Exemple #1
0
DECLARE_TEST( atomic, cas )
{
    int num_threads = 32;
    int ithread;
    object_t threads[32];
    cas_value_t cas_values[32];

    for( ithread = 0; ithread < num_threads; ++ithread )
    {
        threads[ithread] = thread_create( cas_thread, "cas", THREAD_PRIORITY_NORMAL, 0 );
        cas_values[ithread].val_32 = ithread;
        cas_values[ithread].val_64 = ithread;
        cas_values[ithread].val_ptr = (void*)(uintptr_t)ithread;
    }
    for( ithread = 0; ithread < num_threads; ++ithread )
        thread_start( threads[ithread], &cas_values[ithread] );

    test_wait_for_threads_startup( threads, num_threads );

    for( ithread = 0; ithread < num_threads; ++ithread )
        thread_destroy( threads[ithread] );

    test_wait_for_threads_exit( threads, num_threads );

    EXPECT_EQ( val_32, 0 );
    EXPECT_EQ( val_64, 0 );
    EXPECT_EQ( val_ptr, 0 );

    return 0;
}
Exemple #2
0
DECLARE_TEST( error, thread )
{
	//Launch 32 threads
	object_t thread[32];
	int i;

	for( i = 0; i < 32; ++i )
	{
		thread[i] = thread_create( error_thread, "error", THREAD_PRIORITY_NORMAL, 0 );
		thread_start( thread[i], 0 );
	}

	test_wait_for_threads_startup( thread, 32 );

	test_wait_for_threads_finish( thread, 32 );

	for( i = 0; i < 32; ++i )
	{
		EXPECT_EQ( thread_result( thread[i] ), 0 );
		thread_destroy( thread[i] );
	}

	test_wait_for_threads_exit( thread, 32 );

	return 0;
}
Exemple #3
0
DECLARE_TEST( mutex, sync )
{
	mutex_t* mutex;
	object_t thread[32];
	int ith;

	mutex = mutex_allocate( "test" );
	mutex_lock( mutex );

	for( ith = 0; ith < 32; ++ith )
	{
		thread[ith] = thread_create( mutex_thread, "mutex_thread", THREAD_PRIORITY_NORMAL, 0 );
		thread_start( thread[ith], mutex );
	}

	test_wait_for_threads_startup( thread, 32 );

	for( ith = 0; ith < 32; ++ith )
	{
		thread_terminate( thread[ith] );
		thread_destroy( thread[ith] );
	}

	mutex_unlock( mutex );

	test_wait_for_threads_exit( thread, 32 );

	mutex_deallocate( mutex );

	EXPECT_EQ( thread_counter, 32 * 128 );

	return 0;
}
Exemple #4
0
DECLARE_TEST( profile, thread )
{
	object_t thread[32];
	int ith;
	int frame;
	error_t err = error();

	_test_profile_offset = 0;
	atomic_store32( &_test_profile_output_counter, 0 );

	profile_initialize( "test_profile", _test_profile_buffer, 30000/*_test_profile_buffer_size*/ );
	profile_enable( true );
	profile_set_output_wait( 1 );

	log_info( HASH_TEST, "This test will intentionally run out of memory in profiling system" );
	for( ith = 0; ith < 32; ++ith )
	{
		thread[ith] = thread_create( _profile_fail_thread, "profile_thread", THREAD_PRIORITY_NORMAL, 0 );
		thread_start( thread[ith], 0 );
	}

	test_wait_for_threads_startup( thread, 32 );

	for( frame = 0; frame < 1000; ++frame )
	{
		thread_sleep( 16 );
		profile_end_frame( frame );
	}

	for( ith = 0; ith < 32; ++ith )
	{
		thread_terminate( thread[ith] );
		thread_destroy( thread[ith] );
		thread_yield();
	}

	test_wait_for_threads_exit( thread, 32 );

	thread_sleep( 1000 );

	profile_enable( false );
	profile_shutdown();

	err = error();

#if BUILD_ENABLE_PROFILE
	EXPECT_GT( atomic_load32( &_test_profile_output_counter ), 0 );
	//TODO: Implement parsing output results
#else
	EXPECT_EQ( atomic_load32( &_test_profile_output_counter ), 0 );
#endif
	EXPECT_EQ( err, ERROR_NONE );

	return 0;
}
Exemple #5
0
DECLARE_TEST( semaphore, threaded )
{
	object_t thread[32];
	int ith;
	int failed_waits;

	semaphore_test_t test;
	semaphore_initialize( &test.read, 0 );
	semaphore_initialize( &test.write, 0 );
	test.loopcount = 128;
	test.counter = 0;
	
	for( ith = 0; ith < 32; ++ith )
	{
		thread[ith] = thread_create( semaphore_waiter, "semaphore_waiter", THREAD_PRIORITY_NORMAL, 0 );
		thread_start( thread[ith], &test );
	}

	test_wait_for_threads_startup( thread, 32 );

	failed_waits = 0;
	for( ith = 0; ith < test.loopcount * 32; ++ith )
	{
		semaphore_post( &test.read );
		thread_yield();
		if( !semaphore_try_wait( &test.write, 200 ) )
		{
			failed_waits++;
			EXPECT_TRUE( semaphore_wait( &test.write ) );
		}
	}

	for( ith = 0; ith < 32; ++ith )
	{
		thread_terminate( thread[ith] );
		thread_destroy( thread[ith] );
		thread_yield();
	}

	test_wait_for_threads_exit( thread, 32 );

	EXPECT_EQ( test.counter, test.loopcount * 32 );
	EXPECT_EQ( failed_waits, 0 );

	semaphore_destroy( &test.read );
	semaphore_destroy( &test.write );
	
	return 0;
}
Exemple #6
0
DECLARE_TEST( uuid, threaded )
{
	object_t thread[32];
	int ith, i, jth, j;
	int num_threads = math_clamp( system_hardware_threads() + 1, 3, 32 );

	for( ith = 0; ith < num_threads; ++ith )
	{
		thread[ith] = thread_create( uuid_thread_time, "uuid_thread", THREAD_PRIORITY_NORMAL, 0 );
		thread_start( thread[ith], (void*)(uintptr_t)ith );
	}

	test_wait_for_threads_startup( thread, num_threads );
	
	for( ith = 0; ith < num_threads; ++ith )
	{
		thread_terminate( thread[ith] );
		thread_destroy( thread[ith] );
	}

	test_wait_for_threads_exit( thread, num_threads );

	for( ith = 0; ith < num_threads; ++ith )
	{
		for( i = 0; i < 8192; ++i )
		{
			for( jth = ith + 1; jth < num_threads; ++jth )
			{
				for( j = 0; j < 8192; ++j )
				{
					EXPECT_FALSE( uuid_equal( uuid_thread_store[ith][i], uuid_thread_store[jth][j] ) );
				}
			}
			for( j = i + 1; j < 8192; ++j )
			{
				EXPECT_FALSE( uuid_equal( uuid_thread_store[ith][i], uuid_thread_store[ith][j] ) );
			}
		}
	}
	
	return 0;
}
Exemple #7
0
DECLARE_TEST( mutex, signal )
{
	mutex_t* mutex;
	object_t thread[32];
	int ith;

	mutex = mutex_allocate( "test" );
	mutex_lock( mutex );

	for( ith = 0; ith < 32; ++ith )
	{
		thread[ith] = thread_create( thread_wait, "thread_wait", THREAD_PRIORITY_NORMAL, 0 );
		thread_start( thread[ith], mutex );
	}

	mutex_unlock( mutex );

	test_wait_for_threads_startup( thread, 32 );

	while( atomic_load32( &thread_waiting ) < 32 )
		thread_yield();
	thread_sleep( 1000 ); //Hack wait to give threads time to progress from atomic_incr to mutex_wait

	mutex_signal( mutex );

	for( ith = 0; ith < 32; ++ith )
	{
		thread_terminate( thread[ith] );
		thread_destroy( thread[ith] );
	}

	test_wait_for_threads_exit( thread, 32 );

	EXPECT_EQ( atomic_load32( &thread_waited ), 32 );

	EXPECT_FALSE( mutex_wait( mutex, 500 ) );

	mutex_deallocate( mutex );

	return 0;
}
Exemple #8
0
DECLARE_TEST( atomic, add )
{
    int num_threads = 32;
    int ithread;
    object_t threads[32];

    for( ithread = 0; ithread < num_threads; ++ithread )
        threads[ithread] = thread_create( add_thread, "add", THREAD_PRIORITY_NORMAL, 0 );
    for( ithread = 0; ithread < num_threads; ++ithread )
        thread_start( threads[ithread], 0 );

    test_wait_for_threads_startup( threads, num_threads );

    for( ithread = 0; ithread < num_threads; ++ithread )
        thread_destroy( threads[ithread] );

    test_wait_for_threads_exit( threads, num_threads );

    EXPECT_EQ( val_32, 0 );
    EXPECT_EQ( val_64, 0 );

    return 0;
}
Exemple #9
0
DECLARE_TEST( profile, stream )
{
	object_t thread[32];
	int ith;
	int frame;
	char* filename;

	error();

	filename = path_merge( environment_temporary_directory(), "test.profile" );
	log_infof( HASH_TEST, "Output to profile file: %s", filename );
	fs_make_directory( environment_temporary_directory() );
	_profile_stream = fs_open_file( filename, STREAM_OUT | STREAM_BINARY );
	string_deallocate( filename );

	profile_initialize( "test_profile", _test_profile_buffer, _test_profile_buffer_size );
	profile_set_output( _profile_file_writer );
	profile_set_output_wait( 10 );
	profile_enable( true );

	for( ith = 0; ith < 32; ++ith )
	{
		thread[ith] = thread_create( _profile_stream_thread, "profile_thread", THREAD_PRIORITY_NORMAL, 0 );
		thread_start( thread[ith], 0 );
	}

	test_wait_for_threads_startup( thread, 32 );

	for( frame = 0; frame < 1000; ++frame )
	{
		thread_sleep( 16 );
		profile_log( "This is a really long profile log line that should break into multiple profile blocks automatically without causing any issues whatsoever if everything works as expected which it should or the code needs to be fixed" );
		profile_end_frame( frame++ );
		if( ( frame % 30 ) == 0 )
		{
			profile_enable( false );
			thread_sleep( 10 );
			profile_enable( true );
		}
	}

	for( ith = 0; ith < 32; ++ith )
	{
		thread_terminate( thread[ith] );
		thread_destroy( thread[ith] );
		thread_yield();
	}

	test_wait_for_threads_exit( thread, 32 );

	profile_end_frame( frame++ );
	profile_set_output_wait( 100 );

	thread_sleep( 1000 );

	profile_enable( false );
	profile_shutdown();

	error();

	stream_deallocate( _profile_stream );

	//TODO: Validate that output is sane
	log_debugf( HASH_TEST, "Generated %lld blocks", atomic_load64( &_profile_generated_blocks ) );

	return 0;
}
Exemple #10
0
DECLARE_TEST( event, delay_threaded )
{
	object_t thread[32];
	producer_thread_arg_t args[32] = {0};
	event_stream_t* stream;
	event_block_t* block;
	event_t* event;
	tick_t endtime, curtime, payloadtime, begintime, prevtime;
	unsigned int read[32];
	int i;
	bool running = true;
	int num_threads = math_clamp( system_hardware_threads() * 4, 4, 32 );

	stream = event_stream_allocate( 0 );
	begintime = time_current();

	for( i = 0; i < num_threads; ++i )
	{
		args[i].stream = stream;
		args[i].end_time = time_current() + ( time_ticks_per_second() * 5 );
		args[i].max_delay = time_ticks_per_second() * 5;
		args[i].sleep_time = 50;
		args[i].id = i;

		read[i] = 0;
		thread[i] = thread_create( producer_thread, "event_producer", THREAD_PRIORITY_NORMAL, 0 );
		thread_start( thread[i], &args[i] );
	}

	test_wait_for_threads_startup( thread, num_threads );

	while( running )
	{
		running = false;

		for( i = 0; i < num_threads; ++i )
		{
			if( thread_is_running( thread[i] ) )
			{
				running = true;
				break;
			}
		}

		thread_yield();

		prevtime = begintime;
		begintime = time_current();
		block = event_stream_process( stream );
		event = event_next( block, 0 );
		curtime = time_current();

		while( event )
		{
			running = true;
			++read[ event->object ];
			memcpy( &payloadtime, event->payload, sizeof( tick_t ) );

			EXPECT_GE( event_payload_size( event ), 8 );
			EXPECT_LE( event_payload_size( event ), 256 );
			EXPECT_GE( payloadtime, prevtime );
			EXPECT_GE( curtime, payloadtime );

			event = event_next( block, event );
			curtime = time_current();
		}
	}

	endtime = time_current() + ( time_ticks_per_second() * 6 );
	do
	{
		prevtime = begintime;
		begintime = time_current();
		block = event_stream_process( stream );
		event = event_next( block, 0 );
		curtime = time_current();
		while( event )
		{
			++read[ event->object ];
			memcpy( &payloadtime, event->payload, sizeof( tick_t ) );

			EXPECT_GE( event_payload_size( event ), 8 );
			EXPECT_LE( event_payload_size( event ), 256 );
			EXPECT_GE( payloadtime, prevtime );
			EXPECT_GE( curtime, payloadtime );

			event = event_next( block, event );
			curtime = time_current();
		}

		thread_sleep( 10 );

	} while( time_current() < endtime );

	for( i = 0; i < num_threads; ++i )
	{
		unsigned int should_have_read = (unsigned int)((uintptr_t)thread_result( thread[i] ));
		EXPECT_EQ( read[i], should_have_read );
		thread_terminate( thread[i] );
		thread_destroy( thread[i] );
	}

	test_wait_for_threads_exit( thread, num_threads );

	event_stream_deallocate( stream );
	
	return 0;
}