int main(int argc, char *argv[]) { QCoreApplication a(argc, argv); Q_UNUSED(a) QImage inImage("lena.png"); inImage = inImage.convertToFormat(QImage::Format_Grayscale8); QImage outImage(inImage.size(), inImage.format()); QVector<int> gradient; QVector<int> direction; sobel(inImage, gradient, direction); QVector<int> thinned = thinning(inImage.width(), inImage.height(), gradient, direction); QVector<int> thresholded = threshold(75, 150, thinned); QVector<int> canny = hysteresis(inImage.width(), inImage.height(), thresholded); const int *iImg = canny.constData(); quint8 *oImg = outImage.bits(); int size = inImage.width() * inImage.height(); for (int i = 0; i < size; i++) oImg[i] = qBound(0, iImg[i], 255); outImage.save("canny.png"); return EXIT_SUCCESS; }
/** * This is an example on how to call the thinning function above. */ int main() { cv::Mat src = cv::imread("../test_image.png"); if (src.empty()) return -1; cv::Mat bw; cv::cvtColor(src, bw, CV_BGR2GRAY); cv::threshold(bw, bw, 10, 255, CV_THRESH_BINARY); const int N = 30; int64 time = 0; for (int i = 0; i < N; ++i) { cv::Mat bb = i < N - 1 ? bw.clone() : bw; int64 t = cvGetTickCount(); thinning(bb, false); time += (cvGetTickCount() - t); } printf("%f", time / cvGetTickFrequency() / N); //thinning(bw); cv::imshow("src", src); cv::imshow("dst", bw); cv::waitKey(0); return 0; }
Mat preProcess(Mat &img){ Mat res = Mat(img.rows, img.cols, CV_8UC1); blur( img, res, Size( 3, 3 ), Point(-1,-1) ); Mat aux = res.clone(); bilateralFilter ( aux, res, 5, 5*2, 5/2 ); aux = res.clone(); cv::GaussianBlur(aux, res, cv::Size(0, 0), 3); cv::addWeighted(aux, 1.5, res, -0.5, 0, res); //Filtro de Wiener cvWiener2ADP(res, res, 5, 5); //Binarizacao e Afinamento threshold(res, res, mediana(res), 255, THRESH_BINARY_INV); //Esqueletização thinning(res); /*namedWindow("Preprocess", CV_WINDOW_AUTOSIZE); imshow("Preprocess", res); waitKey(0);*/ return res; }
/* * detects straight lines in an image * * @param img the image to perform line detection on * * @return a vector with the cartesian coordinates of any detected line segments' endpoints * */ cv::vector<cv::Vec4i> ImageProcessor::lineDetection(cv::Mat & src){ //convert image to grayscale if not done already if(src.channels() > 1){ cv::cvtColor(src, src, CV_RGB2GRAY); } //convert image to a binary image cv::threshold(src, src, 10, 255, CV_THRESH_BINARY_INV); //thin out the lines thinning(src); //detect all straight lines in the image cv::vector<cv::Vec4i> lines; cv::HoughLinesP(src, lines, 1, CV_PI/180, 50, 50, 10 ); return lines; }
bool IPLCanny::processInputData(IPLImage* image , int, bool useOpenCV) { // delete previous result delete _result; _result = NULL; delete _binaryImage; _binaryImage = NULL; int width = image->width(); int height = image->height(); _result = new IPLImage( image->type(), width, height ); _binaryImage = new IPLImage( IPLData::IMAGE_BW, width, height ); // get properties int window = getProcessPropertyInt("window"); double sigma = getProcessPropertyDouble("sigma"); double lowThreshold = getProcessPropertyDouble("lowThreshold"); double highThreshold = getProcessPropertyDouble("highThreshold"); std::stringstream s; s << "Window: "; s << window; addInformation(s.str()); //! @todo currently only the opencv implementation works if(useOpenCV || true) { notifyProgressEventHandler(-1); cv::Mat input; cv::Mat output; cvtColor(image->toCvMat(), input, CV_BGR2GRAY); cv::Canny(input, output, lowThreshold*255, highThreshold*255, window); delete _result; _result = new IPLImage(output); return true; } return false; // Create a Gaussian 1D filter int N = ceil( sigma * sqrt( 2.0*log( 1.0/0.015 ) ) + 1.0 ); double ssq = sigma*sigma; double* gau = new double [window]; double* dgau = new double [window]; for( int k = -N; k <= N; ++k ) { gau[k+N] = gauss ( (double)k, ssq ); dgau[k+N] = dGauss ( (double)k, 0, ssq ); } // Create a directional derivative of 2D Gaussian (along X-axis) // Since the result is symmetric along X, we can get the derivative along // Y-axis simply by transposing the result for X direction. // DoubleImage* dgau = new DoubleImage( window, window ); // for( int y = -N; y <= N; ++y ) // for( int x = -N; x <= N; ++x ) // dgau->f(x+N, y+N) = dGauss( x, y, ssq ); int progress = 0; int maxProgress = width * image->getNumberOfPlanes(); int nrOfPlanes = image->getNumberOfPlanes(); //#pragma omp parallel for for( int planeNr=0; planeNr < nrOfPlanes; planeNr++ ) { IPLImagePlane* plane = image->plane( planeNr ); IPLImagePlane* newplane = _result->plane( planeNr ); // ******** Gaussian filtering of input image IPLImagePlane* gI = new IPLImagePlane( width, height ); // horizontal run (normalizing original image) IPLImagePlane* tmpI = new IPLImagePlane( width, height ); for(int x=0; x<width; x++) { // progress notifyProgressEventHandler(100*progress++/maxProgress); for(int y=0; y<height; y++) { double sum = 0; int i = 0; for( int kx=-N; kx<=N; kx++ ) { double img = (double) plane->bp(x+kx, y); sum += (img * gau[i++]); } tmpI->p(x,y) = (double) (sum); } } // vertiacl run for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { double sum = 0; int i = 0; for( int ky=-N; ky<=N; ky++ ) { double img = tmpI->bp(x, y+ky); sum += (img * gau[i++]); } gI->p(x,y) = sum; } } //delete tmpI; // ******** Apply directional derivatives ... // ... in x-direction IPLImagePlane* dx = new IPLImagePlane( width, height ); for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { dx->p(x,y) = 0.0; for( int k=1; k<N; k++ ) { dx->p(x,y) += ( gI->bp(x-k,y) - gI->bp(x+k,y) ) * dgau[k]; } } } // double maxVal = 0.0; // for(int x=0; x<width; x++) // for(int y=0; y<height; y++) // if( dx->f(x,y) > maxVal ) maxVal = dx->f(x,y); // ... in y-direction IPLImagePlane* dy = new IPLImagePlane( width, height ); for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { dy->p(x,y) = 0.0; for( int k=1; k<N; k++ ) { dy->p(x,y) += ( gI->bp(x,y-k) - gI->bp(x,y+k) ) * dgau[k]; } } } // ******** Compute magnitude and binarization thresholds IPLImagePlane* mag = new IPLImagePlane( width, height ); double magMax = 0.0; double magMin = 999999999.0; for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { double val = sqrt( dx->p(x,y)*dx->p(x,y) + dy->p(x,y)*dy->p(x,y) ); mag->p(x,y) = val; if( val > magMax ) magMax = val; if( val < magMin ) magMin = val; } } //// ******** Non-maxima suppression - edge pixels should be a local maximum _orientedImage = new IPLOrientedImage( width, height ); for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { double ix = dx->p(x,y); double iy = dy->p(x,y); double g = mag->p(x,y); // determine 4-neighbor direction of gradient int dir4 = 0; if( (iy<=0.0 && ix>-iy) || (iy>=0.0 && ix<-iy) ) dir4 = 1; else if( (ix>0.0 && -iy>=ix) || (ix<0.0 && -iy<=ix) ) dir4 = 2; else if( (ix<=0.0 && ix>iy) || (ix>=0.0 && ix<iy) ) dir4 = 3; else if( (iy<0.0 && ix<=iy) || (iy>0.0 && ix>=iy) ) dir4 = 4; else continue; double gradmag1, gradmag2, d; switch(dir4) { case 1: d = std::fabs(iy/ix); gradmag1 = mag->bp(x+1,y)*(1-d) + mag->bp(x+1,y-1)*d; gradmag2 = mag->bp(x-1,y)*(1-d) + mag->bp(x-1,y+1)*d; break; case 2: d = std::fabs(ix/iy); gradmag1 = mag->bp(x,y-1)*(1-d) + mag->bp(x+1,y-1)*d; gradmag2 = mag->bp(x,y+1)*(1-d) + mag->bp(x-1,y+1)*d; break; case 3: d = std::fabs(ix/iy); gradmag1 = mag->bp(x,y-1)*(1-d) + mag->bp(x-1,y-1)*d; gradmag2 = mag->bp(x,y+1)*(1-d) + mag->bp(x+1,y+1)*d; break; case 4: d = std::fabs(iy/ix); gradmag1 = mag->bp(x-1,y)*(1-d) + mag->bp(x-1,y-1)*d; gradmag2 = mag->bp(x+1,y)*(1-d) + mag->bp(x+1,y+1)*d; break; } if( g > gradmag1 && g > gradmag2 ) { _orientedImage->magnitude(x,y) = g; _orientedImage->phase(x,y) = atan2(iy,ix); } } } for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { _orientedImage->magnitude(x,y) /= magMax; double val = _orientedImage->magnitude(x,y)*255.0; // double val = mag->f(x,y)/magMax*255.0; if (val > 255.0 ) val = 255.0; if (val < 0.0 ) val = 0.0; newplane->p(x,y) = (unsigned char ) val; } } // ******** Binarize with hysteresis threshold double hist[ 256 ]; for( int i=0; i<256; ++i ) hist[i] = 0; int pixCount = 0; for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { if( _orientedImage->magnitude(x,y) > 0.0 ) { int index = floor( _orientedImage->magnitude(x,y)*256.0+0.5 ); ++hist[ index ]; ++pixCount; } } } double PercentOfPixelsNotEdges = 0.7*pixCount; double highThresh = 0.0; double cumsum = 0.0; for( int i=0; i<256; ++i ) { cumsum += hist[i]; if( cumsum > PercentOfPixelsNotEdges ) { highThresh = (double)i / 256.0; break; } } double lowThresh = 0.4 * highThresh; IPLImagePlane* binPlane = _binaryImage->plane( 0 ); for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { if(_orientedImage->magnitude(x,y) >= highThresh) trace(x, y, lowThresh, _orientedImage, binPlane); } } //delete dx; //delete dy; //delete gI; thinning(_orientedImage, binPlane, newplane ); } //delete [] gau; //delete [] dgau; return true; }