Exemple #1
0
bool ide_wait( ide_device_info *device, int mask, int not_mask,
	bool check_err, bigtime_t timeout )
{
	ide_bus_info *bus = device->bus;
	bigtime_t start_time = system_time();

	while( 1 ) {
		bigtime_t elapsed_time;
		int status;

		cpu_spin( 1 );

		status = bus->controller->get_altstatus( bus->channel );

		if( (status & mask) == mask &&
			(status & not_mask) == 0 )
			return true;

		if( check_err && (status & ide_status_err) != 0 ) {
			set_sense( device, SCSIS_KEY_HARDWARE_ERROR, SCSIS_ASC_INTERNAL_FAILURE );
			return false;
		}

		elapsed_time = system_time() - start_time;

		if( elapsed_time > timeout ) {
			set_sense( device, SCSIS_KEY_HARDWARE_ERROR, SCSIS_ASC_LUN_TIMEOUT );
			return false;
		}

		if( elapsed_time > 3000 )
			thread_snooze( elapsed_time / 10 );
	}
}
Exemple #2
0
int xpt_flush_async( xpt_bus_info *bus )
{
	// this is so rarely used that I don't want to add extra overhead
	// to the service thread
	while( bus->dpc_list )
		thread_snooze( 10000 );
		
	return NO_ERROR;
}
Exemple #3
0
static void if_rx_thread(void *args)
{
    ifnet *i = args;
    cbuf *b;

    t_current_set_name("IF Recv");
#if IF_PRIO
    thread_set_priority(i->rx_thread, THREAD_MAX_RT_PRIORITY - 2);
#endif
    //if(i->fd < 0)        return -1;

    for(;;) {
        ssize_t len;

        //len = sys_read(i->fd, i->rx_buf, 0, sizeof(i->rx_buf));
        len = i->dev->dops.read(i->dev, i->rx_buf, sizeof(i->rx_buf));

#if 0||NET_CHATTY
        dprintf("if_rx_thread: got ethernet packet, size %ld\n", (long)len);
#endif
        if(len < 0) {
            thread_snooze(10000);
            continue;
        }
        if(len == 0)
            continue;

#if LOSE_RX_PACKETS
        if(rand() % 100 < LOSE_RX_PERCENTAGE) {
            dprintf("if_rx_thread: purposely lost packet, size %d\n", len);
            continue;
        }
#endif

        // check to see if we have a link layer address attached to us
        if(!i->link_addr) {
#if 1||NET_CHATTY
            dprintf("if_rx_thread: dumping packet because of no link address (%p)\n", i);
#endif
            continue;
        }

        // for now just move it over into a cbuf
        b = cbuf_get_chain(len);
        if(!b) {
            dprintf("if_rx_thread: could not allocate cbuf to hold ethernet packet\n");
            continue;
        }
        cbuf_memcpy_to_chain(b, 0, i->rx_buf, len);

        i->link_input(b, i);
    }

}
Exemple #4
0
static int if_rx_thread(void *args)
{
	ifnet *i = args;
	cbuf *b;

	if(i->fd < 0)
		return -1;

	for(;;) {
		ssize_t len;

		len = sys_read(i->fd, i->rx_buf, 0, sizeof(i->rx_buf));
#if NET_CHATTY
		dprintf("if_rx_thread: got ethernet packet, size %Ld\n", (long long)len);
#endif
		if(len < 0) {
			thread_snooze(10000);
			continue;
		}
		if(len == 0)
			continue;

#if LOSE_RX_PACKETS
		if(rand() % 100 < LOSE_RX_PERCENTAGE) {
			dprintf("if_rx_thread: purposely lost packet, size %d\n", len);
			continue;
		}
#endif

		// check to see if we have a link layer address attached to us
		if(!i->link_addr) {
#if NET_CHATTY
			dprintf("if_rx_thread: dumping packet because of no link address (%p)\n", i);
#endif
			continue;
		}

		// for now just move it over into a cbuf
		b = cbuf_get_chain(len);
		if(!b) {
			dprintf("if_rx_thread: could not allocate cbuf to hold ethernet packet\n");
			continue;
		}
		cbuf_memcpy_to_chain(b, 0, i->rx_buf, len);

		i->link_input(b, i);
	}

	return 0;
}
Exemple #5
0
int rhine_init(rhine *r)
{
	bigtime_t time;
	int err = -1;
	addr_t temp;
	int i;

	dprintf("rhine_init: r %p\n", r);

	r->region = vm_map_physical_memory(vm_get_kernel_aspace_id(), "rhine_region", (void **)&r->virt_base,
		REGION_ADDR_ANY_ADDRESS, r->phys_size, LOCK_KERNEL|LOCK_RW, r->phys_base);
	if(r->region < 0) {
		dprintf("rhine_init: error creating memory mapped region\n");
		err = -1;
		goto err;
	}
	dprintf("rhine mapped at address 0x%lx\n", r->virt_base);

	/* create regions for tx and rx descriptors */
	r->rxdesc_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rhine_rxdesc", (void **)&r->rxdesc,
		REGION_ADDR_ANY_ADDRESS, RXDESC_COUNT * sizeof(struct rhine_rx_desc), REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);
	r->rxdesc_phys = vtophys(r->rxdesc);
	dprintf("rhine: rx descriptors at %p, phys 0x%x\n", r->rxdesc, r->rxdesc_phys);
	r->txdesc_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rhine_txdesc", (void **)&r->txdesc,
		REGION_ADDR_ANY_ADDRESS, TXDESC_COUNT * sizeof(struct rhine_tx_desc), REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);
	r->txdesc_phys = vtophys(r->txdesc);
	dprintf("rhine: tx descriptors at %p, phys 0x%x\n", r->txdesc, r->txdesc_phys);
	r->reg_spinlock = 0;

	/* stick all rx and tx buffers in a circular buffer */
	for (i=0; i < RXDESC_COUNT; i++) {
		RXDESC(r, i).status = 0;
		RXDESC(r, i).framelen = 0;
		RXDESC(r, i).buflen = 0;
		RXDESC(r, i).ptr = 0;
		if (i == RXDESC_COUNT-1)
			RXDESC(r, i).next = RXDESC_PHYS(r, 0);
		else
			RXDESC(r, i).next = RXDESC_PHYS(r, i + 1);
	}
	// XXX do same for tx


	r->rx_head = r->rx_tail = 0;

	/* reset the chip */
	time = system_time();
	RHINE_WRITE_16(r, RHINE_CR0, 0x8000); // reset the chip
	do {
		thread_snooze(10000); // 10ms
		if(system_time() - time > 1000000) {
			break;
		}
	} while(RHINE_READ_16(r, RHINE_CR0) & 0x8000);

	if (RHINE_READ_16(r, RHINE_CR0) & 0x8000) {
		dprintf("chip didn't reset, trying alternate method\n");
		RHINE_SETBITS_8(r, RHINE_MISC_CR1, 0x40);
		thread_snooze(10000);
	}

	/* read in the mac address */
	RHINE_WRITE_8(r, RHINE_EECSR, RHINE_READ_8(r, RHINE_EECSR) | (1<<5));
	r->mac_addr[0] = RHINE_READ_8(r, RHINE_PAR0); 
	r->mac_addr[1] = RHINE_READ_8(r, RHINE_PAR1);
   	r->mac_addr[2] = RHINE_READ_8(r, RHINE_PAR2);
	r->mac_addr[3] = RHINE_READ_8(r, RHINE_PAR3);
   	r->mac_addr[4] = RHINE_READ_8(r, RHINE_PAR4);
   	r->mac_addr[5] = RHINE_READ_8(r, RHINE_PAR5);
  	dprintf("rhine: mac addr %x:%x:%x:%x:%x:%x\n",
  		r->mac_addr[0], r->mac_addr[1], r->mac_addr[2],
  		r->mac_addr[3], r->mac_addr[4], r->mac_addr[5]);

	/* set up the rx state */
	/* 64 byte fifo threshold, all physical/broadcast/multicast/small/error packets accepted */
	RHINE_WRITE_8(r, RHINE_RCR, (0<<5) | (1<<4) | (1<<3) | (1<<2) | (1<<1) | (1<<0));
	RHINE_WRITE_32(r, RHINE_RDA0, RXDESC_PHYS(r, r->rx_head));

	/* set up tx state */
	/* 64 byte fifo, default backup, default loopback mode */
	RHINE_WRITE_8(r, RHINE_TCR, 0);

	/* mask all interrupts */
	RHINE_WRITE_16(r, RHINE_IMR0, 0);

	/* clear all pending interrupts */
	RHINE_WRITE_16(r, RHINE_ISR0, 0xffff);
	
	/* set up the interrupt handler */
	int_set_io_interrupt_handler(r->irq, &rhine_int, r, "rhine");

	{
		static uint8 buf[2048];
		RXDESC(r, r->rx_tail).ptr = vtophys(buf);
		RXDESC(r, r->rx_tail).buflen = sizeof(buf);
		RXDESC(r, r->rx_tail).status = 0;
		RXDESC(r, r->rx_tail).framelen = RHINE_RX_OWNER;
		r->rx_tail++;

		RHINE_WRITE_16(r, RHINE_CR0, (1<<1) | (1<<3) | (1<<6));
	}

	/* unmask all interrupts */
	RHINE_WRITE_16(r, RHINE_IMR0, 0xffff);	

#if 0
	// try to reset the device
 	time = system_time();
	RTL_WRITE_8(r, RT_CHIPCMD, RT_CMD_RESET);
	do {
		thread_snooze(10000); // 10ms
		if(system_time() - time > 1000000) {
			err = -1;
			goto err1;
		}
	} while((RTL_READ_8(r, RT_CHIPCMD) & RT_CMD_RESET));

	// create a rx and tx buf
	r->rxbuf_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rhine_rxbuf", (void **)&r->rxbuf,
		REGION_ADDR_ANY_ADDRESS, 64*1024 + 16, REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);
	r->txbuf_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rhine_txbuf", (void **)&r->txbuf,
		REGION_ADDR_ANY_ADDRESS, 8*1024, REGION_WIRING_WIRED, LOCK_KERNEL|LOCK_RW);

	// set up the transmission buf and sem
	r->tx_sem = sem_create(4, "rhine_txsem");
	mutex_init(&r->lock, "rhine");
	r->txbn = 0;
	r->last_txbn = 0;
	r->rx_sem = sem_create(0, "rhine_rxsem");
	r->reg_spinlock = 0;

	// set up the interrupt handler
	int_set_io_interrupt_handler(r->irq, &rhine_int, r, "rhine");

	// read the mac address
	r->mac_addr[0] = RTL_READ_8(r, RT_IDR0);
	r->mac_addr[1] = RTL_READ_8(r, RT_IDR0 + 1);
	r->mac_addr[2] = RTL_READ_8(r, RT_IDR0 + 2);
	r->mac_addr[3] = RTL_READ_8(r, RT_IDR0 + 3);
  	r->mac_addr[4] = RTL_READ_8(r, RT_IDR0 + 4);
  	r->mac_addr[5] = RTL_READ_8(r, RT_IDR0 + 5);

  	dprintf("rhine: mac addr %x:%x:%x:%x:%x:%x\n",
  		r->mac_addr[0], r->mac_addr[1], r->mac_addr[2],
  		r->mac_addr[3], r->mac_addr[4], r->mac_addr[5]);

	// enable writing to the config registers
	RTL_WRITE_8(r, RT_CFG9346, 0xc0);

	// reset config 1
	RTL_WRITE_8(r, RT_CONFIG1, 0);

	// Enable receive and transmit functions
	RTL_WRITE_8(r, RT_CHIPCMD, RT_CMD_RX_ENABLE | RT_CMD_TX_ENABLE);

	// Set Rx FIFO threashold to 256, Rx size to 64k+16, 256 byte DMA burst
	RTL_WRITE_32(r, RT_RXCONFIG, 0x00009c00);

	// Set Tx 256 byte DMA burst
	RTL_WRITE_32(r, RT_TXCONFIG, 0x03000400);

	// Turn off lan-wake and set the driver-loaded bit
	RTL_WRITE_8(r, RT_CONFIG1, (RTL_READ_8(r, RT_CONFIG1) & ~0x30) | 0x20);

	// Enable FIFO auto-clear
	RTL_WRITE_8(r, RT_CONFIG4, RTL_READ_8(r, RT_CONFIG4) | 0x80);

	// go back to normal mode
	RTL_WRITE_8(r, RT_CFG9346, 0);

	// Setup RX buffers
	*(int *)r->rxbuf = 0;
	vm_get_page_mapping(vm_get_kernel_aspace_id(), r->rxbuf, &temp);
	dprintf("rx buffer will be at 0x%lx\n", temp);
	RTL_WRITE_32(r, RT_RXBUF, temp);

	// Setup TX buffers
	dprintf("tx buffer (virtual) is at 0x%lx\n", r->txbuf);
	*(int *)r->txbuf = 0;
	vm_get_page_mapping(vm_get_kernel_aspace_id(), r->txbuf, &temp);
	RTL_WRITE_32(r, RT_TXADDR0, temp);
	RTL_WRITE_32(r, RT_TXADDR1, temp + 2*1024);
	dprintf("first half of txbuf at 0x%lx\n", temp);
	*(int *)(r->txbuf + 4*1024) = 0;
	vm_get_page_mapping(vm_get_kernel_aspace_id(), r->txbuf + 4*1024, &temp);
	RTL_WRITE_32(r, RT_TXADDR2, temp);
	RTL_WRITE_32(r, RT_TXADDR3, temp + 2*1024);
	dprintf("second half of txbuf at 0x%lx\n", temp);

/*
	RTL_WRITE_32(r, RT_TXSTATUS0, RTL_READ_32(r, RT_TXSTATUS0) | 0xfffff000);
	RTL_WRITE_32(r, RT_TXSTATUS1, RTL_READ_32(r, RT_TXSTATUS1) | 0xfffff000);
	RTL_WRITE_32(r, RT_TXSTATUS2, RTL_READ_32(r, RT_TXSTATUS2) | 0xfffff000);
	RTL_WRITE_32(r, RT_TXSTATUS3, RTL_READ_32(r, RT_TXSTATUS3) | 0xfffff000);
*/
	// Reset RXMISSED counter
	RTL_WRITE_32(r, RT_RXMISSED, 0);

	// Enable receiving broadcast and physical match packets
//	RTL_WRITE_32(r, RT_RXCONFIG, RTL_READ_32(r, RT_RXCONFIG) | 0x0000000a);
	RTL_WRITE_32(r, RT_RXCONFIG, RTL_READ_32(r, RT_RXCONFIG) | 0x0000000f);

	// Filter out all multicast packets
	RTL_WRITE_32(r, RT_MAR0, 0);
	RTL_WRITE_32(r, RT_MAR0 + 4, 0);

	// Disable all multi-interrupts
	RTL_WRITE_16(r, RT_MULTIINTR, 0);

	RTL_WRITE_16(r, RT_INTRMASK, MYRT_INTS);
//	RTL_WRITE_16(r, RT_INTRMASK, 0x807f);

	// Enable RX/TX once more
	RTL_WRITE_8(r, RT_CHIPCMD, RT_CMD_RX_ENABLE | RT_CMD_TX_ENABLE);

	RTL_WRITE_8(r, RT_CFG9346, 0);
#endif

	return 0;

err1:
	vm_delete_region(vm_get_kernel_aspace_id(), r->region);
err:
	return err;
}
Exemple #6
0
int rtl8169_init(rtl8169 *r)
{
	bigtime_t time;
	int err = -1;
	addr_t temp;
	int i;

	SHOW_FLOW(2, "rtl8169_init: r %p\n", r);

	r->region = vm_map_physical_memory(vm_get_kernel_aspace_id(), "rtl8169_region", (void **)&r->virt_base,
		REGION_ADDR_ANY_ADDRESS, r->phys_size, LOCK_KERNEL|LOCK_RW, r->phys_base);
	if(r->region < 0) {
		SHOW_ERROR0(1, "rtl8169_init: error creating memory mapped region\n");
		err = -1;
		goto err;
	}
	SHOW_INFO(2, "rtl8169 mapped at address 0x%lx\n", r->virt_base);

	/* create regions for tx and rx descriptors */
	r->rxdesc_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rtl8169_rxdesc", (void **)&r->rxdesc,
		REGION_ADDR_ANY_ADDRESS, NUM_RX_DESCRIPTORS * DESCRIPTOR_LEN, REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);
	r->rxdesc_phys = vtophys(r->rxdesc);
	SHOW_INFO(2, "rtl8169: rx descriptors at %p, phys 0x%x\n", r->rxdesc, r->rxdesc_phys);
	r->txdesc_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rtl8169_txdesc", (void **)&r->txdesc,
		REGION_ADDR_ANY_ADDRESS, NUM_TX_DESCRIPTORS * DESCRIPTOR_LEN, REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);
	r->txdesc_phys = vtophys(r->txdesc);
	SHOW_INFO(2, "rtl8169: tx descriptors at %p, phys 0x%x\n", r->txdesc, r->txdesc_phys);
	r->reg_spinlock = 0;

	/* create a large tx and rx buffer for the descriptors to point to */
	r->rxbuf_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rtl8169_rxbuf", (void **)&r->rxbuf,
			REGION_ADDR_ANY_ADDRESS, NUM_RX_DESCRIPTORS * BUFSIZE_PER_FRAME, REGION_WIRING_WIRED, LOCK_KERNEL|LOCK_RW);
	r->txbuf_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rtl8169_txbuf", (void **)&r->txbuf,
			REGION_ADDR_ANY_ADDRESS, NUM_TX_DESCRIPTORS * BUFSIZE_PER_FRAME, REGION_WIRING_WIRED, LOCK_KERNEL|LOCK_RW);

	/* create a receive sem */
	r->rx_sem = sem_create(0, "rtl8169 rx_sem");

	/* transmit sem */
	r->tx_sem = sem_create(1, "rtl8169 tx_sem");

	/* reset the chip */
	time = system_time();
	RTL_WRITE_8(r, REG_CR, (1<<4)); // reset the chip, disable tx/rx
	do {
		thread_snooze(10000); // 10ms
		if(system_time() - time > 1000000) {
			break;
		}
	} while(RTL_READ_8(r, REG_CR) & (1<<4));

	/* read in the mac address */
	r->mac_addr[0] = RTL_READ_8(r, REG_IDR0); 
	r->mac_addr[1] = RTL_READ_8(r, REG_IDR1);
   	r->mac_addr[2] = RTL_READ_8(r, REG_IDR2);
	r->mac_addr[3] = RTL_READ_8(r, REG_IDR3);
   	r->mac_addr[4] = RTL_READ_8(r, REG_IDR4);
   	r->mac_addr[5] = RTL_READ_8(r, REG_IDR5);
  	SHOW_INFO(2, "rtl8169: mac addr %x:%x:%x:%x:%x:%x\n",
  		r->mac_addr[0], r->mac_addr[1], r->mac_addr[2],
  		r->mac_addr[3], r->mac_addr[4], r->mac_addr[5]);

	/* some voodoo from BSD driver */
	RTL_WRITE_16(r, REG_CCR, RTL_READ_16(r, REG_CCR));
	RTL_SETBITS_16(r, REG_CCR, 0x3);

	/* mask all interrupts */
	RTL_WRITE_16(r, REG_IMR, 0);

	/* set up the tx/rx descriptors */
	rtl8169_setup_descriptors(r);

	/* enable tx/rx */
	RTL_SETBITS_8(r, REG_CR, (1<<3)|(1<<2));

	/* set up the rx state */
	/* 1024 byte dma threshold, 1024 dma max burst, CRC calc 8 byte+, accept all packets */
	RTL_WRITE_32(r, REG_RCR, (1<<16) | (6<<13) | (6<<8) | (0xf << 0)); 
	RTL_SETBITS_16(r, REG_CCR, (1<<5)); // rx checksum enable
	RTL_WRITE_16(r, REG_RMS, 1518); // rx mtu

	/* set up the tx state */
	RTL_WRITE_32(r, REG_TCR, (RTL_READ_32(r, REG_TCR) & ~0x1ff) | (6<<8)); // 1024 max burst dma
	RTL_WRITE_8(r, REG_MTPS, 0x3f); // max tx packet size (must be careful to not actually transmit more than mtu)

	/* set up the interrupt handler */
	int_set_io_interrupt_handler(r->irq, &rtl8169_int, r, "rtl8169");

	/* clear all pending interrupts */
	RTL_WRITE_16(r, REG_ISR, 0xffff);
	
	/* unmask interesting interrupts */
	RTL_WRITE_16(r, REG_IMR, IMR_SYSERR | IMR_LINKCHG | IMR_TER | IMR_TOK | IMR_RER | IMR_ROK | IMR_RXOVL);

	return 0;

err1:
	vm_delete_region(vm_get_kernel_aspace_id(), r->region);
err:
	return err;
}
Exemple #7
0
int rtl8139_init(rtl8139 *rtl)
{
	bigtime_t time;
	int err = -1;
	addr_t temp;

	dprintf("rtl8139_init: rtl %p\n", rtl);

	rtl->region = vm_map_physical_memory(vm_get_kernel_aspace_id(), "rtl8139_region", (void **)&rtl->virt_base,
		REGION_ADDR_ANY_ADDRESS, rtl->phys_size, LOCK_KERNEL|LOCK_RW, rtl->phys_base);
	if(rtl->region < 0) {
		dprintf("rtl8139_init: error creating memory mapped region\n");
		err = -1;
		goto err;
	}
	dprintf("rtl8139 mapped at address 0x%lx\n", rtl->virt_base);

	// try to reset the device
 	time = system_time();
	RTL_WRITE_8(rtl, RT_CHIPCMD, RT_CMD_RESET);
	do {
		thread_snooze(10000); // 10ms
		if(system_time() - time > 1000000) {
			err = -1;
			goto err1;
		}
	} while((RTL_READ_8(rtl, RT_CHIPCMD) & RT_CMD_RESET));

	// create a rx and tx buf
	rtl->rxbuf_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rtl8139_rxbuf", (void **)&rtl->rxbuf,
		REGION_ADDR_ANY_ADDRESS, 64*1024 + 16, REGION_WIRING_WIRED_CONTIG, LOCK_KERNEL|LOCK_RW);
	rtl->txbuf_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "rtl8139_txbuf", (void **)&rtl->txbuf,
		REGION_ADDR_ANY_ADDRESS, 8*1024, REGION_WIRING_WIRED, LOCK_KERNEL|LOCK_RW);

	// set up the transmission buf and sem
	rtl->tx_sem = sem_create(4, "rtl8139_txsem");
	mutex_init(&rtl->lock, "rtl8139");
	rtl->txbn = 0;
	rtl->last_txbn = 0;
	rtl->rx_sem = sem_create(0, "rtl8139_rxsem");
	rtl->reg_spinlock = 0;

	// set up the interrupt handler
	int_set_io_interrupt_handler(rtl->irq, &rtl8139_int, rtl, "rtl8139");

	// read the mac address
	rtl->mac_addr[0] = RTL_READ_8(rtl, RT_IDR0);
	rtl->mac_addr[1] = RTL_READ_8(rtl, RT_IDR0 + 1);
	rtl->mac_addr[2] = RTL_READ_8(rtl, RT_IDR0 + 2);
	rtl->mac_addr[3] = RTL_READ_8(rtl, RT_IDR0 + 3);
  	rtl->mac_addr[4] = RTL_READ_8(rtl, RT_IDR0 + 4);
  	rtl->mac_addr[5] = RTL_READ_8(rtl, RT_IDR0 + 5);

  	dprintf("rtl8139: mac addr %x:%x:%x:%x:%x:%x\n",
  		rtl->mac_addr[0], rtl->mac_addr[1], rtl->mac_addr[2],
  		rtl->mac_addr[3], rtl->mac_addr[4], rtl->mac_addr[5]);

	// enable writing to the config registers
	RTL_WRITE_8(rtl, RT_CFG9346, 0xc0);

	// reset config 1
	RTL_WRITE_8(rtl, RT_CONFIG1, 0);

	// Enable receive and transmit functions
	RTL_WRITE_8(rtl, RT_CHIPCMD, RT_CMD_RX_ENABLE | RT_CMD_TX_ENABLE);

	// Set Rx FIFO threashold to 256, Rx size to 64k+16, 256 byte DMA burst
	RTL_WRITE_32(rtl, RT_RXCONFIG, 0x00009c00);

	// Set Tx 256 byte DMA burst
	RTL_WRITE_32(rtl, RT_TXCONFIG, 0x03000400);

	// Turn off lan-wake and set the driver-loaded bit
	RTL_WRITE_8(rtl, RT_CONFIG1, (RTL_READ_8(rtl, RT_CONFIG1) & ~0x30) | 0x20);

	// Enable FIFO auto-clear
	RTL_WRITE_8(rtl, RT_CONFIG4, RTL_READ_8(rtl, RT_CONFIG4) | 0x80);

	// go back to normal mode
	RTL_WRITE_8(rtl, RT_CFG9346, 0);

	// Setup RX buffers
	*(int *)rtl->rxbuf = 0;
	vm_get_page_mapping(vm_get_kernel_aspace_id(), rtl->rxbuf, &temp);
	dprintf("rx buffer will be at 0x%lx\n", temp);
	RTL_WRITE_32(rtl, RT_RXBUF, temp);

	// Setup TX buffers
	dprintf("tx buffer (virtual) is at 0x%lx\n", rtl->txbuf);
	*(int *)rtl->txbuf = 0;
	vm_get_page_mapping(vm_get_kernel_aspace_id(), rtl->txbuf, &temp);
	RTL_WRITE_32(rtl, RT_TXADDR0, temp);
	RTL_WRITE_32(rtl, RT_TXADDR1, temp + 2*1024);
	dprintf("first half of txbuf at 0x%lx\n", temp);
	*(int *)(rtl->txbuf + 4*1024) = 0;
	vm_get_page_mapping(vm_get_kernel_aspace_id(), rtl->txbuf + 4*1024, &temp);
	RTL_WRITE_32(rtl, RT_TXADDR2, temp);
	RTL_WRITE_32(rtl, RT_TXADDR3, temp + 2*1024);
	dprintf("second half of txbuf at 0x%lx\n", temp);

/*
	RTL_WRITE_32(rtl, RT_TXSTATUS0, RTL_READ_32(rtl, RT_TXSTATUS0) | 0xfffff000);
	RTL_WRITE_32(rtl, RT_TXSTATUS1, RTL_READ_32(rtl, RT_TXSTATUS1) | 0xfffff000);
	RTL_WRITE_32(rtl, RT_TXSTATUS2, RTL_READ_32(rtl, RT_TXSTATUS2) | 0xfffff000);
	RTL_WRITE_32(rtl, RT_TXSTATUS3, RTL_READ_32(rtl, RT_TXSTATUS3) | 0xfffff000);
*/
	// Reset RXMISSED counter
	RTL_WRITE_32(rtl, RT_RXMISSED, 0);

	// Enable receiving broadcast and physical match packets
//	RTL_WRITE_32(rtl, RT_RXCONFIG, RTL_READ_32(rtl, RT_RXCONFIG) | 0x0000000a);
	RTL_WRITE_32(rtl, RT_RXCONFIG, RTL_READ_32(rtl, RT_RXCONFIG) | 0x0000000f);

	// Filter out all multicast packets
	RTL_WRITE_32(rtl, RT_MAR0, 0);
	RTL_WRITE_32(rtl, RT_MAR0 + 4, 0);

	// Disable all multi-interrupts
	RTL_WRITE_16(rtl, RT_MULTIINTR, 0);

	RTL_WRITE_16(rtl, RT_INTRMASK, MYRT_INTS);
//	RTL_WRITE_16(rtl, RT_INTRMASK, 0x807f);

	// Enable RX/TX once more
	RTL_WRITE_8(rtl, RT_CHIPCMD, RT_CMD_RX_ENABLE | RT_CMD_TX_ENABLE);

	RTL_WRITE_8(rtl, RT_CFG9346, 0);

	return 0;

err1:
	vm_delete_region(vm_get_kernel_aspace_id(), rtl->region);
err:
	return err;
}
Exemple #8
0
// we need a device to store sense information
// (we could just take device 0, but this were not fair if the reset
// was done because of a device 1 failure)
bool reset_bus( ide_device_info *device )
{
	ide_bus_info *bus = device->bus;
	ide_controller_interface *controller = bus->controller;
	ide_channel_cookie channel = bus->channel;

	SHOW_FLOW0( 3, "" );

	// activate srst signal for 5 µs
	reset_timeouts( device );
	reset_timeouts( device->other_device );
	//set_irq_state( device, ide_irq_state_ignore );

	SHOW_FLOW0( 3, "1" );

	if( controller->write_device_control( channel,
		ide_devctrl_nien | ide_devctrl_srst | ide_devctrl_bit3 ) != NO_ERROR )
		goto err0;

	SHOW_FLOW0( 3, "2" );

	cpu_spin( 5 );
	if( controller->write_device_control( channel,
		ide_devctrl_nien | ide_devctrl_bit3 ) != NO_ERROR )
		goto err0;

	SHOW_FLOW0( 3, "3" );

	// let devices wake up
	thread_snooze( 2000 );

	SHOW_FLOW0( 3, "4" );

	// ouch, we have to wait up to 31 seconds!
	if( !ide_wait( device, 0, ide_status_bsy, false, 31000000 )) {

		// we don't know which of the devices is broken
		// so we don't disable them
		if( controller->write_device_control( channel, ide_devctrl_bit3 ) != NO_ERROR )
			goto err0;

		set_sense( device, SCSIS_KEY_HARDWARE_ERROR, SCSIS_ASC_LUN_TIMEOUT );
		goto err1;
	}

	SHOW_FLOW0( 3, "5" );

	if( controller->write_device_control( channel, ide_devctrl_bit3 ) != NO_ERROR )
		goto err0;

	SHOW_FLOW0( 3, "6" );

	finish_all_requests( bus->devices[0], CAM_SCSI_BUS_RESET );
	finish_all_requests( bus->devices[1], CAM_SCSI_BUS_RESET );

	SHOW_FLOW0( 3, "7" );

	xpt->call_async( bus->xpt_cookie, -1, -1, AC_BUS_RESET, NULL, 0 );

	SHOW_FLOW0( 3, "8" );
	return true;

err0:
	set_sense( device, SCSIS_KEY_HARDWARE_ERROR, SCSIS_ASC_INTERNAL_FAILURE );

err1:
	finish_all_requests( bus->devices[0], CAM_SCSI_BUS_RESET );
	finish_all_requests( bus->devices[1], CAM_SCSI_BUS_RESET );

	xpt->call_async( bus->xpt_cookie, -1, -1, AC_BUS_RESET, NULL, 0 );
	return false;
}