	// */
	//debug("times end %d current %d dist %f v0 %f v1 %f", settings.end_time, settings.hwtime, settings.dist, settings.v0, settings.v1);

	settings.queue_start = n;
	first_fragment = current_fragment;	// Do this every time, because otherwise the queue must be regenerated.	TODO: send partial fragment to make sure this hack actually works, or fix it properly.
	if (!computing_move)
		store_settings();
	computing_move = true;
	return num_cbs;
} // }}}