static void __allocate_data_blocks(struct inode *inode, loff_t offset,
							size_t count)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct dnode_of_data dn;
	u64 start = F2FS_BYTES_TO_BLK(offset);
	u64 len = F2FS_BYTES_TO_BLK(count);
	bool allocated;
	u64 end_offset;

	while (len) {
		f2fs_balance_fs(sbi);
		f2fs_lock_op(sbi);

		/* When reading holes, we need its node page */
		set_new_dnode(&dn, inode, NULL, NULL, 0);
		if (get_dnode_of_data(&dn, start, ALLOC_NODE))
			goto out;

		allocated = false;
		end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));

		while (dn.ofs_in_node < end_offset && len) {
			block_t blkaddr;

			if (unlikely(f2fs_cp_error(sbi)))
				goto sync_out;

			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
			if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
				if (__allocate_data_block(&dn))
					goto sync_out;
				allocated = true;
			}
			len--;
			start++;
			dn.ofs_in_node++;
		}

		if (allocated)
			sync_inode_page(&dn);

		f2fs_put_dnode(&dn);
		f2fs_unlock_op(sbi);
	}
	return;

sync_out:
	if (allocated)
		sync_inode_page(&dn);
	f2fs_put_dnode(&dn);
out:
	f2fs_unlock_op(sbi);
	return;
}
Exemple #2
0
int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
{
	int nr_free = 0, ofs = dn->ofs_in_node;
	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
	struct f2fs_node *raw_node;
	__le32 *addr;

	raw_node = F2FS_NODE(dn->node_page);
	addr = blkaddr_in_node(raw_node) + ofs;

	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
		block_t blkaddr = le32_to_cpu(*addr);
		if (blkaddr == NULL_ADDR)
			continue;

		dn->data_blkaddr = NULL_ADDR;
		set_data_blkaddr(dn);
		f2fs_update_extent_cache(dn);
		invalidate_blocks(sbi, blkaddr);
		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
			clear_inode_flag(F2FS_I(dn->inode),
						FI_FIRST_BLOCK_WRITTEN);
		nr_free++;
	}
	if (nr_free) {
		dec_valid_block_count(sbi, dn->inode, nr_free);
		set_page_dirty(dn->node_page);
		sync_inode_page(dn);
	}
	dn->ofs_in_node = ofs;

	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
					 dn->ofs_in_node, nr_free);
	return nr_free;
}
Exemple #3
0
/*
 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
 * release ipage in this function.
 */
static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
				struct f2fs_inline_dentry *inline_dentry)
{
	struct page *page;
	struct dnode_of_data dn;
	struct f2fs_dentry_block *dentry_blk;
	int err;

	page = grab_cache_page(dir->i_mapping, 0);
	if (!page) {
		f2fs_put_page(ipage, 1);
		return -ENOMEM;
	}

	set_new_dnode(&dn, dir, ipage, NULL, 0);
	err = f2fs_reserve_block(&dn, 0);
	if (err)
		goto out;

	f2fs_wait_on_page_writeback(page, DATA);
	zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);

	dentry_blk = kmap_atomic(page);

	/* copy data from inline dentry block to new dentry block */
	memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
					INLINE_DENTRY_BITMAP_SIZE);
	memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
			SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
	/*
	 * we do not need to zero out remainder part of dentry and filename
	 * field, since we have used bitmap for marking the usage status of
	 * them, besides, we can also ignore copying/zeroing reserved space
	 * of dentry block, because them haven't been used so far.
	 */
	memcpy(dentry_blk->dentry, inline_dentry->dentry,
			sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
	memcpy(dentry_blk->filename, inline_dentry->filename,
					NR_INLINE_DENTRY * F2FS_SLOT_LEN);

	kunmap_atomic(dentry_blk);
	SetPageUptodate(page);
	set_page_dirty(page);

	/* clear inline dir and flag after data writeback */
	truncate_inline_inode(ipage, 0);

	stat_dec_inline_dir(dir);
	clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);

	if (i_size_read(dir) < PAGE_CACHE_SIZE) {
		i_size_write(dir, PAGE_CACHE_SIZE);
		set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
	}

	sync_inode_page(&dn);
out:
	f2fs_put_page(page, 1);
	return err;
}
static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
                                   struct f2fs_inline_dentry *inline_dentry)
{
    struct page *page;
    struct dnode_of_data dn;
    struct f2fs_dentry_block *dentry_blk;
    int err;

    page = grab_cache_page(dir->i_mapping, 0);
    if (!page)
        return -ENOMEM;

    set_new_dnode(&dn, dir, ipage, NULL, 0);
    err = f2fs_reserve_block(&dn, 0);
    if (err)
        goto out;

    f2fs_wait_on_page_writeback(page, DATA);
    zero_user_segment(page, 0, PAGE_CACHE_SIZE);

    dentry_blk = kmap_atomic(page);

    /* copy data from inline dentry block to new dentry block */
    memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
           INLINE_DENTRY_BITMAP_SIZE);
    memcpy(dentry_blk->dentry, inline_dentry->dentry,
           sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
    memcpy(dentry_blk->filename, inline_dentry->filename,
           NR_INLINE_DENTRY * F2FS_SLOT_LEN);

    kunmap_atomic(dentry_blk);
    SetPageUptodate(page);
    set_page_dirty(page);

    /* clear inline dir and flag after data writeback */
    truncate_inline_inode(ipage, 0);

    stat_dec_inline_dir(dir);
    clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);

    if (i_size_read(dir) < PAGE_CACHE_SIZE) {
        i_size_write(dir, PAGE_CACHE_SIZE);
        set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
    }

    sync_inode_page(&dn);
out:
    f2fs_put_page(page, 1);
    return err;
}
Exemple #5
0
int reserve_new_block(struct dnode_of_data *dn)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);

    if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
        return -EPERM;
    if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
        return -ENOSPC;

    trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);

    dn->data_blkaddr = NEW_ADDR;
    set_data_blkaddr(dn);
    mark_inode_dirty(dn->inode);
    sync_inode_page(dn);
    return 0;
}
Exemple #6
0
int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
	struct f2fs_node *raw_node;
	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
	__le32 *addr;

	raw_node = F2FS_NODE(dn->node_page);
	addr = blkaddr_in_node(raw_node) + ofs;

	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
		block_t blkaddr = le32_to_cpu(*addr);
		if (blkaddr == NULL_ADDR)
			continue;

		dn->data_blkaddr = NULL_ADDR;
		set_data_blkaddr(dn);
		invalidate_blocks(sbi, blkaddr);
		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
			clear_inode_flag(F2FS_I(dn->inode),
						FI_FIRST_BLOCK_WRITTEN);
		nr_free++;
	}

	if (nr_free) {
		pgoff_t fofs;
		/*
		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
		 * we will invalidate all blkaddr in the whole range.
		 */
		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
						F2FS_I(dn->inode)) + ofs;
		f2fs_update_extent_cache_range(dn, fofs, 0, len);
		dec_valid_block_count(sbi, dn->inode, nr_free);
		set_page_dirty(dn->node_page);
		sync_inode_page(dn);
	}
	dn->ofs_in_node = ofs;

	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
					 dn->ofs_in_node, nr_free);
	return nr_free;
}
Exemple #7
0
static int __f2fs_convert_inline_data(struct inode *inode, struct page *page)
{
	int err;
	struct page *ipage;
	struct dnode_of_data dn;
	void *src_addr, *dst_addr;
	block_t new_blk_addr;
	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
	struct f2fs_io_info fio = {
		.type = DATA,
		.rw = WRITE_SYNC | REQ_PRIO,
	};

	f2fs_lock_op(sbi);
	ipage = get_node_page(sbi, inode->i_ino);
	if (IS_ERR(ipage))
		return PTR_ERR(ipage);

	/*
	 * i_addr[0] is not used for inline data,
	 * so reserving new block will not destroy inline data
	 */
	set_new_dnode(&dn, inode, ipage, NULL, 0);
	err = f2fs_reserve_block(&dn, 0);
	if (err) {
		f2fs_unlock_op(sbi);
		return err;
	}

	zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);

	/* Copy the whole inline data block */
	src_addr = inline_data_addr(ipage);
	dst_addr = kmap(page);
	memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
	kunmap(page);
	SetPageUptodate(page);

	/* write data page to try to make data consistent */
	set_page_writeback(page);
	write_data_page(page, &dn, &new_blk_addr, &fio);
	update_extent_cache(new_blk_addr, &dn);
	f2fs_wait_on_page_writeback(page, DATA);

	/* clear inline data and flag after data writeback */
	zero_user_segment(ipage, INLINE_DATA_OFFSET,
				 INLINE_DATA_OFFSET + MAX_INLINE_DATA);
	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
	stat_dec_inline_inode(inode);

	sync_inode_page(&dn);
	f2fs_put_dnode(&dn);
	f2fs_unlock_op(sbi);
	return err;
}

int f2fs_convert_inline_data(struct inode *inode, pgoff_t to_size)
{
	struct page *page;
	int err;

	if (!f2fs_has_inline_data(inode))
		return 0;
	else if (to_size <= MAX_INLINE_DATA)
		return 0;

	page = grab_cache_page_write_begin(inode->i_mapping, 0, AOP_FLAG_NOFS);
	if (!page)
		return -ENOMEM;

	err = __f2fs_convert_inline_data(inode, page);
	f2fs_put_page(page, 1);
	return err;
}

int f2fs_write_inline_data(struct inode *inode,
			   struct page *page, unsigned size)
{
	void *src_addr, *dst_addr;
	struct page *ipage;
	struct dnode_of_data dn;
	int err;

	set_new_dnode(&dn, inode, NULL, NULL, 0);
	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
	if (err)
		return err;
	ipage = dn.inode_page;

	zero_user_segment(ipage, INLINE_DATA_OFFSET,
				 INLINE_DATA_OFFSET + MAX_INLINE_DATA);
	src_addr = kmap(page);
	dst_addr = inline_data_addr(ipage);
	memcpy(dst_addr, src_addr, size);
	kunmap(page);

	/* Release the first data block if it is allocated */
	if (!f2fs_has_inline_data(inode)) {
		truncate_data_blocks_range(&dn, 1);
		set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
		stat_inc_inline_inode(inode);
	}

	sync_inode_page(&dn);
	f2fs_put_dnode(&dn);

	return 0;
}
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
{
    void *src_addr, *dst_addr;
    struct f2fs_io_info fio = {
        .sbi = F2FS_I_SB(dn->inode),
        .type = DATA,
        .rw = WRITE_SYNC | REQ_PRIO,
        .page = page,
        .encrypted_page = NULL,
    };
    int dirty, err;

    f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);

    if (!f2fs_exist_data(dn->inode))
        goto clear_out;

    err = f2fs_reserve_block(dn, 0);
    if (err)
        return err;

    f2fs_wait_on_page_writeback(page, DATA);

    if (PageUptodate(page))
        goto no_update;

    zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);

    /* Copy the whole inline data block */
    src_addr = inline_data_addr(dn->inode_page);
    dst_addr = kmap_atomic(page);
    memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
    flush_dcache_page(page);
    kunmap_atomic(dst_addr);
    SetPageUptodate(page);
no_update:
    set_page_dirty(page);

    /* clear dirty state */
    dirty = clear_page_dirty_for_io(page);

    /* write data page to try to make data consistent */
    set_page_writeback(page);
    fio.blk_addr = dn->data_blkaddr;
    write_data_page(dn, &fio);
    set_data_blkaddr(dn);
    f2fs_update_extent_cache(dn);
    f2fs_wait_on_page_writeback(page, DATA);
    if (dirty)
        inode_dec_dirty_pages(dn->inode);

    /* this converted inline_data should be recovered. */
    set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);

    /* clear inline data and flag after data writeback */
    truncate_inline_inode(dn->inode_page, 0);
clear_out:
    stat_dec_inline_inode(dn->inode);
    f2fs_clear_inline_inode(dn->inode);
    sync_inode_page(dn);
    f2fs_put_dnode(dn);
    return 0;
}

int f2fs_convert_inline_inode(struct inode *inode)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
    struct dnode_of_data dn;
    struct page *ipage, *page;
    int err = 0;

    page = grab_cache_page(inode->i_mapping, 0);
    if (!page)
        return -ENOMEM;

    f2fs_lock_op(sbi);

    ipage = get_node_page(sbi, inode->i_ino);
    if (IS_ERR(ipage)) {
        err = PTR_ERR(ipage);
        goto out;
    }

    set_new_dnode(&dn, inode, ipage, ipage, 0);

    if (f2fs_has_inline_data(inode))
        err = f2fs_convert_inline_page(&dn, page);

    f2fs_put_dnode(&dn);
out:
    f2fs_unlock_op(sbi);

    f2fs_put_page(page, 1);
    return err;
}

int f2fs_write_inline_data(struct inode *inode, struct page *page)
{
    void *src_addr, *dst_addr;
    struct dnode_of_data dn;
    int err;

    set_new_dnode(&dn, inode, NULL, NULL, 0);
    err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
    if (err)
        return err;

    if (!f2fs_has_inline_data(inode)) {
        f2fs_put_dnode(&dn);
        return -EAGAIN;
    }

    f2fs_bug_on(F2FS_I_SB(inode), page->index);

    f2fs_wait_on_page_writeback(dn.inode_page, NODE);
    src_addr = kmap_atomic(page);
    dst_addr = inline_data_addr(dn.inode_page);
    memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
    kunmap_atomic(src_addr);

    set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
    set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);

    sync_inode_page(&dn);
    f2fs_put_dnode(&dn);
    return 0;
}
Exemple #9
0
/*
 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
 * f2fs_map_blocks structure.
 * If original data blocks are allocated, then give them to blockdev.
 * Otherwise,
 *     a. preallocate requested block addresses
 *     b. do not use extent cache for better performance
 *     c. give the block addresses to blockdev
 */
static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
                           int create, int flag)
{
    unsigned int maxblocks = map->m_len;
    struct dnode_of_data dn;
    int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
    pgoff_t pgofs, end_offset;
    int err = 0, ofs = 1;
    struct extent_info ei;
    bool allocated = false;

    map->m_len = 0;
    map->m_flags = 0;

    /* it only supports block size == page size */
    pgofs =	(pgoff_t)map->m_lblk;

    if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
        map->m_pblk = ei.blk + pgofs - ei.fofs;
        map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
        map->m_flags = F2FS_MAP_MAPPED;
        goto out;
    }

    if (create)
        f2fs_lock_op(F2FS_I_SB(inode));

    /* When reading holes, we need its node page */
    set_new_dnode(&dn, inode, NULL, NULL, 0);
    err = get_dnode_of_data(&dn, pgofs, mode);
    if (err) {
        if (err == -ENOENT)
            err = 0;
        goto unlock_out;
    }
    if (dn.data_blkaddr == NEW_ADDR) {
        if (flag == F2FS_GET_BLOCK_BMAP) {
            err = -ENOENT;
            goto put_out;
        } else if (flag == F2FS_GET_BLOCK_READ ||
                   flag == F2FS_GET_BLOCK_DIO) {
            goto put_out;
        }
        /*
         * if it is in fiemap call path (flag = F2FS_GET_BLOCK_FIEMAP),
         * mark it as mapped and unwritten block.
         */
    }

    if (dn.data_blkaddr != NULL_ADDR) {
        map->m_flags = F2FS_MAP_MAPPED;
        map->m_pblk = dn.data_blkaddr;
        if (dn.data_blkaddr == NEW_ADDR)
            map->m_flags |= F2FS_MAP_UNWRITTEN;
    } else if (create) {
        err = __allocate_data_block(&dn);
        if (err)
            goto put_out;
        allocated = true;
        map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
        map->m_pblk = dn.data_blkaddr;
    } else {
        if (flag == F2FS_GET_BLOCK_BMAP)
            err = -ENOENT;
        goto put_out;
    }

    end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
    map->m_len = 1;
    dn.ofs_in_node++;
    pgofs++;

get_next:
    if (dn.ofs_in_node >= end_offset) {
        if (allocated)
            sync_inode_page(&dn);
        allocated = false;
        f2fs_put_dnode(&dn);

        set_new_dnode(&dn, inode, NULL, NULL, 0);
        err = get_dnode_of_data(&dn, pgofs, mode);
        if (err) {
            if (err == -ENOENT)
                err = 0;
            goto unlock_out;
        }

        if (dn.data_blkaddr == NEW_ADDR &&
                flag != F2FS_GET_BLOCK_FIEMAP)
            goto put_out;

        end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
    }

    if (maxblocks > map->m_len) {
        block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
        if (blkaddr == NULL_ADDR && create) {
            err = __allocate_data_block(&dn);
            if (err)
                goto sync_out;
            allocated = true;
            map->m_flags |= F2FS_MAP_NEW;
            blkaddr = dn.data_blkaddr;
        }
        /* Give more consecutive addresses for the readahead */
        if ((map->m_pblk != NEW_ADDR &&
                blkaddr == (map->m_pblk + ofs)) ||
                (map->m_pblk == NEW_ADDR &&
                 blkaddr == NEW_ADDR)) {
            ofs++;
            dn.ofs_in_node++;
            pgofs++;
            map->m_len++;
            goto get_next;
        }
    }
sync_out:
    if (allocated)
        sync_inode_page(&dn);
put_out:
    f2fs_put_dnode(&dn);
unlock_out:
    if (create)
        f2fs_unlock_op(F2FS_I_SB(inode));
out:
    trace_f2fs_map_blocks(inode, map, err);
    return err;
}
Exemple #10
0
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
                            loff_t pos, unsigned len, unsigned flags,
                            struct page **pagep, void **fsdata)
{
    struct inode *inode = mapping->host;
    struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
    struct page *page = NULL;
    struct page *ipage;
    pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
    struct dnode_of_data dn;
    int err = 0;

    trace_f2fs_write_begin(inode, pos, len, flags);

    f2fs_balance_fs(sbi);

    /*
     * We should check this at this moment to avoid deadlock on inode page
     * and #0 page. The locking rule for inline_data conversion should be:
     * lock_page(page #0) -> lock_page(inode_page)
     */
    if (index != 0) {
        err = f2fs_convert_inline_inode(inode);
        if (err)
            goto fail;
    }
repeat:
    page = grab_cache_page_write_begin(mapping, index, flags);
    if (!page) {
        err = -ENOMEM;
        goto fail;
    }

    *pagep = page;

    f2fs_lock_op(sbi);

    /* check inline_data */
    ipage = get_node_page(sbi, inode->i_ino);
    if (IS_ERR(ipage)) {
        err = PTR_ERR(ipage);
        goto unlock_fail;
    }

    set_new_dnode(&dn, inode, ipage, ipage, 0);

    if (f2fs_has_inline_data(inode)) {
        if (pos + len <= MAX_INLINE_DATA) {
            read_inline_data(page, ipage);
            set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
            sync_inode_page(&dn);
            goto put_next;
        }
        err = f2fs_convert_inline_page(&dn, page);
        if (err)
            goto put_fail;
    }

    err = f2fs_get_block(&dn, index);
    if (err)
        goto put_fail;
put_next:
    f2fs_put_dnode(&dn);
    f2fs_unlock_op(sbi);

    f2fs_wait_on_page_writeback(page, DATA);

    if (len == PAGE_CACHE_SIZE)
        goto out_update;
    if (PageUptodate(page))
        goto out_clear;

    if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
        unsigned start = pos & (PAGE_CACHE_SIZE - 1);
        unsigned end = start + len;

        /* Reading beyond i_size is simple: memset to zero */
        zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
        goto out_update;
    }

    if (dn.data_blkaddr == NEW_ADDR) {
        zero_user_segment(page, 0, PAGE_CACHE_SIZE);
    } else {
        struct f2fs_io_info fio = {
            .sbi = sbi,
            .type = DATA,
            .rw = READ_SYNC,
            .blk_addr = dn.data_blkaddr,
            .page = page,
            .encrypted_page = NULL,
        };
        err = f2fs_submit_page_bio(&fio);
        if (err)
            goto fail;

        lock_page(page);
        if (unlikely(!PageUptodate(page))) {
            err = -EIO;
            goto fail;
        }
        if (unlikely(page->mapping != mapping)) {
            f2fs_put_page(page, 1);
            goto repeat;
        }

        /* avoid symlink page */
        if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
            err = f2fs_decrypt_one(inode, page);
            if (err)
                goto fail;
        }
    }
out_update:
    SetPageUptodate(page);
out_clear:
    clear_cold_data(page);
    return 0;

put_fail:
    f2fs_put_dnode(&dn);
unlock_fail:
    f2fs_unlock_op(sbi);
fail:
    f2fs_put_page(page, 1);
    f2fs_write_failed(mapping, pos + len);
    return err;
}

static int f2fs_write_end(struct file *file,
                          struct address_space *mapping,
                          loff_t pos, unsigned len, unsigned copied,
                          struct page *page, void *fsdata)
{
    struct inode *inode = page->mapping->host;

    trace_f2fs_write_end(inode, pos, len, copied);

    set_page_dirty(page);

    if (pos + copied > i_size_read(inode)) {
        i_size_write(inode, pos + copied);
        mark_inode_dirty(inode);
        update_inode_page(inode);
    }

    f2fs_put_page(page, 1);
    return copied;
}

static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
                           loff_t offset)
{
    unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;

    if (offset & blocksize_mask)
        return -EINVAL;

    if (iov_iter_alignment(iter) & blocksize_mask)
        return -EINVAL;

    return 0;
}
Exemple #11
0
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
	struct inode *inode = file->f_mapping->host;
	struct f2fs_inode_info *fi = F2FS_I(inode);
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	nid_t ino = inode->i_ino;
	int ret = 0;
	bool need_cp = false;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = LONG_MAX,
		.for_reclaim = 0,
	};

	if (unlikely(f2fs_readonly(inode->i_sb)))
		return 0;

	trace_f2fs_sync_file_enter(inode);

	/* if fdatasync is triggered, let's do in-place-update */
	if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
		set_inode_flag(fi, FI_NEED_IPU);
	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
	clear_inode_flag(fi, FI_NEED_IPU);

	if (ret) {
		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
		return ret;
	}

	/* if the inode is dirty, let's recover all the time */
	if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) {
		update_inode_page(inode);
		goto go_write;
	}

	/*
	 * if there is no written data, don't waste time to write recovery info.
	 */
	if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
			!exist_written_data(sbi, ino, APPEND_INO)) {

		/* it may call write_inode just prior to fsync */
		if (need_inode_page_update(sbi, ino))
			goto go_write;

		if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
				exist_written_data(sbi, ino, UPDATE_INO))
			goto flush_out;
		goto out;
	}
go_write:
	/* guarantee free sections for fsync */
	f2fs_balance_fs(sbi);

	/*
	 * Both of fdatasync() and fsync() are able to be recovered from
	 * sudden-power-off.
	 */
	down_read(&fi->i_sem);
	need_cp = need_do_checkpoint(inode);
	up_read(&fi->i_sem);

	if (need_cp) {
		/* all the dirty node pages should be flushed for POR */
		ret = f2fs_sync_fs(inode->i_sb, 1);

		/*
		 * We've secured consistency through sync_fs. Following pino
		 * will be used only for fsynced inodes after checkpoint.
		 */
		try_to_fix_pino(inode);
		goto out;
	}
sync_nodes:
	sync_node_pages(sbi, ino, &wbc);

	/* if cp_error was enabled, we should avoid infinite loop */
	if (unlikely(f2fs_cp_error(sbi)))
		goto out;

	if (need_inode_block_update(sbi, ino)) {
		mark_inode_dirty_sync(inode);
		f2fs_write_inode(inode, NULL);
		goto sync_nodes;
	}

	ret = wait_on_node_pages_writeback(sbi, ino);
	if (ret)
		goto out;

	/* once recovery info is written, don't need to tack this */
	remove_dirty_inode(sbi, ino, APPEND_INO);
	clear_inode_flag(fi, FI_APPEND_WRITE);
flush_out:
	remove_dirty_inode(sbi, ino, UPDATE_INO);
	clear_inode_flag(fi, FI_UPDATE_WRITE);
	ret = f2fs_issue_flush(sbi);
out:
	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
	f2fs_trace_ios(NULL, NULL, 1);
	return ret;
}

static pgoff_t __get_first_dirty_index(struct address_space *mapping,
						pgoff_t pgofs, int whence)
{
	struct pagevec pvec;
	int nr_pages;

	if (whence != SEEK_DATA)
		return 0;

	/* find first dirty page index */
	pagevec_init(&pvec, 0);
	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
					PAGECACHE_TAG_DIRTY, 1);
	pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
	pagevec_release(&pvec);
	return pgofs;
}

static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
							int whence)
{
	switch (whence) {
	case SEEK_DATA:
		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
			return true;
		break;
	case SEEK_HOLE:
		if (blkaddr == NULL_ADDR)
			return true;
		break;
	}
	return false;
}

static inline int unsigned_offsets(struct file *file)
{
	return file->f_mode & FMODE_UNSIGNED_OFFSET;
}

static loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize)
{
	if (offset < 0 && !unsigned_offsets(file))
		return -EINVAL;
	if (offset > maxsize)
		return -EINVAL;

	if (offset != file->f_pos) {
		file->f_pos = offset;
		file->f_version = 0;
	}
	return offset;
}

static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
{
	struct inode *inode = file->f_mapping->host;
	loff_t maxbytes = inode->i_sb->s_maxbytes;
	struct dnode_of_data dn;
	pgoff_t pgofs, end_offset, dirty;
	loff_t data_ofs = offset;
	loff_t isize;
	int err = 0;

	mutex_lock(&inode->i_mutex);

	isize = i_size_read(inode);
	if (offset >= isize)
		goto fail;

	/* handle inline data case */
	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
		if (whence == SEEK_HOLE)
			data_ofs = isize;
		goto found;
	}

	pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);

	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);

	for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
		set_new_dnode(&dn, inode, NULL, NULL, 0);
		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
		if (err && err != -ENOENT) {
			goto fail;
		} else if (err == -ENOENT) {
			/* direct node does not exists */
			if (whence == SEEK_DATA) {
				pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
							F2FS_I(inode));
				continue;
			} else {
				goto found;
			}
		}

		end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));

		/* find data/hole in dnode block */
		for (; dn.ofs_in_node < end_offset;
				dn.ofs_in_node++, pgofs++,
				data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
			block_t blkaddr;
			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);

			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
				f2fs_put_dnode(&dn);
				goto found;
			}
		}
		f2fs_put_dnode(&dn);
	}

	if (whence == SEEK_DATA)
		goto fail;
found:
	if (whence == SEEK_HOLE && data_ofs > isize)
		data_ofs = isize;
	mutex_unlock(&inode->i_mutex);
	return vfs_setpos(file, data_ofs, maxbytes);
fail:
	mutex_unlock(&inode->i_mutex);
	return -ENXIO;
}

static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
{
	struct inode *inode = file->f_mapping->host;
	loff_t maxbytes = inode->i_sb->s_maxbytes;

	switch (whence) {
	case SEEK_SET:
	case SEEK_CUR:
	case SEEK_END:
		return generic_file_llseek_size(file, offset, whence,
						maxbytes, i_size_read(inode));
	case SEEK_DATA:
	case SEEK_HOLE:
		if (offset < 0)
			return -ENXIO;
		return f2fs_seek_block(file, offset, whence);
	}

	return -EINVAL;
}

static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct inode *inode = file_inode(file);

	/* we don't need to use inline_data strictly */
	if (f2fs_has_inline_data(inode)) {
		int err = f2fs_convert_inline_inode(inode);
		if (err)
			return err;
	}

	file_accessed(file);
	vma->vm_ops = &f2fs_file_vm_ops;
	return 0;
}

int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
{
	int nr_free = 0, ofs = dn->ofs_in_node;
	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
	struct f2fs_node *raw_node;
	__le32 *addr;

	raw_node = F2FS_NODE(dn->node_page);
	addr = blkaddr_in_node(raw_node) + ofs;

	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
		block_t blkaddr = le32_to_cpu(*addr);
		if (blkaddr == NULL_ADDR)
			continue;

		dn->data_blkaddr = NULL_ADDR;
		update_extent_cache(dn);
		invalidate_blocks(sbi, blkaddr);
		nr_free++;
	}
	if (nr_free) {
		dec_valid_block_count(sbi, dn->inode, nr_free);
		set_page_dirty(dn->node_page);
		sync_inode_page(dn);
	}
	dn->ofs_in_node = ofs;

	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
					 dn->ofs_in_node, nr_free);
	return nr_free;
}
Exemple #12
0
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
		loff_t pos, unsigned len, unsigned flags,
		struct page **pagep, void **fsdata)
{
	struct inode *inode = mapping->host;
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct page *page = NULL;
	struct page *ipage;
	pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
	struct dnode_of_data dn;
	int err = 0;

	trace_f2fs_write_begin(inode, pos, len, flags);

	f2fs_balance_fs(sbi);

	/*
	 * We should check this at this moment to avoid deadlock on inode page
	 * and #0 page. The locking rule for inline_data conversion should be:
	 * lock_page(page #0) -> lock_page(inode_page)
	 */
	if (index != 0) {
		err = f2fs_convert_inline_inode(inode);
		if (err)
			goto fail;
	}
repeat:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page) {
		err = -ENOMEM;
		goto fail;
	}

	*pagep = page;

	f2fs_lock_op(sbi);

	/* check inline_data */
	ipage = get_node_page(sbi, inode->i_ino);
	if (IS_ERR(ipage)) {
		err = PTR_ERR(ipage);
		goto unlock_fail;
	}

	set_new_dnode(&dn, inode, ipage, ipage, 0);

	if (f2fs_has_inline_data(inode)) {
		if (pos + len <= MAX_INLINE_DATA) {
			read_inline_data(page, ipage);
			set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
			sync_inode_page(&dn);
			goto put_next;
		}
		err = f2fs_convert_inline_page(&dn, page);
		if (err)
			goto put_fail;
	}

	err = f2fs_get_block(&dn, index);
	if (err)
		goto put_fail;
put_next:
	f2fs_put_dnode(&dn);
	f2fs_unlock_op(sbi);

	f2fs_wait_on_page_writeback(page, DATA);

	if (len == PAGE_CACHE_SIZE)
		goto out_update;
	if (PageUptodate(page))
		goto out_clear;

	if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
		unsigned start = pos & (PAGE_CACHE_SIZE - 1);
		unsigned end = start + len;

		/* Reading beyond i_size is simple: memset to zero */
		zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
		goto out_update;
	}

	if (dn.data_blkaddr == NEW_ADDR) {
		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
	} else {
		struct f2fs_io_info fio = {
			.sbi = sbi,
			.type = DATA,
			.rw = READ_SYNC,
			.blk_addr = dn.data_blkaddr,
			.page = page,
			.encrypted_page = NULL,
		};
		err = f2fs_submit_page_bio(&fio);
		if (err)
			goto fail;

		lock_page(page);
		if (unlikely(!PageUptodate(page))) {
			err = -EIO;
			goto fail;
		}
		if (unlikely(page->mapping != mapping)) {
			f2fs_put_page(page, 1);
			goto repeat;
		}

		/* avoid symlink page */
		if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
			err = f2fs_decrypt_one(inode, page);
			if (err)
				goto fail;
		}
	}
out_update:
	SetPageUptodate(page);
out_clear:
	clear_cold_data(page);
	return 0;

put_fail:
	f2fs_put_dnode(&dn);
unlock_fail:
	f2fs_unlock_op(sbi);
fail:
	f2fs_put_page(page, 1);
	f2fs_write_failed(mapping, pos + len);
	return err;
}

static int f2fs_write_end(struct file *file,
			struct address_space *mapping,
			loff_t pos, unsigned len, unsigned copied,
			struct page *page, void *fsdata)
{
	struct inode *inode = page->mapping->host;

	trace_f2fs_write_end(inode, pos, len, copied);

	set_page_dirty(page);

	if (pos + copied > i_size_read(inode)) {
		i_size_write(inode, pos + copied);
		mark_inode_dirty(inode);
		update_inode_page(inode);
	}

	f2fs_put_page(page, 1);
	return copied;
}

static ssize_t check_direct_IO(struct inode *inode, int rw,
		const struct iovec *iov, loff_t offset, unsigned long nr_segs)
{
	unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
	int seg, i;
	size_t size;
	unsigned long addr;
	ssize_t retval = -EINVAL;
	loff_t end = offset;

	if (offset & blocksize_mask)
		return -EINVAL;

	/* Check the memory alignment.  Blocks cannot straddle pages */
	for (seg = 0; seg < nr_segs; seg++) {
		addr = (unsigned long)iov[seg].iov_base;
		size = iov[seg].iov_len;
		end += size;
		if ((addr & blocksize_mask) || (size & blocksize_mask))
			goto out;

		/* If this is a write we don't need to check anymore */
		if (rw & WRITE)
			continue;

		/*
		 * Check to make sure we don't have duplicate iov_base's in this
		 * iovec, if so return EINVAL, otherwise we'll get csum errors
		 * when reading back.
		 */
		for (i = seg + 1; i < nr_segs; i++) {
			if (iov[seg].iov_base == iov[i].iov_base)
				goto out;
		}
	}
	retval = 0;
out:
	return retval;
}