Exemple #1
0
void __init_entry(void)
{
	/* the kernel doesn't have this mapping, so we have to create it here. */
	tm_thread_raise_flag(current_thread, THREAD_KERNEL);
	addr_t ret = mm_mmap(current_thread->usermode_stack_start, CONFIG_STACK_PAGES * PAGE_SIZE,
			PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, 0, 0, 0);
	tm_thread_lower_flag(current_thread, THREAD_KERNEL);
	tm_thread_user_mode_jump(user_mode_init);
}
Exemple #2
0
void tm_thread_exit(int code)
{
	current_thread->exit_code = code;
	if(tm_thread_lower_flag(current_thread, THREAD_PTRACED) & THREAD_PTRACED) {
		assert(current_thread->tracer);
		tm_thread_put(current_thread->tracer);
		current_thread->tracer = 0;
	}
	tm_thread_raise_flag(current_thread, THREAD_EXIT);
}
Exemple #3
0
static inline void __setup_signal_handler(struct registers *regs)
{
	if((current_thread->flags & THREAD_SIGNALED) && !current_thread->signal)
		PANIC(0, "Thread is signaled with null signal.", EINVAL);
	if(current_thread->signal && !(current_thread->flags & THREAD_SIGNALED))
		tm_thread_raise_flag(current_thread, THREAD_SCHEDULE);
	if(!current_thread->signal || !(current_thread->flags & THREAD_SIGNALED))
		return;
	struct sigaction *sa = &current_process->signal_act[current_thread->signal];
	arch_tm_userspace_signal_initializer(regs, sa);
	tm_thread_lower_flag(current_thread, THREAD_SIGNALED);
	current_thread->signal = 0;
}
Exemple #4
0
void ticker_dowork(struct ticker *ticker)
{
	uint64_t key;
	void *data;
	int old = cpu_interrupt_set(0);
	assert(!current_thread->blocklist);
	if(__current_cpu->preempt_disable > 0) {
		cpu_interrupt_set(old);
		return;
	}
	if(current_thread->held_locks) {
		cpu_interrupt_set(old);
		return;
	}
	while(heap_peek(&ticker->heap, &key, &data) == 0) {
		if(key < ticker->tick) {
			/* get the data again, since it's cheap and
			 * we need to in case something bubbled up
			 * through the heap between the call to
			 * peak and now */
			spinlock_acquire(&ticker->lock);
			int res = heap_pop(&ticker->heap, &key, &data);
			if(!res)
				tm_thread_lower_flag(current_thread, THREAD_TICKER_DOWORK);
			spinlock_release(&ticker->lock);
			if(res == 0) {
				/* handle the time-event */
				struct async_call *call = (struct async_call *)data;
				call->queue = 0;
				async_call_execute(call);
			}
		} else {
			break;
		}
	}
	cpu_interrupt_set(old);
}
Exemple #5
0
int do_exec(char *path, char **argv, char **env, int shebanged /* oh my */)
{
	unsigned int i=0;
	addr_t end, eip;
	unsigned int argc=0, envc=0;
	char **backup_argv=0, **backup_env=0;
	/* Sanity */
	if(!path || !*path)
		return -EINVAL;
	/* Load the file, and make sure that it is valid and accessible */
	if(EXEC_LOG == 2) 
		printk(0, "[%d]: Checking executable file (%s)\n", current_process->pid, path);
	struct file *efil;
	int err_open;
	efil = fs_file_open(path, _FREAD, 0, &err_open);
	if(!efil)
		return err_open;
	/* are we allowed to execute it? */
	if(!vfs_inode_check_permissions(efil->inode, MAY_EXEC, 0))
	{
		file_put(efil);
		return -EACCES;
	}
	/* is it a valid elf? */
	int header_size = 0;
#if CONFIG_ARCH == TYPE_ARCH_X86_64
	header_size = sizeof(elf64_header_t);
#elif CONFIG_ARCH == TYPE_ARCH_X86
	header_size = sizeof(elf32_header_t);
#endif
	/* read in the ELF header, and check if it's a shebang */
	if(header_size < 2) header_size = 2;
	unsigned char mem[header_size];
	fs_file_pread(efil, 0, mem, header_size);
	
	if(__is_shebang(mem))
		return loader_do_shebang(efil, argv, env);
	
	int other_bitsize=0;
	if(!is_valid_elf(mem, 2) && !other_bitsize) {
		file_put(efil);
		return -ENOEXEC;
	}
	
	if(EXEC_LOG == 2) 
		printk(0, "[%d]: Copy data\n", current_process->pid);
	/* okay, lets back up argv and env so that we can
	 * clear out the address space and not lose data...
	 * If this call if coming from a shebang, then we don't check the pointers,
	 * since they won't be from userspace */
	size_t total_args_len = 0;
	if((shebanged || mm_is_valid_user_pointer(SYS_EXECVE, argv, 0)) && argv) {
		while((shebanged || mm_is_valid_user_pointer(SYS_EXECVE, argv[argc], 0)) && argv[argc] && *argv[argc])
			argc++;
		backup_argv = (char **)kmalloc(sizeof(addr_t) * argc);
		for(i=0;i<argc;i++) {
			backup_argv[i] = (char *)kmalloc(strlen(argv[i]) + 1);
			_strcpy(backup_argv[i], argv[i]);
			total_args_len += strlen(argv[i])+1 + sizeof(char *);
		}
	}
	if((shebanged || mm_is_valid_user_pointer(SYS_EXECVE, env, 0)) && env) {
		while((shebanged || mm_is_valid_user_pointer(SYS_EXECVE, env[envc], 0)) && env[envc] && *env[envc]) envc++;
		backup_env = (char **)kmalloc(sizeof(addr_t) * envc);
		for(i=0;i<envc;i++) {
			backup_env[i] = (char *)kmalloc(strlen(env[i]) + 1);
			_strcpy(backup_env[i], env[i]);
			total_args_len += strlen(env[i])+1 + sizeof(char *);
		}
	}
	total_args_len += 2 * sizeof(char *);
	/* and the path too! */
	char *path_backup = (char *)kmalloc(strlen(path) + 1);
	_strcpy((char *)path_backup, path);
	path = path_backup;
	
	/* Preexec - This is the point of no return. Here we close out unneeded 
	 * file descs, free up the page directory and clear up the resources 
	 * of the task */
	if(EXEC_LOG)
		printk(0, "Executing (p%dt%d, cpu %d, tty %d): %s\n", current_process->pid, current_thread->tid, current_thread->cpu->knum, current_process->pty ? current_process->pty->num : 0, path);
	preexec();
	
	/* load in the new image */
	strncpy((char *)current_process->command, path, 128);
	if(!loader_parse_elf_executable(mem, efil, &eip, &end))
		eip=0;
	/* do setuid and setgid */
	if(efil->inode->mode & S_ISUID) {
		current_process->effective_uid = efil->inode->uid;
	}
	if(efil->inode->mode & S_ISGID) {
		current_process->effective_gid = efil->inode->gid;
	}
	/* we don't need the file anymore, close it out */
	file_put(efil);
	file_close_cloexec();
	if(!eip) {
		printk(5, "[exec]: Tried to execute an invalid ELF file!\n");
		free_dp(backup_argv, argc);
		free_dp(backup_env, envc);
		kfree(path);
		tm_thread_exit(0);
	}
	
	if(EXEC_LOG == 2) 
		printk(0, "[%d]: Updating task values\n", current_process->pid);
	/* Setup the task with the proper values (libc malloc stack) */
	addr_t end_l = end;
	end = ((end-1)&PAGE_MASK) + PAGE_SIZE;
	total_args_len += PAGE_SIZE;
	/* now we need to copy back the args and env into userspace
	 * writeable memory...yippie. */
	addr_t args_start = end + PAGE_SIZE;
	addr_t env_start = args_start;
	addr_t alen = 0;
	mm_mmap(end, total_args_len,
			PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, 0, 0, 0);
	if(backup_argv) {
		memcpy((void *)args_start, backup_argv, sizeof(addr_t) * argc);
		alen += sizeof(addr_t) * argc;
		*(addr_t *)(args_start + alen) = 0; /* set last argument value to zero */
		alen += sizeof(addr_t);
		argv = (char **)args_start;
		for(i=0;i<argc;i++)
		{
			char *old = argv[i];
			char *new = (char *)(args_start+alen);
			unsigned len = strlen(old) + 4;
			argv[i] = new;
			_strcpy(new, old);
			kfree(old);
			alen += len;
		}
		kfree(backup_argv);
	}
	env_start = args_start + alen;
	alen = 0;
	if(backup_env) {
		memcpy((void *)env_start, backup_env, sizeof(addr_t) * envc);
		alen += sizeof(addr_t) * envc;
		*(addr_t *)(env_start + alen) = 0; /* set last argument value to zero */
		alen += sizeof(addr_t);
		env = (char **)env_start;
		for(i=0;i<envc;i++)
		{
			char *old = env[i];
			char *new = (char *)(env_start+alen);
			unsigned len = strlen(old) + 1;
			env[i] = new;
			_strcpy(new, old);
			kfree(old);
			alen += len;
		}
		kfree(backup_env);
	}
	end = (env_start + alen) & PAGE_MASK;
	current_process->env = env;
	current_process->argv = argv;
	kfree(path);
	
	/* set the heap locations, and map in the start */
	current_process->heap_start = current_process->heap_end = end + PAGE_SIZE*2;
	addr_t ret = mm_mmap(end + PAGE_SIZE, PAGE_SIZE,
			PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, 0, 0, 0);
	/* now, we just need to deal with the syscall return stuff. When the syscall
	 * returns, it'll just jump into the entry point of the new process */
	tm_thread_lower_flag(current_thread, THREAD_SCHEDULE);
	/* the kernel cares if it has executed something or not */
	if(!(kernel_state_flags & KSF_HAVEEXECED))
		set_ksf(KSF_HAVEEXECED);
	arch_loader_exec_initializer(argc, eip);
	if(EXEC_LOG == 2) 
		printk(0, "[%d]: Performing call\n", current_process->pid);
	return 0;
}