static INLINE void hadamard_16x16_sse2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff, int is_final) { // For high bitdepths, it is unnecessary to store_tran_low // (mult/unpack/store), then load_tran_low (load/pack) the same memory in the // next stage. Output to an intermediate buffer first, then store_tran_low() // in the final stage. DECLARE_ALIGNED(32, int16_t, temp_coeff[16 * 16]); int16_t *t_coeff = temp_coeff; int16_t *coeff16 = (int16_t *)coeff; int idx; for (idx = 0; idx < 4; ++idx) { const int16_t *src_ptr = src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8; hadamard_8x8_sse2(src_ptr, src_stride, (tran_low_t *)(t_coeff + idx * 64), 0); } for (idx = 0; idx < 64; idx += 8) { __m128i coeff0 = _mm_load_si128((const __m128i *)t_coeff); __m128i coeff1 = _mm_load_si128((const __m128i *)(t_coeff + 64)); __m128i coeff2 = _mm_load_si128((const __m128i *)(t_coeff + 128)); __m128i coeff3 = _mm_load_si128((const __m128i *)(t_coeff + 192)); __m128i b0 = _mm_add_epi16(coeff0, coeff1); __m128i b1 = _mm_sub_epi16(coeff0, coeff1); __m128i b2 = _mm_add_epi16(coeff2, coeff3); __m128i b3 = _mm_sub_epi16(coeff2, coeff3); b0 = _mm_srai_epi16(b0, 1); b1 = _mm_srai_epi16(b1, 1); b2 = _mm_srai_epi16(b2, 1); b3 = _mm_srai_epi16(b3, 1); coeff0 = _mm_add_epi16(b0, b2); coeff1 = _mm_add_epi16(b1, b3); coeff2 = _mm_sub_epi16(b0, b2); coeff3 = _mm_sub_epi16(b1, b3); if (is_final) { store_tran_low(coeff0, coeff); store_tran_low(coeff1, coeff + 64); store_tran_low(coeff2, coeff + 128); store_tran_low(coeff3, coeff + 192); coeff += 8; } else { _mm_store_si128((__m128i *)coeff16, coeff0); _mm_store_si128((__m128i *)(coeff16 + 64), coeff1); _mm_store_si128((__m128i *)(coeff16 + 128), coeff2); _mm_store_si128((__m128i *)(coeff16 + 192), coeff3); coeff16 += 8; } t_coeff += 8; } }
static INLINE void hadamard_16x16_avx2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff, int is_final) { #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED(32, int16_t, temp_coeff[16 * 16]); int16_t *t_coeff = temp_coeff; #else int16_t *t_coeff = coeff; #endif int16_t *coeff16 = (int16_t *)coeff; int idx; for (idx = 0; idx < 2; ++idx) { const int16_t *src_ptr = src_diff + idx * 8 * src_stride; hadamard_8x8x2_avx2(src_ptr, src_stride, t_coeff + (idx * 64 * 2)); } for (idx = 0; idx < 64; idx += 16) { const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 64)); const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 128)); const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 192)); __m256i b0 = _mm256_add_epi16(coeff0, coeff1); __m256i b1 = _mm256_sub_epi16(coeff0, coeff1); __m256i b2 = _mm256_add_epi16(coeff2, coeff3); __m256i b3 = _mm256_sub_epi16(coeff2, coeff3); b0 = _mm256_srai_epi16(b0, 1); b1 = _mm256_srai_epi16(b1, 1); b2 = _mm256_srai_epi16(b2, 1); b3 = _mm256_srai_epi16(b3, 1); if (is_final) { store_tran_low(_mm256_add_epi16(b0, b2), coeff); store_tran_low(_mm256_add_epi16(b1, b3), coeff + 64); store_tran_low(_mm256_sub_epi16(b0, b2), coeff + 128); store_tran_low(_mm256_sub_epi16(b1, b3), coeff + 192); coeff += 16; } else { _mm256_storeu_si256((__m256i *)coeff16, _mm256_add_epi16(b0, b2)); _mm256_storeu_si256((__m256i *)(coeff16 + 64), _mm256_add_epi16(b1, b3)); _mm256_storeu_si256((__m256i *)(coeff16 + 128), _mm256_sub_epi16(b0, b2)); _mm256_storeu_si256((__m256i *)(coeff16 + 192), _mm256_sub_epi16(b1, b3)); coeff16 += 16; } t_coeff += 16; } }
void aom_hadamard_32x32_sse2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff) { // For high bitdepths, it is unnecessary to store_tran_low // (mult/unpack/store), then load_tran_low (load/pack) the same memory in the // next stage. Output to an intermediate buffer first, then store_tran_low() // in the final stage. DECLARE_ALIGNED(32, int16_t, temp_coeff[32 * 32]); int16_t *t_coeff = temp_coeff; int idx; for (idx = 0; idx < 4; ++idx) { const int16_t *src_ptr = src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16; hadamard_16x16_sse2(src_ptr, src_stride, (tran_low_t *)(t_coeff + idx * 256), 0); } for (idx = 0; idx < 256; idx += 8) { __m128i coeff0 = _mm_load_si128((const __m128i *)t_coeff); __m128i coeff1 = _mm_load_si128((const __m128i *)(t_coeff + 256)); __m128i coeff2 = _mm_load_si128((const __m128i *)(t_coeff + 512)); __m128i coeff3 = _mm_load_si128((const __m128i *)(t_coeff + 768)); __m128i b0 = _mm_add_epi16(coeff0, coeff1); __m128i b1 = _mm_sub_epi16(coeff0, coeff1); __m128i b2 = _mm_add_epi16(coeff2, coeff3); __m128i b3 = _mm_sub_epi16(coeff2, coeff3); b0 = _mm_srai_epi16(b0, 2); b1 = _mm_srai_epi16(b1, 2); b2 = _mm_srai_epi16(b2, 2); b3 = _mm_srai_epi16(b3, 2); coeff0 = _mm_add_epi16(b0, b2); coeff1 = _mm_add_epi16(b1, b3); store_tran_low(coeff0, coeff); store_tran_low(coeff1, coeff + 256); coeff2 = _mm_sub_epi16(b0, b2); coeff3 = _mm_sub_epi16(b1, b3); store_tran_low(coeff2, coeff + 512); store_tran_low(coeff3, coeff + 768); coeff += 8; t_coeff += 8; } }
void vpx_hadamard_32x32_avx2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff) { #if CONFIG_VP9_HIGHBITDEPTH // For high bitdepths, it is unnecessary to store_tran_low // (mult/unpack/store), then load_tran_low (load/pack) the same memory in the // next stage. Output to an intermediate buffer first, then store_tran_low() // in the final stage. DECLARE_ALIGNED(32, int16_t, temp_coeff[32 * 32]); int16_t *t_coeff = temp_coeff; #else int16_t *t_coeff = coeff; #endif int idx; for (idx = 0; idx < 4; ++idx) { // src_diff: 9 bit, dynamic range [-255, 255] const int16_t *src_ptr = src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16; hadamard_16x16_avx2(src_ptr, src_stride, (tran_low_t *)(t_coeff + idx * 256), 0); } for (idx = 0; idx < 256; idx += 16) { const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 256)); const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 512)); const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 768)); __m256i b0 = _mm256_add_epi16(coeff0, coeff1); __m256i b1 = _mm256_sub_epi16(coeff0, coeff1); __m256i b2 = _mm256_add_epi16(coeff2, coeff3); __m256i b3 = _mm256_sub_epi16(coeff2, coeff3); b0 = _mm256_srai_epi16(b0, 2); b1 = _mm256_srai_epi16(b1, 2); b2 = _mm256_srai_epi16(b2, 2); b3 = _mm256_srai_epi16(b3, 2); store_tran_low(_mm256_add_epi16(b0, b2), coeff); store_tran_low(_mm256_add_epi16(b1, b3), coeff + 256); store_tran_low(_mm256_sub_epi16(b0, b2), coeff + 512); store_tran_low(_mm256_sub_epi16(b1, b3), coeff + 768); coeff += 16; t_coeff += 16; } }
static INLINE void hadamard_8x8_sse2(const int16_t *src_diff, ptrdiff_t src_stride, tran_low_t *coeff, int is_final) { __m128i src[8]; src[0] = _mm_load_si128((const __m128i *)src_diff); src[1] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[2] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[3] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[4] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[5] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[6] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); src[7] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); hadamard_col8_sse2(src, 0); hadamard_col8_sse2(src, 1); if (is_final) { store_tran_low(src[0], coeff); coeff += 8; store_tran_low(src[1], coeff); coeff += 8; store_tran_low(src[2], coeff); coeff += 8; store_tran_low(src[3], coeff); coeff += 8; store_tran_low(src[4], coeff); coeff += 8; store_tran_low(src[5], coeff); coeff += 8; store_tran_low(src[6], coeff); coeff += 8; store_tran_low(src[7], coeff); } else { int16_t *coeff16 = (int16_t *)coeff; _mm_store_si128((__m128i *)coeff16, src[0]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[1]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[2]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[3]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[4]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[5]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[6]); coeff16 += 8; _mm_store_si128((__m128i *)coeff16, src[7]); } }
void vp9_quantize_fp_sse2(const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan_ptr, const int16_t *iscan_ptr) { __m128i zero; __m128i thr; int16_t nzflag; (void)scan_ptr; (void)zbin_ptr; (void)quant_shift_ptr; coeff_ptr += n_coeffs; iscan_ptr += n_coeffs; qcoeff_ptr += n_coeffs; dqcoeff_ptr += n_coeffs; n_coeffs = -n_coeffs; zero = _mm_setzero_si128(); if (!skip_block) { __m128i eob; __m128i round, quant, dequant; { __m128i coeff0, coeff1; // Setup global values { round = _mm_load_si128((const __m128i *)round_ptr); quant = _mm_load_si128((const __m128i *)quant_ptr); dequant = _mm_load_si128((const __m128i *)dequant_ptr); } { __m128i coeff0_sign, coeff1_sign; __m128i qcoeff0, qcoeff1; __m128i qtmp0, qtmp1; // Do DC and first 15 AC coeff0 = load_tran_low(coeff_ptr + n_coeffs); coeff1 = load_tran_low(coeff_ptr + n_coeffs + 8); // Poor man's sign extract coeff0_sign = _mm_srai_epi16(coeff0, 15); coeff1_sign = _mm_srai_epi16(coeff1, 15); qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); qcoeff0 = _mm_adds_epi16(qcoeff0, round); round = _mm_unpackhi_epi64(round, round); qcoeff1 = _mm_adds_epi16(qcoeff1, round); qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); quant = _mm_unpackhi_epi64(quant, quant); qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); // Reinsert signs qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); store_tran_low(qcoeff0, qcoeff_ptr + n_coeffs); store_tran_low(qcoeff1, qcoeff_ptr + n_coeffs + 8); coeff0 = _mm_mullo_epi16(qcoeff0, dequant); dequant = _mm_unpackhi_epi64(dequant, dequant); coeff1 = _mm_mullo_epi16(qcoeff1, dequant); store_tran_low(coeff0, dqcoeff_ptr + n_coeffs); store_tran_low(coeff1, dqcoeff_ptr + n_coeffs + 8); } { // Scan for eob __m128i zero_coeff0, zero_coeff1; __m128i nzero_coeff0, nzero_coeff1; __m128i iscan0, iscan1; __m128i eob1; zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); // Add one to convert from indices to counts iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); eob = _mm_and_si128(iscan0, nzero_coeff0); eob1 = _mm_and_si128(iscan1, nzero_coeff1); eob = _mm_max_epi16(eob, eob1); } n_coeffs += 8 * 2; } thr = _mm_srai_epi16(dequant, 1); // AC only loop while (n_coeffs < 0) { __m128i coeff0, coeff1; { __m128i coeff0_sign, coeff1_sign; __m128i qcoeff0, qcoeff1; __m128i qtmp0, qtmp1; coeff0 = load_tran_low(coeff_ptr + n_coeffs); coeff1 = load_tran_low(coeff_ptr + n_coeffs + 8); // Poor man's sign extract coeff0_sign = _mm_srai_epi16(coeff0, 15); coeff1_sign = _mm_srai_epi16(coeff1, 15); qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) | _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr)); if (nzflag) { qcoeff0 = _mm_adds_epi16(qcoeff0, round); qcoeff1 = _mm_adds_epi16(qcoeff1, round); qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); // Reinsert signs qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); store_tran_low(qcoeff0, qcoeff_ptr + n_coeffs); store_tran_low(qcoeff1, qcoeff_ptr + n_coeffs + 8); coeff0 = _mm_mullo_epi16(qcoeff0, dequant); coeff1 = _mm_mullo_epi16(qcoeff1, dequant); store_tran_low(coeff0, dqcoeff_ptr + n_coeffs); store_tran_low(coeff1, dqcoeff_ptr + n_coeffs + 8); } else { store_zero_tran_low(qcoeff_ptr + n_coeffs); store_zero_tran_low(qcoeff_ptr + n_coeffs + 8); store_zero_tran_low(dqcoeff_ptr + n_coeffs); store_zero_tran_low(dqcoeff_ptr + n_coeffs + 8); } } if (nzflag) { // Scan for eob __m128i zero_coeff0, zero_coeff1; __m128i nzero_coeff0, nzero_coeff1; __m128i iscan0, iscan1; __m128i eob0, eob1; zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); // Add one to convert from indices to counts iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); eob0 = _mm_and_si128(iscan0, nzero_coeff0); eob1 = _mm_and_si128(iscan1, nzero_coeff1); eob0 = _mm_max_epi16(eob0, eob1); eob = _mm_max_epi16(eob, eob0); } n_coeffs += 8 * 2; } // Accumulate EOB { __m128i eob_shuffled; eob_shuffled = _mm_shuffle_epi32(eob, 0xe); eob = _mm_max_epi16(eob, eob_shuffled); eob_shuffled = _mm_shufflelo_epi16(eob, 0xe); eob = _mm_max_epi16(eob, eob_shuffled); eob_shuffled = _mm_shufflelo_epi16(eob, 0x1); eob = _mm_max_epi16(eob, eob_shuffled); *eob_ptr = _mm_extract_epi16(eob, 1); } } else { do { store_zero_tran_low(qcoeff_ptr + n_coeffs); store_zero_tran_low(qcoeff_ptr + n_coeffs + 8); store_zero_tran_low(dqcoeff_ptr + n_coeffs); store_zero_tran_low(dqcoeff_ptr + n_coeffs + 8); n_coeffs += 8 * 2; } while (n_coeffs < 0); *eob_ptr = 0; } }
void vp9_fdct8x8_quant_ssse3( const int16_t *input, int stride, tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan_ptr, const int16_t *iscan_ptr) { __m128i zero; int pass; // Constants // When we use them, in one case, they are all the same. In all others // it's a pair of them that we need to repeat four times. This is done // by constructing the 32 bit constant corresponding to that pair. const __m128i k__dual_p16_p16 = dual_set_epi16(23170, 23170); const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64); const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); // Load input __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride)); __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride)); __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride)); __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride)); __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride)); __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride)); __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride)); __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride)); __m128i *in[8]; int index = 0; (void)scan_ptr; (void)zbin_ptr; (void)quant_shift_ptr; (void)coeff_ptr; // Pre-condition input (shift by two) in0 = _mm_slli_epi16(in0, 2); in1 = _mm_slli_epi16(in1, 2); in2 = _mm_slli_epi16(in2, 2); in3 = _mm_slli_epi16(in3, 2); in4 = _mm_slli_epi16(in4, 2); in5 = _mm_slli_epi16(in5, 2); in6 = _mm_slli_epi16(in6, 2); in7 = _mm_slli_epi16(in7, 2); in[0] = &in0; in[1] = &in1; in[2] = &in2; in[3] = &in3; in[4] = &in4; in[5] = &in5; in[6] = &in6; in[7] = &in7; // We do two passes, first the columns, then the rows. The results of the // first pass are transposed so that the same column code can be reused. The // results of the second pass are also transposed so that the rows (processed // as columns) are put back in row positions. for (pass = 0; pass < 2; pass++) { // To store results of each pass before the transpose. __m128i res0, res1, res2, res3, res4, res5, res6, res7; // Add/subtract const __m128i q0 = _mm_add_epi16(in0, in7); const __m128i q1 = _mm_add_epi16(in1, in6); const __m128i q2 = _mm_add_epi16(in2, in5); const __m128i q3 = _mm_add_epi16(in3, in4); const __m128i q4 = _mm_sub_epi16(in3, in4); const __m128i q5 = _mm_sub_epi16(in2, in5); const __m128i q6 = _mm_sub_epi16(in1, in6); const __m128i q7 = _mm_sub_epi16(in0, in7); // Work on first four results { // Add/subtract const __m128i r0 = _mm_add_epi16(q0, q3); const __m128i r1 = _mm_add_epi16(q1, q2); const __m128i r2 = _mm_sub_epi16(q1, q2); const __m128i r3 = _mm_sub_epi16(q0, q3); // Interleave to do the multiply by constants which gets us into 32bits const __m128i t0 = _mm_unpacklo_epi16(r0, r1); const __m128i t1 = _mm_unpackhi_epi16(r0, r1); const __m128i t2 = _mm_unpacklo_epi16(r2, r3); const __m128i t3 = _mm_unpackhi_epi16(r2, r3); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16); const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16); const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16); const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08); const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08); const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24); const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); // Combine res0 = _mm_packs_epi32(w0, w1); res4 = _mm_packs_epi32(w2, w3); res2 = _mm_packs_epi32(w4, w5); res6 = _mm_packs_epi32(w6, w7); } // Work on next four results { // Interleave to do the multiply by constants which gets us into 32bits const __m128i d0 = _mm_sub_epi16(q6, q5); const __m128i d1 = _mm_add_epi16(q6, q5); const __m128i r0 = _mm_mulhrs_epi16(d0, k__dual_p16_p16); const __m128i r1 = _mm_mulhrs_epi16(d1, k__dual_p16_p16); // Add/subtract const __m128i x0 = _mm_add_epi16(q4, r0); const __m128i x1 = _mm_sub_epi16(q4, r0); const __m128i x2 = _mm_sub_epi16(q7, r1); const __m128i x3 = _mm_add_epi16(q7, r1); // Interleave to do the multiply by constants which gets us into 32bits const __m128i t0 = _mm_unpacklo_epi16(x0, x3); const __m128i t1 = _mm_unpackhi_epi16(x0, x3); const __m128i t2 = _mm_unpacklo_epi16(x1, x2); const __m128i t3 = _mm_unpackhi_epi16(x1, x2); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04); const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28); const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28); const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20); const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20); const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12); const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); // Combine res1 = _mm_packs_epi32(w0, w1); res7 = _mm_packs_epi32(w2, w3); res5 = _mm_packs_epi32(w4, w5); res3 = _mm_packs_epi32(w6, w7); } // Transpose the 8x8. { // 00 01 02 03 04 05 06 07 // 10 11 12 13 14 15 16 17 // 20 21 22 23 24 25 26 27 // 30 31 32 33 34 35 36 37 // 40 41 42 43 44 45 46 47 // 50 51 52 53 54 55 56 57 // 60 61 62 63 64 65 66 67 // 70 71 72 73 74 75 76 77 const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1); const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3); const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1); const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3); const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5); const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7); const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5); const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7); // 00 10 01 11 02 12 03 13 // 20 30 21 31 22 32 23 33 // 04 14 05 15 06 16 07 17 // 24 34 25 35 26 36 27 37 // 40 50 41 51 42 52 43 53 // 60 70 61 71 62 72 63 73 // 54 54 55 55 56 56 57 57 // 64 74 65 75 66 76 67 77 const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); // 00 10 20 30 01 11 21 31 // 40 50 60 70 41 51 61 71 // 02 12 22 32 03 13 23 33 // 42 52 62 72 43 53 63 73 // 04 14 24 34 05 15 21 36 // 44 54 64 74 45 55 61 76 // 06 16 26 36 07 17 27 37 // 46 56 66 76 47 57 67 77 in0 = _mm_unpacklo_epi64(tr1_0, tr1_4); in1 = _mm_unpackhi_epi64(tr1_0, tr1_4); in2 = _mm_unpacklo_epi64(tr1_2, tr1_6); in3 = _mm_unpackhi_epi64(tr1_2, tr1_6); in4 = _mm_unpacklo_epi64(tr1_1, tr1_5); in5 = _mm_unpackhi_epi64(tr1_1, tr1_5); in6 = _mm_unpacklo_epi64(tr1_3, tr1_7); in7 = _mm_unpackhi_epi64(tr1_3, tr1_7); // 00 10 20 30 40 50 60 70 // 01 11 21 31 41 51 61 71 // 02 12 22 32 42 52 62 72 // 03 13 23 33 43 53 63 73 // 04 14 24 34 44 54 64 74 // 05 15 25 35 45 55 65 75 // 06 16 26 36 46 56 66 76 // 07 17 27 37 47 57 67 77 } } // Post-condition output and store it { // Post-condition (division by two) // division of two 16 bits signed numbers using shifts // n / 2 = (n - (n >> 15)) >> 1 const __m128i sign_in0 = _mm_srai_epi16(in0, 15); const __m128i sign_in1 = _mm_srai_epi16(in1, 15); const __m128i sign_in2 = _mm_srai_epi16(in2, 15); const __m128i sign_in3 = _mm_srai_epi16(in3, 15); const __m128i sign_in4 = _mm_srai_epi16(in4, 15); const __m128i sign_in5 = _mm_srai_epi16(in5, 15); const __m128i sign_in6 = _mm_srai_epi16(in6, 15); const __m128i sign_in7 = _mm_srai_epi16(in7, 15); in0 = _mm_sub_epi16(in0, sign_in0); in1 = _mm_sub_epi16(in1, sign_in1); in2 = _mm_sub_epi16(in2, sign_in2); in3 = _mm_sub_epi16(in3, sign_in3); in4 = _mm_sub_epi16(in4, sign_in4); in5 = _mm_sub_epi16(in5, sign_in5); in6 = _mm_sub_epi16(in6, sign_in6); in7 = _mm_sub_epi16(in7, sign_in7); in0 = _mm_srai_epi16(in0, 1); in1 = _mm_srai_epi16(in1, 1); in2 = _mm_srai_epi16(in2, 1); in3 = _mm_srai_epi16(in3, 1); in4 = _mm_srai_epi16(in4, 1); in5 = _mm_srai_epi16(in5, 1); in6 = _mm_srai_epi16(in6, 1); in7 = _mm_srai_epi16(in7, 1); } iscan_ptr += n_coeffs; qcoeff_ptr += n_coeffs; dqcoeff_ptr += n_coeffs; n_coeffs = -n_coeffs; zero = _mm_setzero_si128(); if (!skip_block) { __m128i eob; __m128i round, quant, dequant, thr; int16_t nzflag; { __m128i coeff0, coeff1; // Setup global values { round = _mm_load_si128((const __m128i *)round_ptr); quant = _mm_load_si128((const __m128i *)quant_ptr); dequant = _mm_load_si128((const __m128i *)dequant_ptr); } { __m128i coeff0_sign, coeff1_sign; __m128i qcoeff0, qcoeff1; __m128i qtmp0, qtmp1; // Do DC and first 15 AC coeff0 = *in[0]; coeff1 = *in[1]; // Poor man's sign extract coeff0_sign = _mm_srai_epi16(coeff0, 15); coeff1_sign = _mm_srai_epi16(coeff1, 15); qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); qcoeff0 = _mm_adds_epi16(qcoeff0, round); round = _mm_unpackhi_epi64(round, round); qcoeff1 = _mm_adds_epi16(qcoeff1, round); qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); quant = _mm_unpackhi_epi64(quant, quant); qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); // Reinsert signs qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); store_tran_low(qcoeff0, qcoeff_ptr + n_coeffs); store_tran_low(qcoeff1, qcoeff_ptr + n_coeffs + 8); coeff0 = _mm_mullo_epi16(qcoeff0, dequant); dequant = _mm_unpackhi_epi64(dequant, dequant); coeff1 = _mm_mullo_epi16(qcoeff1, dequant); store_tran_low(coeff0, dqcoeff_ptr + n_coeffs); store_tran_low(coeff1, dqcoeff_ptr + n_coeffs + 8); } { // Scan for eob __m128i zero_coeff0, zero_coeff1; __m128i nzero_coeff0, nzero_coeff1; __m128i iscan0, iscan1; __m128i eob1; zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); // Add one to convert from indices to counts iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); eob = _mm_and_si128(iscan0, nzero_coeff0); eob1 = _mm_and_si128(iscan1, nzero_coeff1); eob = _mm_max_epi16(eob, eob1); } n_coeffs += 8 * 2; } // AC only loop index = 2; thr = _mm_srai_epi16(dequant, 1); while (n_coeffs < 0) { __m128i coeff0, coeff1; { __m128i coeff0_sign, coeff1_sign; __m128i qcoeff0, qcoeff1; __m128i qtmp0, qtmp1; assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1); coeff0 = *in[index]; coeff1 = *in[index + 1]; // Poor man's sign extract coeff0_sign = _mm_srai_epi16(coeff0, 15); coeff1_sign = _mm_srai_epi16(coeff1, 15); qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) | _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr)); if (nzflag) { qcoeff0 = _mm_adds_epi16(qcoeff0, round); qcoeff1 = _mm_adds_epi16(qcoeff1, round); qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); // Reinsert signs qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); store_tran_low(qcoeff0, qcoeff_ptr + n_coeffs); store_tran_low(qcoeff1, qcoeff_ptr + n_coeffs + 8); coeff0 = _mm_mullo_epi16(qcoeff0, dequant); coeff1 = _mm_mullo_epi16(qcoeff1, dequant); store_tran_low(coeff0, dqcoeff_ptr + n_coeffs); store_tran_low(coeff1, dqcoeff_ptr + n_coeffs + 8); } else { // Maybe a more efficient way to store 0? store_zero_tran_low(qcoeff_ptr + n_coeffs); store_zero_tran_low(qcoeff_ptr + n_coeffs + 8); store_zero_tran_low(dqcoeff_ptr + n_coeffs); store_zero_tran_low(dqcoeff_ptr + n_coeffs + 8); } } if (nzflag) { // Scan for eob __m128i zero_coeff0, zero_coeff1; __m128i nzero_coeff0, nzero_coeff1; __m128i iscan0, iscan1; __m128i eob0, eob1; zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); // Add one to convert from indices to counts iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); eob0 = _mm_and_si128(iscan0, nzero_coeff0); eob1 = _mm_and_si128(iscan1, nzero_coeff1); eob0 = _mm_max_epi16(eob0, eob1); eob = _mm_max_epi16(eob, eob0); } n_coeffs += 8 * 2; index += 2; } // Accumulate EOB { __m128i eob_shuffled; eob_shuffled = _mm_shuffle_epi32(eob, 0xe); eob = _mm_max_epi16(eob, eob_shuffled); eob_shuffled = _mm_shufflelo_epi16(eob, 0xe); eob = _mm_max_epi16(eob, eob_shuffled); eob_shuffled = _mm_shufflelo_epi16(eob, 0x1); eob = _mm_max_epi16(eob, eob_shuffled); *eob_ptr = _mm_extract_epi16(eob, 1); } } else { do { store_zero_tran_low(dqcoeff_ptr + n_coeffs); store_zero_tran_low(dqcoeff_ptr + n_coeffs + 8); store_zero_tran_low(qcoeff_ptr + n_coeffs); store_zero_tran_low(qcoeff_ptr + n_coeffs + 8); n_coeffs += 8 * 2; } while (n_coeffs < 0); *eob_ptr = 0; } }