Matrix<std::string> KappaCoefficientOptimizationThreshold::to_string_matrix(void) const { std::ostringstream buffer; Vector<std::string> labels; Vector<std::string> values; // Minimum threshold labels.push_back("Minimum threshold"); buffer.str(""); buffer << minimum_threshold; values.push_back(buffer.str()); // Maximum threshold labels.push_back("Maximum threshold"); buffer.str(""); buffer << maximum_threshold; values.push_back(buffer.str()); // Step labels.push_back("Step"); buffer.str(""); buffer << step; values.push_back(buffer.str()); const size_t rows_number = labels.size(); const size_t columns_number = 2; Matrix<std::string> string_matrix(rows_number, columns_number); string_matrix.set_column(0, labels); string_matrix.set_column(1, values); return(string_matrix); }
Matrix<std::string> SimulatedAnnealingOrder::to_string_matrix(void) const { std::ostringstream buffer; Vector<std::string> labels; Vector<std::string> values; // Minimum order labels.push_back("Minimum order"); buffer.str(""); buffer << minimum_order; values.push_back(buffer.str()); // Maximum order labels.push_back("Maximum order"); buffer.str(""); buffer << maximum_order; values.push_back(buffer.str()); // Step labels.push_back("Cooling Rate"); buffer.str(""); buffer << cooling_rate; values.push_back(buffer.str()); // Trials number labels.push_back("Trials number"); buffer.str(""); buffer << trials_number; values.push_back(buffer.str()); // Tolerance labels.push_back("Tolerance"); buffer.str(""); buffer << tolerance; values.push_back(buffer.str()); // Selection performance goal labels.push_back("Selection performance goal"); buffer.str(""); buffer << selection_performance_goal; values.push_back(buffer.str()); // Minimum temperature labels.push_back("Minimum temperature"); buffer.str(""); buffer << minimum_temperature; values.push_back(buffer.str()); // Maximum iterations number labels.push_back("Maximum iterations number"); buffer.str(""); buffer << maximum_iterations_number; values.push_back(buffer.str()); // Maximum time labels.push_back("Maximum time"); buffer.str(""); buffer << maximum_time; values.push_back(buffer.str()); // Plot training performance history labels.push_back("Plot training performance history"); buffer.str(""); buffer << reserve_performance_data; values.push_back(buffer.str()); // Plot selection performance history labels.push_back("Plot selection performance history"); buffer.str(""); buffer << reserve_selection_performance_data; values.push_back(buffer.str()); const size_t rows_number = labels.size(); const size_t columns_number = 2; Matrix<std::string> string_matrix(rows_number, columns_number); string_matrix.set_column(0, labels); string_matrix.set_column(1, values); return(string_matrix); }