Exemple #1
0
ExpressionLayout * GlobalContext::expressionLayoutForSymbol(const Symbol * symbol) {
  if (symbol->isMatrixSymbol()) {
    int index = symbolIndex(symbol);
    if (m_matrixLayout[index] == nullptr && m_matrixExpressions[index] != nullptr) {
      m_matrixLayout[index] = m_matrixExpressions[index]->createLayout();
    }
    return m_matrixLayout[index];
  }
  return nullptr;
}
Exemple #2
0
/**
 * Returns the index where the `key` is stored in `info`, or returns `-1` if
 * not found.
 */
static zint infoFind(SymbolTableInfo *info, zvalue key) {
    zint arraySize = info->arraySize;
    zmapping *array = info->array;
    zint index = symbolIndex(key) % arraySize;

    for (int i = 0; i < DAT_SYMTAB_MAX_PROBES; i++) {
        zvalue foundKey = array[index].key;
        if (foundKey == NULL) {
            // As keys are never deleted, `NULL` means that we can't possibly
            // find the key at a later index.
            return -1;
        } else if (key == foundKey) {
            return index;
        }

        index = (index + 1) % arraySize;
    }

    return -1;
}
Exemple #3
0
void GlobalContext::setExpressionForSymbolName(const Expression * expression, const Symbol * symbol, Context & context) {
  int index = symbolIndex(symbol);
 if (symbol->isMatrixSymbol()) {
    int indexMatrix = symbol->name() - (char)Symbol::SpecialSymbols::M0;
    assert(indexMatrix >= 0 && indexMatrix < k_maxNumberOfMatrixExpressions);
    Expression * evaluation = expression ? expression->approximate<double>(context) : nullptr; // evaluate before deleting anything (to be able to evaluate M1+2->M1)
    if (m_matrixExpressions[indexMatrix] != nullptr) {
      delete m_matrixExpressions[indexMatrix];
      m_matrixExpressions[indexMatrix] = nullptr;
    }
    if (m_matrixLayout[indexMatrix] != nullptr) {
      delete m_matrixLayout[indexMatrix];
      m_matrixLayout[indexMatrix] = nullptr;
    }
    if (evaluation != nullptr) {
      if (evaluation->type() == Expression::Type::Complex) {
        m_matrixExpressions[indexMatrix] = new Matrix(&evaluation, 1, 1, false);
      } else {
        m_matrixExpressions[indexMatrix] = static_cast<Matrix *>(evaluation);
      }
    }
    return;
  }
  if (index < 0 || index >= k_maxNumberOfScalarExpressions) {
    return;
  }
  Expression * evaluation = expression ? expression->approximate<double>(context) : nullptr; // evaluate before deleting anything (to be able to evaluate A+2->A)
  if (m_expressions[index] != nullptr) {
    delete m_expressions[index];
    m_expressions[index] = nullptr;
  }
  if (evaluation == nullptr) {
    return;
  }
  if (evaluation->type() == Expression::Type::Complex) {
    m_expressions[index] = static_cast<Complex<double> *>(evaluation);
  } else {
    m_expressions[index] = new Complex<double>(Complex<double>::Float(NAN));
    delete evaluation;
  }
}
Exemple #4
0
/**
 * Mutates an instance, putting a mapping into it, possibly reallocating it
 * (hence the pointer arguments). As a minor convenience, this function
 * returns early (doing nothing) if given `NULL` for `elem.key`.
 */
static void putInto(zvalue *result, SymbolTableInfo **info, zmapping elem) {
    if (elem.key == NULL) {
        return;
    }

    zint arraySize = (*info)->arraySize;
    zmapping *array = (*info)->array;
    zint index = symbolIndex(elem.key) % arraySize;

    for (int i = 0; i < DAT_SYMTAB_MAX_PROBES; i++) {
        zvalue foundKey = array[index].key;
        if (foundKey == NULL) {
            array[index] = elem;
            (*info)->size++;
            return;
        } else if (foundKey == elem.key) {
            // Update a pre-existing mapping for the key.
            array[index].value = elem.value;
            return;
        }

        index = (index + 1) % arraySize;
    }

    // Too many collisions! Reallocate, and then add the originally-requested
    // pair.

    zvalue newResult = allocInstance(arraySize);  // This grows `array`.
    SymbolTableInfo *newInfo = getInfo(newResult);

    for (int i = 0; i < arraySize; i++) {
        putInto(&newResult, &newInfo, array[i]);
    }

    putInto(&newResult, &newInfo, elem);

    *result = newResult;
    *info = newInfo;
}
Exemple #5
0
const Expression * GlobalContext::expressionForSymbol(const Symbol * symbol) {
  if (symbol->name() == Ion::Charset::SmallPi) {
    return &m_pi;
  }
  if (symbol->name() == Ion::Charset::Exponential) {
    return &m_e;
  }
  if (symbol->name() == Ion::Charset::IComplex) {
    return &m_i;
  }
  int index = symbolIndex(symbol);
  if (symbol->isMatrixSymbol()) {
    return m_matrixExpressions[index];
  }
  if (index < 0 || index >= k_maxNumberOfScalarExpressions) {
    return nullptr;
  }
  if (m_expressions[index] == nullptr) {
    return defaultExpression();
  }
  return m_expressions[index];
}
patternSymbolIndex symbolChooser::getSymbol(const triC& color,
                                            int symbolDim) {

  const QRgb rgbColor = color.qrgb();
  symbolDimension_ = symbolDim;
  if (symbolMap_.contains(rgbColor)) {
    if (symbolMap_[rgbColor].borderWidth() == borderDimension_ &&
        symbolMap_[rgbColor].symbolDimension() == symbolDimension_) {
      return symbolMap_[rgbColor];
    }
    else { // right symbol, wrong size
      const int index = symbolMap_[rgbColor].index();
      patternSymbolIndex symbolIndex(createSymbol(index, rgbColor),
                                     index, borderDimension_,
                                     symbolDimension_);
      symbolMap_.insert(rgbColor, symbolIndex);
      return symbolIndex;
    }
  }
  else {
    return createNewSymbolCurDims(rgbColor);
  }
}