Exemple #1
0
int main(int argc, char** argv) {
	
	g_validationLayers = std::vector<const char*> {
		"VK_LAYER_LUNARG_mem_tracker",
		"VK_LAYER_GOOGLE_unique_objects",
	};

	// Init GLFW
	{
		// Handle GLFW errors
		glfwSetErrorCallback([](int error, const char* description) {
			std::cout << "GLFW error: " << error << " - " << description << std::endl;
		});
		
		// Initialize GLFW
		if (!glfwInit())
			error("Cannot initialize GLFW.");

		// Check Vulkan support
		if (!glfwVulkanSupported())
			error("Cannot find compatible Vulkan client driver.");
	}

	// Get Validation layers
	{
		uint32_t numInstanceLayers = 0;

		// Get numInstanceLayers
		if (vkEnumerateInstanceLayerProperties(&numInstanceLayers, nullptr))
			error("Vulkan: Could not enumerate instance layer properties.");

		if (numInstanceLayers > 0) {
			std::vector<VkLayerProperties> instanceLayers(numInstanceLayers);
			if (vkEnumerateInstanceLayerProperties(&numInstanceLayers, instanceLayers.data()))
				error("Vulkan: Could not enumerate instance layer properties.");

			// Print layers:
			std::cout << "Validation layers: " << std::endl;
			for (int i = 0; i < numInstanceLayers; ++i) {
				std::cout << "\t" << instanceLayers[i].layerName << std::endl;
				std::cout << "\t\t" << instanceLayers[i].description << std::endl;
				std::cout << std::endl;
			}
			std::cout << std::endl;
		}
		else
			std::cout << "No validation layers found!" << std::endl;

		// TODO: Check Layers
	}

	// Check instance extensions
	{
		int numRequiredExtensions;
		const char** requiredExtensions;

		// Get required extensions from GLFW
		{
			requiredExtensions = glfwGetRequiredInstanceExtensions((int*)&numRequiredExtensions);

			if (numRequiredExtensions > 0) {
				// Write to global g_extensions
				for (int i = 0; i < numRequiredExtensions; ++i)
					g_extensions.push_back(requiredExtensions[i]);

				// Print
				std::cout << "Required Instance Extensions(GLFW):" << std::endl;
				for (int i = 0; i < numRequiredExtensions; ++i) {
					std::cout << "\t" << requiredExtensions[i] << std::endl;
				}
				std::cout << std::endl;
			}
			// TODO: Check extensions
		}

		// Get Instance extensions
		{
			VkResult err;
			uint32_t numInstanceExtensions;
			err = vkEnumerateInstanceExtensionProperties(nullptr, &numInstanceExtensions, nullptr);

			if (numInstanceExtensions > 0) {
				std::vector<VkExtensionProperties> instanceExtensions(numInstanceExtensions);
				err = vkEnumerateInstanceExtensionProperties(NULL, &numInstanceExtensions, instanceExtensions.data());

				// Print
				std::cout << "Instance Extensions: " << std::endl;
				for (int i = 0; i < numInstanceExtensions; ++i) {
					std::cout << "\t" <<instanceExtensions[i].extensionName << std::endl;
					std::cout << "\t\t" << instanceExtensions[i].specVersion << std::endl;
					std::cout << std::endl;
				}
				std::cout << std::endl;
			}
			// TODO: Check instance extensions(with required instance extensions)
		}
	}

	// Create Vulkan Instance
	{
		VkApplicationInfo app;
		{
			app.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
			app.pNext = nullptr;
			app.pApplicationName = "Vulkan test 1";
			app.applicationVersion = 0;
			app.pEngineName = "Vulkan test 1";
			app.engineVersion = 0;
			app.apiVersion = VK_API_VERSION;
		}

		VkInstanceCreateInfo instanceInfo;
		{
			instanceInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
			instanceInfo.pNext = nullptr;
			instanceInfo.pApplicationInfo = &app;
			instanceInfo.enabledLayerCount = g_validationLayers.size();
			instanceInfo.ppEnabledLayerNames = g_validationLayers.data();
			instanceInfo.enabledExtensionCount = g_extensions.size();
			instanceInfo.ppEnabledExtensionNames = g_extensions.data();
		}

		// TODO: Aligned allocators
		VkAllocationCallbacks allocator;
		{
			allocator.pUserData = nullptr;
			allocator.pfnAllocation = [](void* pUserData, size_t size, size_t alignment, VkSystemAllocationScope allocationScope)->void* {
				return malloc(size);
			};
			allocator.pfnFree = [](void* pUserData, void* pMemory) {
				free(pMemory);
			};
			allocator.pfnReallocation = [](void* pUserData, void *pOriginal, size_t size, size_t alignment, VkSystemAllocationScope allocationScope) {
				free(pOriginal);
				return malloc(size);
			};
			allocator.pfnInternalAllocation = nullptr;
			allocator.pfnInternalFree = nullptr;
			allocator.pfnReallocation = nullptr;
		}
		
		// Create vulkan instance
		VkResult vkError = vkCreateInstance(&instanceInfo, &allocator, &g_vkInstance);

		// Handle errors
		switch (vkError) {
		case VK_ERROR_INCOMPATIBLE_DRIVER:
			error("Drivers do not support vulkan. Drivers could be outdated.");
			break;
		case VK_ERROR_EXTENSION_NOT_PRESENT:
			error("Cannot find specified extension.");
			break;
		case VK_SUCCESS:
			// Succes! (prevent default from catching success as error)
			std::cout << "Vulkan instance created!" << std::endl;
			break;
		default:
			error("Could not create vulkan Instance. Drivers could be outdated.");
			break;
		}

	}

	// Look for GPU device
	{
		uint32_t numGPUs;
		VkResult vkError = vkEnumeratePhysicalDevices(g_vkInstance, &numGPUs, nullptr);
		
		if (numGPUs < 0)
			error("vkEnumeratePhysicalDevices could not find any GPU devices.");

		if (vkError)
			error("vkEnumeratePhysicalDevices could not enumerate GPU devices.");

		if (numGPUs > 0) {
			std::vector<VkPhysicalDevice> physicalDevices(numGPUs);
			if (vkEnumeratePhysicalDevices(g_vkInstance, &numGPUs, physicalDevices.data()))
				error("vkEnumeratePhysicalDevices could not enumerate GPU devices.");

			g_vkGPU = physicalDevices[0];

			std::cout << numGPUs << " GPUs found!" << std::endl;
		}
	}

	// Get queue properties
	{
		uint32_t numQueues;
		vkGetPhysicalDeviceProperties(g_vkGPU, &g_vkGPUProperties);

		vkGetPhysicalDeviceQueueFamilyProperties(g_vkGPU, &numQueues, nullptr);
		if (numQueues == 0)
			error("vkGetPhysicalDeviceQueueFamilyProperties could not find any queues.");

		g_vkQueueProperties = std::vector<VkQueueFamilyProperties>(numQueues);
		vkGetPhysicalDeviceQueueFamilyProperties(g_vkGPU, &numQueues, g_vkQueueProperties.data());
	}

	// Look for device layers (Unecessary code that does nothing)
	{
		uint32_t numDeviceLayers;

		if (vkEnumerateDeviceLayerProperties(g_vkGPU, &numDeviceLayers, nullptr))
			error("vkEnumerateDeviceLayerProperties failed!");

		if (numDeviceLayers > 0) {
			std::vector<VkLayerProperties> deviceLayers(numDeviceLayers);

			if (vkEnumerateDeviceLayerProperties(g_vkGPU, &numDeviceLayers, deviceLayers.data()))
				error("vkEnumerateDeviceLayerProperties failed!");

			// TODO: Check device layers.
		}
	}

	// Look for device extensions (swapchain extension)
	{
		uint32_t numDeviceExtensions;
		bool extensionSwapChainFound = false;

		if (vkEnumerateDeviceExtensionProperties(g_vkGPU, nullptr, &numDeviceExtensions, nullptr))
			error("vkEnumerateDeviceExtensionProperties failed!");

		if (numDeviceExtensions > 0) {
			std::vector<VkExtensionProperties> deviceExtensions(numDeviceExtensions);
			
			if (vkEnumerateDeviceExtensionProperties(g_vkGPU, nullptr, &numDeviceExtensions, deviceExtensions.data()))
				error("vkEnumerateDeviceExtensionProperties failed!");

			// Search for swapchain extension
			for (VkExtensionProperties extension : deviceExtensions) {
				if (!strcmp(extension.extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME))
					extensionSwapChainFound = true;
			}
			
			// Print
			std::cout << std::endl << "Extensions:" << std::endl;
			for (VkExtensionProperties extension : deviceExtensions) {
				std::cout << extension.extensionName << "(" << extension.specVersion << ")" << std::endl;
			}
			std::cout << std::endl;
		}

		if (!extensionSwapChainFound)
			error("Failed to find the " VK_KHR_SWAPCHAIN_EXTENSION_NAME " extension!");
	}

	// TODO: Validate

	// Get instance function adresses
	{
		GET_INSTANCE_PROC_ADDR(g_vkInstance, GetPhysicalDeviceSurfaceCapabilitiesKHR);
		GET_INSTANCE_PROC_ADDR(g_vkInstance, GetPhysicalDeviceSurfaceFormatsKHR);
		GET_INSTANCE_PROC_ADDR(g_vkInstance, GetPhysicalDeviceSurfacePresentModesKHR);
		GET_INSTANCE_PROC_ADDR(g_vkInstance, GetPhysicalDeviceSurfaceSupportKHR);
		GET_INSTANCE_PROC_ADDR(g_vkInstance, CreateSwapchainKHR);
		GET_INSTANCE_PROC_ADDR(g_vkInstance, DestroySwapchainKHR);
		GET_INSTANCE_PROC_ADDR(g_vkInstance, GetSwapchainImagesKHR);
		GET_INSTANCE_PROC_ADDR(g_vkInstance, AcquireNextImageKHR);
		GET_INSTANCE_PROC_ADDR(g_vkInstance, QueuePresentKHR);
	}

	// Create window
	{
		glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);

		g_window = glfwCreateWindow(g_width, g_height, "Vulkan test", NULL, NULL);

		if (!g_window)
			error("Could not create window!");

		glfwSetWindowRefreshCallback(g_window, [](GLFWwindow* window) {
			// TODO: draw();
		});
		glfwSetFramebufferSizeCallback(g_window, [](GLFWwindow* window, int width, int height) {
			g_width = width;
			g_height = height;
			// TODO: resize();
		});


	}

	// Init swapchain
	{
		glfwCreateWindowSurface(g_vkInstance, g_window, nullptr, &g_vkSurface);

		std::vector<VkBool32> supportsPresent(g_vkQueueProperties.size());

		for (uint32_t i = 0; i < g_vkQueueProperties.size(); ++i)
			g_vkFPGetPhysicalDeviceSurfaceSupportKHR(g_vkGPU, i, g_vkSurface, &supportsPresent[i]);

		uint32_t graphicsQueueNodeIndex = UINT32_MAX;
		uint32_t presentQueueNodeIndex = UINT32_MAX;

		for (uint32_t i = 0; i < g_vkQueueProperties.size(); ++i) {
			if (graphicsQueueNodeIndex == UINT32_MAX) {
				graphicsQueueNodeIndex = i;
			}

			if (supportsPresent[i] == VK_TRUE) {
				graphicsQueueNodeIndex = i;
				presentQueueNodeIndex = i;
				break;
			}
		}

		//if (presentQueueNodeIndex == UINT32_MAX) {
		//	for (uint32_t i = 0; i < g_vkQueueProperties.size(); ++i) {
		//		if (supportsPresent[i] == VK_TRUE) {
		//			presentQueueNodeIndex = i;
		//		}
		//	}
		//}

		if (graphicsQueueNodeIndex == UINT32_MAX || presentQueueNodeIndex == UINT32_MAX)
			error("Could not find a graphics and a present queue.");

		if (graphicsQueueNodeIndex != presentQueueNodeIndex)
			error("Could not find a common graphics and present queue.");

		g_vkGraphicsQueueNodeIndex = graphicsQueueNodeIndex;

		//TODO: init device
		{
			float queuePriotities = 0.f;
			VkDeviceQueueCreateInfo queue;
			{
				queue.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
				queue.pNext = NULL;
				queue.queueFamilyIndex = g_vkGraphicsQueueNodeIndex;
				queue.queueCount = 1;
				queue.pQueuePriorities = &queuePriotities;
			}

		}

		//vkGetDeviceQueue(g_vkDevice, g_vkGraphicsQueueNodeIndex, 0, g_vkQueue);

	}

	std::cin.get();

	return 0;
}
	int XdevLSwapChainVulkan::createSurface(IPXdevLWindow window) {
		Display* display = static_cast<Display*>(window->getInternal(XdevLInternalName("X11_DISPLAY")));
		if(nullptr == display) {
			XDEVL_MODULEX_ERROR(XdevLSwapChainVulkan, "Could not get native X11 display information.\n");
			return RET_FAILED;
		}

		Window x11window = (Window)(window->getInternal(XdevLInternalName("X11_WINDOW")));
		if(None == x11window) {
			XDEVL_MODULEX_ERROR(XdevLSwapChainVulkan, "Could not get native X11 window information.\n");
			return RET_FAILED;
		}

		//
		// Get the Surface extensions.
		//
		VkResult result;

#if defined(_WIN32)
		VkWin32SurfaceCreateInfoKHR surfaceCreateInfo;
		surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
		surfaceCreateInfo.hinstance = (HINSTANCE)platformHandle; // provided by the platform code
		surfaceCreateInfo.hwnd = (HWND)platformWindow;           // provided by the platform code
		result = vkCreateWin32SurfaceKHR(instance, &surfaceCreateInfo, nullptr, &m_surface);
#elif defined(__ANDROID__)
		VkAndroidSurfaceCreateInfoKHR surfaceCreateInfo;
		surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR;
		surfaceCreateInfo.window = window;                       // provided by the platform code
		result = vkCreateAndroidSurfaceKHR(instance, &surfaceCreateInfo, nullptr, &m_surface);
#else
		VkXcbSurfaceCreateInfoKHR surfaceCreateInfo = {
			VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR,
			nullptr,
			0,
			XGetXCBConnection(display),
			(xcb_window_t)x11window
		};
		result = vkCreateXcbSurfaceKHR(m_instance, &surfaceCreateInfo, nullptr, &m_surface);
#endif
		if(result != VK_SUCCESS) {
			std::cerr << "Failed to create Vulkan surface: " << vkVkResultToString(result) << std::endl;
			return 1;
		}


		uint32_t queueCount;
		vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevice, &queueCount, nullptr);

		std::vector<VkQueueFamilyProperties> queueProps(queueCount);
		vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevice, &queueCount, queueProps.data());

		// Will be used to present the swap chain images to the windowing system
		std::vector<VkBool32> supportsPresent(queueCount);
		for(uint32_t i = 0; i < queueCount; i++) {
			fpGetPhysicalDeviceSurfaceSupportKHR(m_physicalDevice, i, m_surface, &supportsPresent[i]);

		}



		// Search for a graphics and a present queue in the array of queue
		// families, try to find one that supports both
		uint32_t graphicsQueueNodeIndex = UINT32_MAX;
		uint32_t presentQueueNodeIndex = UINT32_MAX;
		for(uint32_t i = 0; i < queueCount; i++) {
			if((queueProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0) {
				if(graphicsQueueNodeIndex == UINT32_MAX) {
					graphicsQueueNodeIndex = i;
				}

				if(supportsPresent[i] == VK_TRUE) {
					graphicsQueueNodeIndex = i;
					presentQueueNodeIndex = i;
					break;
				}
			}
		}
		if(presentQueueNodeIndex == UINT32_MAX) {
			// If there's no queue that supports both present and graphics
			// try to find a separate present queue
			for(uint32_t i = 0; i < queueCount; ++i) {
				if(supportsPresent[i] == VK_TRUE) {
					presentQueueNodeIndex = i;
					break;
				}
			}
		}

		// Exit if either a graphics or a presenting queue hasn't been found
		if(graphicsQueueNodeIndex == UINT32_MAX || presentQueueNodeIndex == UINT32_MAX) {
			return 1;
		}

		// todo : Add support for separate graphics and presenting queue
		if(graphicsQueueNodeIndex != presentQueueNodeIndex) {
			return 1;
		}

		m_queueNodeIndex = graphicsQueueNodeIndex;

		// Get list of supported surface formats
		uint32_t formatCount;
		result = vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, m_surface, &formatCount, nullptr);
		if(VK_SUCCESS != result) {
			std::cerr << "vkGetPhysicalDeviceSurfaceFormatsKHR failed: " << vkVkResultToString(result) << std::endl;
			return 1;
		}
		assert(formatCount > 0);

		std::vector<VkSurfaceFormatKHR> surfaceFormats(formatCount);
		result = vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, m_surface, &formatCount, surfaceFormats.data());
		assert(!result);



		// If the surface format list only includes one entry with VK_FORMAT_UNDEFINED,
		// there is no preferered format, so we assume VK_FORMAT_B8G8R8A8_UNORM
		if((formatCount == 1) && (surfaceFormats[0].format == VK_FORMAT_UNDEFINED)) {
			m_colorFormat = VK_FORMAT_B8G8R8A8_UNORM;
		} else {
			// Always select the first available color format
			// If you need a specific format (e.g. SRGB) you'd need to
			// iterate over the list of available surface format and
			// check for it's presence
			m_colorFormat = surfaceFormats[0].format;
		}

		m_colorSpace = surfaceFormats[0].colorSpace;

		return 0;
	}
Exemple #3
0
    // Creates an os specific surface
    // Tries to find a graphics and a present queue
    void initSurface(
        xcb_connection_t* connection, xcb_window_t window
    )
    {
        VkResult err;

        // Create surface depending on OS
        VkXcbSurfaceCreateInfoKHR surfaceCreateInfo = {};
        surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR;
        surfaceCreateInfo.connection = connection;
        surfaceCreateInfo.window = window;
        err = vkCreateXcbSurfaceKHR(instance, &surfaceCreateInfo, nullptr, &surface);

        // Get available queue family properties
        uint32_t queueCount;
        vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
        assert(queueCount >= 1);

        std::vector<VkQueueFamilyProperties> queueProps(queueCount);
        vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());

        // Iterate over each queue to learn whether it supports presenting:
        // Find a queue with present support
        // Will be used to present the swap chain images to the windowing system
        std::vector<VkBool32> supportsPresent(queueCount);
        for (uint32_t i = 0; i < queueCount; i++)
        {
            fpGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, i, surface, &supportsPresent[i]);
        }

        // Search for a graphics and a present queue in the array of queue
        // families, try to find one that supports both
        uint32_t graphicsQueueNodeIndex = UINT32_MAX;
        uint32_t presentQueueNodeIndex = UINT32_MAX;
        for (uint32_t i = 0; i < queueCount; i++)
        {
            if ((queueProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0)
            {
                if (graphicsQueueNodeIndex == UINT32_MAX)
                {
                    graphicsQueueNodeIndex = i;
                }

                if (supportsPresent[i] == VK_TRUE)
                {
                    graphicsQueueNodeIndex = i;
                    presentQueueNodeIndex = i;
                    break;
                }
            }
        }
        if (presentQueueNodeIndex == UINT32_MAX)
        {
            // If there's no queue that supports both present and graphics
            // try to find a separate present queue
            for (uint32_t i = 0; i < queueCount; ++i)
            {
                if (supportsPresent[i] == VK_TRUE)
                {
                    presentQueueNodeIndex = i;
                    break;
                }
            }
        }

        // Exit if either a graphics or a presenting queue hasn't been found
        if (graphicsQueueNodeIndex == UINT32_MAX || presentQueueNodeIndex == UINT32_MAX)
        {
            feather::vulkan::tools::exitFatal("Could not find a graphics and/or presenting queue!", "Fatal error");
        }

        // todo : Add support for separate graphics and presenting queue
        if (graphicsQueueNodeIndex != presentQueueNodeIndex)
        {
            feather::vulkan::tools::exitFatal("Separate graphics and presenting queues are not supported yet!", "Fatal error");
        }

        queueNodeIndex = graphicsQueueNodeIndex;

        // Get list of supported surface formats
        uint32_t formatCount;
        err = fpGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, &formatCount, NULL);
        assert(!err);
        assert(formatCount > 0);

        std::vector<VkSurfaceFormatKHR> surfaceFormats(formatCount);
        err = fpGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, &formatCount, surfaceFormats.data());
        assert(!err);

        // If the surface format list only includes one entry with VK_FORMAT_UNDEFINED,
        // there is no preferered format, so we assume VK_FORMAT_B8G8R8A8_UNORM
        if ((formatCount == 1) && (surfaceFormats[0].format == VK_FORMAT_UNDEFINED))
        {
            colorFormat = VK_FORMAT_B8G8R8A8_UNORM;
        }
        else
        {
            // Always select the first available color format
            // If you need a specific format (e.g. SRGB) you'd need to
            // iterate over the list of available surface format and
            // check for it's presence
            colorFormat = surfaceFormats[0].format;
        }
        colorSpace = surfaceFormats[0].colorSpace;
    }