Exemple #1
0
int tpRunCycle(TP_STRUCT * tp, long period)
{
    // vel = (new position - old position) / cycle time
    // (two position points required)
    //
    // acc = (new vel - old vel) / cycle time
    // (three position points required)

    TC_STRUCT *tc, *nexttc;
    double primary_vel;
    int on_final_decel;
    EmcPose primary_before, primary_after;
    EmcPose secondary_before, secondary_after;
    EmcPose primary_displacement, secondary_displacement;
    static double spindleoffset;
    static int waiting_for_index = MOTION_INVALID_ID;
    static int waiting_for_atspeed = MOTION_INVALID_ID;
    double save_vel;
    static double revs;
    EmcPose target;

    emcmotStatus->tcqlen = tcqLen(&tp->queue);
    emcmotStatus->requested_vel = 0.0;
    tc = tcqItem(&tp->queue, 0, period);
    if(!tc) {
        // this means the motion queue is empty.  This can represent
        // the end of the program OR QUEUE STARVATION.  In either case,
        // I want to stop.  Some may not agree that's what it should do.
        tcqInit(&tp->queue);
        tp->goalPos = tp->currentPos;
        tp->done = 1;
        tp->depth = tp->activeDepth = 0;
        tp->aborting = 0;
        tp->execId = 0;
        tp->motionType = 0;
        tpResume(tp);
	// when not executing a move, use the current enable flags
	emcmotStatus->enables_queued = emcmotStatus->enables_new;
        return 0;
    }

    if (tc->target == tc->progress && waiting_for_atspeed != tc->id) {
        // if we're synced, and this move is ending, save the
        // spindle position so the next synced move can be in
        // the right place.
        if(tc->synchronized)
            spindleoffset += tc->target/tc->uu_per_rev;
        else
            spindleoffset = 0.0;

        if(tc->indexrotary != -1) {
            // this was an indexing move, so before we remove it we must
            // relock the axis
            tpSetRotaryUnlock(tc->indexrotary, 0);
            // if it is now locked, fall through and remove the finished move.
            // otherwise, just come back later and check again
            if(tpGetRotaryIsUnlocked(tc->indexrotary))
                return 0;
        }

        // done with this move
        tcqRemove(&tp->queue, 1);

        // so get next move
        tc = tcqItem(&tp->queue, 0, period);
        if(!tc) return 0;
    }

    // now we have the active tc.  get the upcoming one, if there is one.
    // it's not an error if there isn't another one - we just don't
    // do blending.  This happens in MDI for instance.
    if(!emcmotDebug->stepping && tc->blend_with_next) 
        nexttc = tcqItem(&tp->queue, 1, period);
    else
        nexttc = NULL;

    {
	int this_synch_pos = tc->synchronized && !tc->velocity_mode;
	int next_synch_pos = nexttc && nexttc->synchronized && !nexttc->velocity_mode;
	if(!this_synch_pos && next_synch_pos) {
	    // we'll have to wait for spindle sync; might as well
	    // stop at the right place (don't blend)
	    tc->blend_with_next = 0;
	    nexttc = NULL;
	}
    }

    if(nexttc && nexttc->atspeed) {
        // we'll have to wait for the spindle to be at-speed; might as well
        // stop at the right place (don't blend), like above
        tc->blend_with_next = 0;
        nexttc = NULL;
    }

    if(tp->aborting) {
        // an abort message has come
        if( MOTION_ID_VALID(waiting_for_index) ||
	    MOTION_ID_VALID(waiting_for_atspeed) ||
            (tc->currentvel == 0.0 && !nexttc) || 
            (tc->currentvel == 0.0 && nexttc && nexttc->currentvel == 0.0) ) {
            tcqInit(&tp->queue);
            tp->goalPos = tp->currentPos;
            tp->done = 1;
            tp->depth = tp->activeDepth = 0;
            tp->aborting = 0;
            tp->execId = 0;
            tp->motionType = 0;
            tp->synchronized = 0;
            waiting_for_index = MOTION_INVALID_ID;
            waiting_for_atspeed = MOTION_INVALID_ID;
            emcmotStatus->spindleSync = 0;
            tpResume(tp);
            return 0;
        } else {
            tc->reqvel = 0.0;
            if(nexttc) nexttc->reqvel = 0.0;
        }
    }

    // this is no longer the segment we were waiting_for_index for
    if (MOTION_ID_VALID(waiting_for_index) && waiting_for_index != tc->id) 
    {
        rtapi_print_msg(RTAPI_MSG_ERR,
                "Was waiting for index on motion id %d, but reached id %d\n",
                waiting_for_index, tc->id);
        waiting_for_index = MOTION_INVALID_ID;
    }
    if (MOTION_ID_VALID(waiting_for_atspeed) && waiting_for_atspeed != tc->id)  
    {

        rtapi_print_msg(RTAPI_MSG_ERR,
                "Was waiting for atspeed on motion id %d, but reached id %d\n",
                waiting_for_atspeed, tc->id);
        waiting_for_atspeed = MOTION_INVALID_ID;
    }

    // check for at-speed before marking the tc active
    if (MOTION_ID_VALID(waiting_for_atspeed)) {
        if(!emcmotStatus->spindle_is_atspeed) {
            /* spindle is still not at the right speed: wait */
            return 0;
        } else {
            waiting_for_atspeed = MOTION_INVALID_ID;
        }
    }

    if(tc->active == 0) {
        // this means this tc is being read for the first time.

        // wait for atspeed, if motion requested it.  also, force
        // atspeed check for the start of all spindle synchronized
        // moves.
        if((tc->atspeed || (tc->synchronized && !tc->velocity_mode && !emcmotStatus->spindleSync)) && 
           !emcmotStatus->spindle_is_atspeed) {
            waiting_for_atspeed = tc->id;
            return 0;
        }

        if (tc->indexrotary != -1) {
            // request that the axis unlock
            tpSetRotaryUnlock(tc->indexrotary, 1);
            // if it is unlocked, fall through and start the move.
            // otherwise, just come back later and check again
            if (!tpGetRotaryIsUnlocked(tc->indexrotary))
                return 0;
        }

        tc->active = 1;
        tc->currentvel = 0;
        tp->depth = tp->activeDepth = 1;
        tp->motionType = tc->canon_motion_type;
        tc->blending = 0;

        // honor accel constraint in case we happen to make an acute angle
        // with the next segment.
        if(tc->blend_with_next) 
            tc->maxaccel /= 2.0;

        if(tc->synchronized) {
            if(!tc->velocity_mode && !emcmotStatus->spindleSync) {
                // if we aren't already synced, wait
                waiting_for_index = tc->id;
                // ask for an index reset
                emcmotStatus->spindle_index_enable = 1;
                spindleoffset = 0.0;
                // don't move: wait
                return 0;
            }
        }
    }

    if (MOTION_ID_VALID(waiting_for_index)) {
        if(emcmotStatus->spindle_index_enable) {
            /* haven't passed index yet */
            return 0;
        } else {
            /* passed index, start the move */
            emcmotStatus->spindleSync = 1;
            waiting_for_index = MOTION_INVALID_ID;
            tc->sync_accel=1;
            revs=0;
        }
    }

    if (tc->motion_type == TC_RIGIDTAP) {
        static double old_spindlepos;
        double new_spindlepos = emcmotStatus->spindleRevs;
        if (emcmotStatus->spindle.direction < 0) new_spindlepos = -new_spindlepos;

        switch (tc->coords.rigidtap.state) {
        case TAPPING:
            if (tc->progress >= tc->coords.rigidtap.reversal_target) {
                // command reversal
                emcmotStatus->spindle.speed *= -1;
                tc->coords.rigidtap.state = REVERSING;
            }
            break;
        case REVERSING:
            if (new_spindlepos < old_spindlepos) {
                PmPose start, end;
                PmLine *aux = &tc->coords.rigidtap.aux_xyz;
                // we've stopped, so set a new target at the original position
                tc->coords.rigidtap.spindlerevs_at_reversal = new_spindlepos + spindleoffset;
                
                pmLinePoint(&tc->coords.rigidtap.xyz, tc->progress, &start);
                end = tc->coords.rigidtap.xyz.start;
                pmLineInit(aux, start, end);
                tc->coords.rigidtap.reversal_target = aux->tmag;
                tc->target = aux->tmag + 10. * tc->uu_per_rev;
                tc->progress = 0.0;

                tc->coords.rigidtap.state = RETRACTION;
            }
            old_spindlepos = new_spindlepos;
            break;
        case RETRACTION:
            if (tc->progress >= tc->coords.rigidtap.reversal_target) {
                emcmotStatus->spindle.speed *= -1;
                tc->coords.rigidtap.state = FINAL_REVERSAL;
            }
            break;
        case FINAL_REVERSAL:
            if (new_spindlepos > old_spindlepos) {
                PmPose start, end;
                PmLine *aux = &tc->coords.rigidtap.aux_xyz;
                pmLinePoint(aux, tc->progress, &start);
                end = tc->coords.rigidtap.xyz.start;
                pmLineInit(aux, start, end);
                tc->target = aux->tmag;
                tc->progress = 0.0;
                tc->synchronized = 0;
                tc->reqvel = tc->maxvel;
                
                tc->coords.rigidtap.state = FINAL_PLACEMENT;
            }
            old_spindlepos = new_spindlepos;
            break;
        case FINAL_PLACEMENT:
            // this is a regular move now, it'll stop at target above.
            break;
        }
    }


    if(!tc->synchronized) emcmotStatus->spindleSync = 0;


    if(nexttc && nexttc->active == 0) {
        // this means this tc is being read for the first time.

        nexttc->currentvel = 0;
        tp->depth = tp->activeDepth = 1;
        nexttc->active = 1;
        nexttc->blending = 0;

        // honor accel constraint if we happen to make an acute angle with the
        // above segment or the following one
        if(tc->blend_with_next || nexttc->blend_with_next)
            nexttc->maxaccel /= 2.0;
    }


    if(tc->synchronized) {
        double pos_error;
        double oldrevs = revs;

        if(tc->velocity_mode) {
            pos_error = fabs(emcmotStatus->spindleSpeedIn) * tc->uu_per_rev;
            if(nexttc) pos_error -= nexttc->progress; /* ?? */
            if(!tp->aborting) {
                tc->feed_override = emcmotStatus->net_feed_scale;
                tc->reqvel = pos_error;
            }
        } else {
            double spindle_vel, target_vel;
            double new_spindlepos = emcmotStatus->spindleRevs;
            if (emcmotStatus->spindle.direction < 0) new_spindlepos = -new_spindlepos;

            if(tc->motion_type == TC_RIGIDTAP && 
               (tc->coords.rigidtap.state == RETRACTION || 
                tc->coords.rigidtap.state == FINAL_REVERSAL))
                revs = tc->coords.rigidtap.spindlerevs_at_reversal - 
                    new_spindlepos;
            else
                revs = new_spindlepos;

            pos_error = (revs - spindleoffset) * tc->uu_per_rev - tc->progress;
            if(nexttc) pos_error -= nexttc->progress;

            if(tc->sync_accel) {
                // detect when velocities match, and move the target accordingly.
                // acceleration will abruptly stop and we will be on our new target.
                spindle_vel = revs/(tc->cycle_time * tc->sync_accel++);
                target_vel = spindle_vel * tc->uu_per_rev;
                if(tc->currentvel >= target_vel) {
                    // move target so as to drive pos_error to 0 next cycle
                    spindleoffset = revs - tc->progress/tc->uu_per_rev;
                    tc->sync_accel = 0;
                    tc->reqvel = target_vel;
                } else {
                    // beginning of move and we are behind: accel as fast as we can
                    tc->reqvel = tc->maxvel;
                }
            } else {
                // we have synced the beginning of the move as best we can -
                // track position (minimize pos_error).
                double errorvel;
                spindle_vel = (revs - oldrevs) / tc->cycle_time;
                target_vel = spindle_vel * tc->uu_per_rev;
                errorvel = pmSqrt(fabs(pos_error) * tc->maxaccel);
                if(pos_error<0) errorvel = -errorvel;
                tc->reqvel = target_vel + errorvel;
            }
            tc->feed_override = 1.0;
        }
        if(tc->reqvel < 0.0) tc->reqvel = 0.0;
        if(nexttc) {
	    if (nexttc->synchronized) {
		nexttc->reqvel = tc->reqvel;
		nexttc->feed_override = 1.0;
		if(nexttc->reqvel < 0.0) nexttc->reqvel = 0.0;
	    } else {
		nexttc->feed_override = emcmotStatus->net_feed_scale;
	    }
	}
    } else {
        tc->feed_override = emcmotStatus->net_feed_scale;
        if(nexttc) {
	    nexttc->feed_override = emcmotStatus->net_feed_scale;
	}
    }
    /* handle pausing */
    if(tp->pausing && (!tc->synchronized || tc->velocity_mode)) {
        tc->feed_override = 0.0;
        if(nexttc) {
	    nexttc->feed_override = 0.0;
	}
    }

    // calculate the approximate peak velocity the nexttc will hit.
    // we know to start blending it in when the current tc goes below
    // this velocity...
    if(nexttc && nexttc->maxaccel) {
        tc->blend_vel = nexttc->maxaccel * 
            pmSqrt(nexttc->target / nexttc->maxaccel);
        if(tc->blend_vel > nexttc->reqvel * nexttc->feed_override) {
            // segment has a cruise phase so let's blend over the 
            // whole accel period if possible
            tc->blend_vel = nexttc->reqvel * nexttc->feed_override;
        }
        if(tc->maxaccel < nexttc->maxaccel)
            tc->blend_vel *= tc->maxaccel/nexttc->maxaccel;

        if(tc->tolerance) {
            /* see diagram blend.fig.  T (blend tolerance) is given, theta
             * is calculated from dot(s1,s2)
             *
             * blend criteria: we are decelerating at the end of segment s1
             * and we pass distance d from the end.  
             * find the corresponding velocity v when passing d.
             *
             * in the drawing note d = 2T/cos(theta)
             *
             * when v1 is decelerating at a to stop, v = at, t = v/a
             * so required d = .5 a (v/a)^2
             *
             * equate the two expressions for d and solve for v
             */
            double tblend_vel;
            double dot;
            double theta;
            PmCartesian v1, v2;

            v1 = tcGetEndingUnitVector(tc);
            v2 = tcGetStartingUnitVector(nexttc);
            pmCartCartDot(v1, v2, &dot);

            theta = acos(-dot)/2.0; 
            if(cos(theta) > 0.001) {
                tblend_vel = 2.0 * pmSqrt(tc->maxaccel * tc->tolerance / cos(theta));
                if(tblend_vel < tc->blend_vel)
                    tc->blend_vel = tblend_vel;
            }
        }
    }

    primary_before = tcGetPos(tc);
    tcRunCycle(tp, tc, &primary_vel, &on_final_decel);
    primary_after = tcGetPos(tc);
    pmCartCartSub(primary_after.tran, primary_before.tran, 
            &primary_displacement.tran);
    primary_displacement.a = primary_after.a - primary_before.a;
    primary_displacement.b = primary_after.b - primary_before.b;
    primary_displacement.c = primary_after.c - primary_before.c;

    primary_displacement.u = primary_after.u - primary_before.u;
    primary_displacement.v = primary_after.v - primary_before.v;
    primary_displacement.w = primary_after.w - primary_before.w;

    // blend criteria
    if((tc->blending && nexttc) || 
            (nexttc && on_final_decel && primary_vel < tc->blend_vel)) {
        // make sure we continue to blend this segment even when its 
        // accel reaches 0 (at the very end)
        tc->blending = 1;

        // hack to show blends in axis
        // tp->motionType = 0;

        if(tc->currentvel > nexttc->currentvel) {
            target = tcGetEndpoint(tc);
            tp->motionType = tc->canon_motion_type;
	    emcmotStatus->distance_to_go = tc->target - tc->progress;
	    emcmotStatus->enables_queued = tc->enables;
	    // report our line number to the guis
	    tp->execId = tc->id;
            emcmotStatus->requested_vel = tc->reqvel;
        } else {
	    tpToggleDIOs(nexttc); //check and do DIO changes
            target = tcGetEndpoint(nexttc);
            tp->motionType = nexttc->canon_motion_type;
	    emcmotStatus->distance_to_go = nexttc->target - nexttc->progress;
	    emcmotStatus->enables_queued = nexttc->enables;
	    // report our line number to the guis
	    tp->execId = nexttc->id;
            emcmotStatus->requested_vel = nexttc->reqvel;
        }

        emcmotStatus->current_vel = tc->currentvel + nexttc->currentvel;

        secondary_before = tcGetPos(nexttc);
        save_vel = nexttc->reqvel;
        nexttc->reqvel = nexttc->feed_override > 0.0 ? 
            ((tc->vel_at_blend_start - primary_vel) / nexttc->feed_override) :
            0.0;
        tcRunCycle(tp, nexttc, NULL, NULL);
        nexttc->reqvel = save_vel;

        secondary_after = tcGetPos(nexttc);
        pmCartCartSub(secondary_after.tran, secondary_before.tran, 
                &secondary_displacement.tran);
        secondary_displacement.a = secondary_after.a - secondary_before.a;
        secondary_displacement.b = secondary_after.b - secondary_before.b;
        secondary_displacement.c = secondary_after.c - secondary_before.c;

        secondary_displacement.u = secondary_after.u - secondary_before.u;
        secondary_displacement.v = secondary_after.v - secondary_before.v;
        secondary_displacement.w = secondary_after.w - secondary_before.w;

        pmCartCartAdd(tp->currentPos.tran, primary_displacement.tran, 
                &tp->currentPos.tran);
        pmCartCartAdd(tp->currentPos.tran, secondary_displacement.tran, 
                &tp->currentPos.tran);
        tp->currentPos.a += primary_displacement.a + secondary_displacement.a;
        tp->currentPos.b += primary_displacement.b + secondary_displacement.b;
        tp->currentPos.c += primary_displacement.c + secondary_displacement.c;

        tp->currentPos.u += primary_displacement.u + secondary_displacement.u;
        tp->currentPos.v += primary_displacement.v + secondary_displacement.v;
        tp->currentPos.w += primary_displacement.w + secondary_displacement.w;
    } else {
	tpToggleDIOs(tc); //check and do DIO changes
        target = tcGetEndpoint(tc);
        tp->motionType = tc->canon_motion_type;
	emcmotStatus->distance_to_go = tc->target - tc->progress;
        tp->currentPos = primary_after;
        emcmotStatus->current_vel = tc->currentvel;
        emcmotStatus->requested_vel = tc->reqvel;
	emcmotStatus->enables_queued = tc->enables;
	// report our line number to the guis
	tp->execId = tc->id;
    }

    emcmotStatus->dtg.tran.x = target.tran.x - tp->currentPos.tran.x;
    emcmotStatus->dtg.tran.y = target.tran.y - tp->currentPos.tran.y;
    emcmotStatus->dtg.tran.z = target.tran.z - tp->currentPos.tran.z;
    emcmotStatus->dtg.a = target.a - tp->currentPos.a;
    emcmotStatus->dtg.b = target.b - tp->currentPos.b;
    emcmotStatus->dtg.c = target.c - tp->currentPos.c;
    emcmotStatus->dtg.u = target.u - tp->currentPos.u;
    emcmotStatus->dtg.v = target.v - tp->currentPos.v;
    emcmotStatus->dtg.w = target.w - tp->currentPos.w;

    return 0;
}
Exemple #2
0
/*
  emcmotCommandHandler() is called each main cycle to read the
  shared memory buffer
  */
void emcmotCommandHandler(void *arg, long period)
{
    int joint_num;
    emcmot_joint_t *joint;
    double tmp1;
    emcmot_comp_entry_t *comp_entry;
    
check_stuff ( "before command_handler()" );

    /* check for split read */
    if (emcmotCommand->head != emcmotCommand->tail) {
	emcmotDebug->split++;
	return;			/* not really an error */
    }
    if (emcmotCommand->commandNum != emcmotStatus->commandNumEcho) {
	/* increment head count-- we'll be modifying emcmotStatus */
	emcmotStatus->head++;
	emcmotDebug->head++;

	/* got a new command-- echo command and number... */
	emcmotStatus->commandEcho = emcmotCommand->command;
	emcmotStatus->commandNumEcho = emcmotCommand->commandNum;

	/* clear status value by default */
	emcmotStatus->commandStatus = EMCMOT_COMMAND_OK;
	
	/* ...and process command */

	/* Many commands uses "command->axis" to indicate which joint they
	   wish to operate on.  This code eliminates the need to copy
	   command->axis to "joint_num", limit check it, and then set "joint"
	   to point to the joint data.  All the individual commands need to do
	   is verify that "joint" is non-zero. */
	joint_num = emcmotCommand->axis;
	if (joint_num >= 0 && joint_num < num_joints) {
	    /* valid joint, point to it's data */
	    joint = &joints[joint_num];
	} else {
	    /* bad joint number */
	    joint = 0;
	}

/* printing of commands for troubleshooting */
	rtapi_print_msg(RTAPI_MSG_DBG, "%d: CMD %d, code %3d ", emcmotStatus->heartbeat,
	    emcmotCommand->commandNum, emcmotCommand->command);

	switch (emcmotCommand->command) {
	case EMCMOT_ABORT:
	    /* abort motion */
	    /* can happen at any time */
	    /* this command attempts to stop all machine motion. it looks at
	       the current mode and acts accordingly, if in teleop mode, it
	       sets the desired velocities to zero, if in coordinated mode,
	       it calls the traj planner abort function (don't know what that
	       does yet), and if in free mode, it disables the free mode traj
	       planners which stops axis motion */
	    rtapi_print_msg(RTAPI_MSG_DBG, "ABORT");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", emcmotCommand->axis);
	    /* check for coord or free space motion active */
	    if (GET_MOTION_TELEOP_FLAG()) {
		emcmotDebug->teleop_data.desiredVel.tran.x = 0.0;
		emcmotDebug->teleop_data.desiredVel.tran.y = 0.0;
		emcmotDebug->teleop_data.desiredVel.tran.z = 0.0;
		emcmotDebug->teleop_data.desiredVel.a = 0.0;
		emcmotDebug->teleop_data.desiredVel.b = 0.0;
		emcmotDebug->teleop_data.desiredVel.c = 0.0;
	    } else if (GET_MOTION_COORD_FLAG()) {
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(0);
	    } else {
		for (joint_num = 0; joint_num < num_joints; joint_num++) {
		    /* point to joint struct */
		    joint = &joints[joint_num];
		    /* tell joint planner to stop */
		    joint->free_tp_enable = 0;
		    /* stop homing if in progress */
		    if ( joint->home_state != HOME_IDLE ) {
			joint->home_state = HOME_ABORT;
		    }
		}
	    }
	    /* clear axis errors (regardless of mode */	    
	    for (joint_num = 0; joint_num < num_joints; joint_num++) {
		/* point to joint struct */
		joint = &joints[joint_num];
		/* update status flags */
		SET_JOINT_ERROR_FLAG(joint, 0);
		SET_JOINT_FAULT_FLAG(joint, 0);
	    }
	    break;

	case EMCMOT_AXIS_ABORT:
	    /* abort one axis */
	    /* can happen at any time */
	    /* this command stops a single axis.  It is only usefull
	       in free mode, so in coord or teleop mode it does
	       nothing. */
	    rtapi_print_msg(RTAPI_MSG_DBG, "AXIS_ABORT");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", emcmotCommand->axis);
	    if (GET_MOTION_TELEOP_FLAG()) {
		/* do nothing in teleop mode */
	    } else if (GET_MOTION_COORD_FLAG()) {
		/* do nothing in coord mode */
	    } else {
		/* validate joint */
		if (joint == 0) {
		    break;
		}
		/* tell joint planner to stop */
		joint->free_tp_enable = 0;
		/* stop homing if in progress */
		if ( joint->home_state != HOME_IDLE ) {
		    joint->home_state = HOME_ABORT;
		}
		/* update status flags */
		SET_JOINT_ERROR_FLAG(joint, 0);
	    }
	    break;

	case EMCMOT_FREE:
	    /* change the mode to free axis motion */
	    /* can be done at any time */
	    /* this code doesn't actually make the transition, it merely
	       requests the transition by clearing a couple of flags */
	    /* reset the emcmotDebug->coordinating flag to defer transition
	       to controller cycle */
	    rtapi_print_msg(RTAPI_MSG_DBG, "FREE");
	    emcmotDebug->coordinating = 0;
	    emcmotDebug->teleoperating = 0;
	    break;

	case EMCMOT_COORD:
	    /* change the mode to coordinated axis motion */
	    /* can be done at any time */
	    /* this code doesn't actually make the transition, it merely
	       tests a condition and then sets a flag requesting the
	       transition */
	    /* set the emcmotDebug->coordinating flag to defer transition to
	       controller cycle */
	    rtapi_print_msg(RTAPI_MSG_DBG, "COORD");
	    emcmotDebug->coordinating = 1;
	    emcmotDebug->teleoperating = 0;
	    if (kinType != KINEMATICS_IDENTITY) {
		if (!checkAllHomed()) {
		    reportError
			("all axes must be homed before going into coordinated mode");
		    emcmotDebug->coordinating = 0;
		    break;
		}
	    }
	    break;

	case EMCMOT_TELEOP:
	    /* change the mode to teleop motion */
	    /* can be done at any time */
	    /* this code doesn't actually make the transition, it merely
	       tests a condition and then sets a flag requesting the
	       transition */
	    /* set the emcmotDebug->teleoperating flag to defer transition to
	       controller cycle */
	    rtapi_print_msg(RTAPI_MSG_DBG, "TELEOP");
	    emcmotDebug->teleoperating = 1;
	    if (kinType != KINEMATICS_IDENTITY) {
		
		if (!checkAllHomed()) {
		    reportError
			("all axes must be homed before going into teleop mode");
		    emcmotDebug->teleoperating = 0;
		    break;
		}

	    }
	    break;

	case EMCMOT_SET_NUM_AXES:
	    /* set the global NUM_AXES, which must be between 1 and
	       EMCMOT_MAX_AXIS, inclusive */
	    /* this sets a global - I hate globals - hopefully this can be
	       moved into the config structure, or dispensed with completely */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_NUM_AXES");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", emcmotCommand->axis);
	    if (( emcmotCommand->axis <= 0 ) ||
		( emcmotCommand->axis > EMCMOT_MAX_AXIS )) {
		break;
	    }
	    num_axes = emcmotCommand->axis;
	    emcmotConfig->numAxes = num_axes;
	    break;

	case EMCMOT_SET_WORLD_HOME:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_WORLD_HOME");
	    emcmotStatus->world_home = emcmotCommand->pos;
	    break;

	case EMCMOT_SET_HOMING_PARAMS:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_HOMING_PARAMS");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    if (joint == 0) {
		break;
	    }
	    joint->home_offset = emcmotCommand->offset;
	    joint->home = emcmotCommand->home;
	    joint->home_search_vel = emcmotCommand->search_vel;
	    joint->home_latch_vel = emcmotCommand->latch_vel;
	    joint->home_flags = emcmotCommand->flags;
	    joint->home_sequence = emcmotCommand->home_sequence;
	    break;

	case EMCMOT_OVERRIDE_LIMITS:
	    /* this command can be issued with axix < 0 to re-enable
	       limits, but they are automatically re-enabled at the
	       end of the next jog */
	    rtapi_print_msg(RTAPI_MSG_DBG, "OVERRIDE_LIMITS");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", emcmotCommand->axis);
	    if (emcmotCommand->axis < 0) {
		/* don't override limits */
		rtapi_print_msg(RTAPI_MSG_DBG, "override off");
		emcmotStatus->overrideLimitMask = 0;
	    } else {
		rtapi_print_msg(RTAPI_MSG_DBG, "override on");
		emcmotStatus->overrideLimitMask = 0;
		for (joint_num = 0; joint_num < num_joints; joint_num++) {
		    /* point at joint data */
		    joint = &joints[joint_num];
#if 0		// Original code commented by KSU to allow tripped axis move
		    /* only override limits that are currently tripped */
		    if ( GET_JOINT_NHL_FLAG(joint) ) {
			emcmotStatus->overrideLimitMask |= (1 << (joint_num*2));
		    }
		    if ( GET_JOINT_PHL_FLAG(joint) ) {
			emcmotStatus->overrideLimitMask |= (2 << (joint_num*2));
		    }
#else
		    emcmotStatus->overrideLimitMask |= (1 << (joint_num*2));
		    emcmotStatus->overrideLimitMask |= (2 << (joint_num*2));
#endif
		}
	    }
	    emcmotDebug->overriding = 0;
	    for (joint_num = 0; joint_num < num_joints; joint_num++) {
		/* point at joint data */
		joint = &joints[joint_num];
		/* clear joint errors */
		SET_JOINT_ERROR_FLAG(joint, 0);
	    }
	    break;

	case EMCMOT_SET_MOTOR_OFFSET:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_MOTOR_OFFSET");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", emcmotCommand->axis);
	    if(joint == 0) {
		break;
	    }
	    joint->motor_offset = emcmotCommand->motor_offset;
	    break;

	case EMCMOT_SET_POSITION_LIMITS:
	    /* sets soft limits for an axis */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_POSITION_LIMITS");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    /* set the position limits for the axis */
	    /* can be done at any time */
	    if (joint == 0) {
		break;
	    }
	    joint->min_pos_limit = emcmotCommand->minLimit;
	    joint->max_pos_limit = emcmotCommand->maxLimit;
	    break;

	case EMCMOT_SET_BACKLASH:
	    /* sets backlash for an axis */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_BACKLASH");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    /* set the backlash for the axis */
	    /* can be done at any time */
	    if (joint == 0) {
		break;
	    }
	    joint->backlash = emcmotCommand->backlash;
	    break;

	    /*
	       Max and min ferror work like this: limiting ferror is
	       determined by slope of ferror line, = maxFerror/limitVel ->
	       limiting ferror = maxFerror/limitVel * vel. If ferror <
	       minFerror then OK else if ferror < limiting ferror then OK
	       else ERROR */
	case EMCMOT_SET_MAX_FERROR:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_MAX_FERROR");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    if (joint == 0 || emcmotCommand->maxFerror < 0.0) {
		break;
	    }
	    joint->max_ferror = emcmotCommand->maxFerror;
	    break;

	case EMCMOT_SET_MIN_FERROR:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_MIN_FERROR");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    if (joint == 0 || emcmotCommand->minFerror < 0.0) {
		break;
	    }
	    joint->min_ferror = emcmotCommand->minFerror;
	    break;

	case EMCMOT_JOG_CONT:
	    /* do a continuous jog, implemented as an incremental jog to the
	       limit.  When the user lets go of the button an abort will
	       stop the jog. */
	    rtapi_print_msg(RTAPI_MSG_DBG, "JOG_CONT");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    /* check axis range */
	    if (joint == 0) {
		break;
	    }

	    /* must be in free mode and enabled */
	    if (GET_MOTION_COORD_FLAG()) {
		reportError("Can't jog axis in coordinated mode.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (!GET_MOTION_ENABLE_FLAG()) {
		reportError("Can't jog axis when not enabled.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (emcmotStatus->homing_active) {
		reportError("Can't jog any axis while homing.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (joint->wheel_jog_active) {
		/* can't do two kinds of jog at once */
		break;
	    }
	    if (emcmotStatus->net_feed_scale < 0.0001 ) {
		/* don't jog if feedhold is on or if feed override is zero */
		break;
	    }
	    /* don't jog further onto limits */
	    if (!jog_ok(joint_num, emcmotCommand->vel)) {
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    /* set destination of jog */
	    refresh_jog_limits(joint);
	    if (emcmotCommand->vel > 0.0) {
		joint->free_pos_cmd = joint->max_jog_limit;
	    } else {
		joint->free_pos_cmd = joint->min_jog_limit;
	    }
	    /* set velocity of jog */
	    joint->free_vel_lim = fabs(emcmotCommand->vel);
	    /* lock out other jog sources */
	    joint->kb_jog_active = 1;
	    /* and let it go */
	    joint->free_tp_enable = 1;
	    /*! \todo FIXME - should we really be clearing errors here? */
	    SET_JOINT_ERROR_FLAG(joint, 0);
	    /* clear axis homed flag(s) if we don't have forward kins.
	       Otherwise, a transition into coordinated mode will incorrectly
	       assume the homed position. Do all if they've all been moved
	       since homing, otherwise just do this one */
	    clearHomes(joint_num);
	    break;

	case EMCMOT_JOG_INCR:
	    /* do an incremental jog */

	    /* check axis range */
	    rtapi_print_msg(RTAPI_MSG_DBG, "JOG_INCR");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    if (joint == 0) {
		break;
	    }

	    /* must be in free mode and enabled */
	    if (GET_MOTION_COORD_FLAG()) {
		reportError("Can't jog axis in coordinated mode.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (!GET_MOTION_ENABLE_FLAG()) {
		reportError("Can't jog axis when not enabled.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (emcmotStatus->homing_active) {
		reportError("Can't jog any axis while homing.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (joint->wheel_jog_active) {
		/* can't do two kinds of jog at once */
		break;
	    }
	    if (emcmotStatus->net_feed_scale < 0.0001 ) {
		/* don't jog if feedhold is on or if feed override is zero */
		break;
	    }
	    /* don't jog further onto limits */
	    if (!jog_ok(joint_num, emcmotCommand->vel)) {
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    /* set target position for jog */
	    if (emcmotCommand->vel > 0.0) {
		tmp1 = joint->free_pos_cmd + emcmotCommand->offset;
	    } else {
		tmp1 = joint->free_pos_cmd - emcmotCommand->offset;
	    }
	    /* don't jog past limits */
	    refresh_jog_limits(joint);
	    if (tmp1 > joint->max_jog_limit) {
		break;
	    }
	    if (tmp1 < joint->min_jog_limit) {
		break;
	    }
	    /* set target position */
	    joint->free_pos_cmd = tmp1;
	    /* set velocity of jog */
	    joint->free_vel_lim = fabs(emcmotCommand->vel);
	    /* lock out other jog sources */
	    joint->kb_jog_active = 1;
	    /* and let it go */
	    joint->free_tp_enable = 1;
	    SET_JOINT_ERROR_FLAG(joint, 0);
	    /* clear axis homed flag(s) if we don't have forward kins.
	       Otherwise, a transition into coordinated mode will incorrectly
	       assume the homed position. Do all if they've all been moved
	       since homing, otherwise just do this one */
	    clearHomes(joint_num);
	    break;

	case EMCMOT_JOG_ABS:
	    /* do an absolute jog */

	    /* check axis range */
	    rtapi_print_msg(RTAPI_MSG_DBG, "JOG_ABS");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    if (joint == 0) {
		break;
	    }
	    /* must be in free mode and enabled */
	    if (GET_MOTION_COORD_FLAG()) {
		reportError("Can't jog axis in coordinated mode.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (!GET_MOTION_ENABLE_FLAG()) {
		reportError("Can't jog axis when not enabled.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (emcmotStatus->homing_active) {
		reportError("Can't jog any axis while homing.");
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    if (joint->wheel_jog_active) {
		/* can't do two kinds of jog at once */
		break;
	    }
	    if (emcmotStatus->net_feed_scale < 0.0001 ) {
		/* don't jog if feedhold is on or if feed override is zero */
		break;
	    }
	    /* don't jog further onto limits */
	    if (!jog_ok(joint_num, emcmotCommand->vel)) {
		SET_JOINT_ERROR_FLAG(joint, 1);
		break;
	    }
	    /*! \todo FIXME-- use 'goal' instead */
	    joint->free_pos_cmd = emcmotCommand->offset;
	    /* don't jog past limits */
	    refresh_jog_limits(joint);
	    if (joint->free_pos_cmd > joint->max_jog_limit) {
		joint->free_pos_cmd = joint->max_jog_limit;
	    }
	    if (joint->free_pos_cmd < joint->min_jog_limit) {
		joint->free_pos_cmd = joint->min_jog_limit;
	    }
	    /* set velocity of jog */
	    joint->free_vel_lim = fabs(emcmotCommand->vel);
	    /* lock out other jog sources */
	    joint->kb_jog_active = 1;
	    /* and let it go */
	    joint->free_tp_enable = 1;
	    SET_JOINT_ERROR_FLAG(joint, 0);
	    /* clear axis homed flag(s) if we don't have forward kins.
	       Otherwise, a transition into coordinated mode will incorrectly
	       assume the homed position. Do all if they've all been moved
	       since homing, otherwise just do this one */
	    clearHomes(joint_num);
	    break;

	case EMCMOT_SET_TERM_COND:
	    /* sets termination condition for motion emcmotDebug->queue */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_TERM_COND");
	    tpSetTermCond(&emcmotDebug->queue, emcmotCommand->termCond, emcmotCommand->tolerance);
	    break;

        case EMCMOT_SET_SPINDLESYNC:
            tpSetSpindleSync(&emcmotDebug->queue, emcmotCommand->spindlesync, emcmotCommand->flags);
            break;

	case EMCMOT_SET_LINE:
	    /* emcmotDebug->queue up a linear move */
	    /* requires coordinated mode, enable off, not on limits */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_LINE");
	    if (!GET_MOTION_COORD_FLAG() || !GET_MOTION_ENABLE_FLAG()) {
		reportError
		    ("need to be enabled, in coord mode for linear move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_COMMAND;
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!inRange(emcmotCommand->pos)) {
		if(emcmotCommand->id > 0)
		    reportError("linear move on line %d would exceed limits",
			    emcmotCommand->id);
		else
		    reportError("linear move in MDI would exceed limits");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!limits_ok()) {
		reportError("can't do linear move with limits exceeded");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    }

	    /* append it to the emcmotDebug->queue */
	    tpSetId(&emcmotDebug->queue, emcmotCommand->id);
	    if (-1 == tpAddLine(&emcmotDebug->queue, emcmotCommand->pos, emcmotCommand->motion_type, emcmotCommand->vel, emcmotCommand->ini_maxvel, emcmotCommand->acc, emcmotStatus->enables_new)) {
		reportError("can't add linear move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_BAD_EXEC;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else {
		SET_MOTION_ERROR_FLAG(0);
		/* set flag that indicates all axes need rehoming, if any
		   axis is moved in joint mode, for machines with no forward
		   kins */
		rehomeAll = 1;
	    }
	    break;

	case EMCMOT_SET_CIRCLE:
	    /* emcmotDebug->queue up a circular move */
	    /* requires coordinated mode, enable on, not on limits */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_CIRCLE");
	    if (!GET_MOTION_COORD_FLAG() || !GET_MOTION_ENABLE_FLAG()) {
		reportError
		    ("need to be enabled, in coord mode for circular move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_COMMAND;
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!inRange(emcmotCommand->pos)) {
		if(emcmotCommand->id > 0)
		    reportError("circular move on line %d would exceed limits",
			emcmotCommand->id);
		else
		    reportError("circular move in MDI would exceed limits");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!limits_ok()) {
		reportError("can't do circular move with limits exceeded");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    }

	    /* append it to the emcmotDebug->queue */
	    tpSetId(&emcmotDebug->queue, emcmotCommand->id);
	    if (-1 ==
		tpAddCircle(&emcmotDebug->queue, emcmotCommand->pos,
		    emcmotCommand->center, emcmotCommand->normal,
		    emcmotCommand->turn, emcmotCommand->motion_type,
                    emcmotCommand->vel, emcmotCommand->ini_maxvel,
                    emcmotCommand->acc, emcmotStatus->enables_new)) {
		reportError("can't add circular move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_BAD_EXEC;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else {
		SET_MOTION_ERROR_FLAG(0);
		/* set flag that indicates all axes need rehoming, if any
		   axis is moved in joint mode, for machines with no forward
		   kins */
		rehomeAll = 1;
	    }
	    break;

	case EMCMOT_SET_VEL:
	    /* set the velocity for subsequent moves */
	    /* can do it at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_VEL");
	    emcmotStatus->vel = emcmotCommand->vel;
	    tpSetVmax(&emcmotDebug->queue, emcmotStatus->vel, 
			    emcmotCommand->ini_maxvel);
	    break;

	case EMCMOT_SET_VEL_LIMIT:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_VEL_LIMIT");
	    emcmot_config_change();
	    /* set the absolute max velocity for all subsequent moves */
	    /* can do it at any time */
	    emcmotConfig->limitVel = emcmotCommand->vel;
	    tpSetVlimit(&emcmotDebug->queue, emcmotConfig->limitVel);
	    break;

	case EMCMOT_SET_JOINT_VEL_LIMIT:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_JOINT_VEL_LIMIT");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    /* check axis range */
	    if (joint == 0) {
		break;
	    }
	    joint->vel_limit = emcmotCommand->vel;
	    joint->big_vel = 10 * emcmotCommand->vel;
	    break;

	case EMCMOT_SET_JOINT_ACC_LIMIT:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_JOINT_ACC_LIMIT");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    emcmot_config_change();
	    /* check axis range */
	    if (joint == 0) {
		break;
	    }
	    joint->acc_limit = emcmotCommand->acc;
	    break;

	case EMCMOT_SET_ACC:
	    /* set the max acceleration */
	    /* can do it at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_ACCEL");
	    emcmotStatus->acc = emcmotCommand->acc;
	    tpSetAmax(&emcmotDebug->queue, emcmotStatus->acc);
	    break;

	case EMCMOT_PAUSE:
	    /* pause the motion */
	    /* can happen at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "PAUSE");
	    tpPause(&emcmotDebug->queue);
	    emcmotStatus->paused = 1;
	    break;

	case EMCMOT_RESUME:
	    /* resume paused motion */
	    /* can happen at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "RESUME");
	    emcmotDebug->stepping = 0;
	    tpResume(&emcmotDebug->queue);
	    emcmotStatus->paused = 0;
	    break;

	case EMCMOT_STEP:
	    /* resume paused motion until id changes */
	    /* can happen at any time */
            rtapi_print_msg(RTAPI_MSG_DBG, "STEP");
            if(emcmotStatus->paused) {
                emcmotDebug->idForStep = emcmotStatus->id;
                emcmotDebug->stepping = 1;
                tpResume(&emcmotDebug->queue);
                emcmotStatus->paused = 1;
            } else {
		reportError("MOTION: can't STEP while already executing");
	    }
	    break;

	case EMCMOT_FEED_SCALE:
	    /* override speed */
	    /* can happen at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "FEED SCALE");
	    if (emcmotCommand->scale < 0.0) {
		emcmotCommand->scale = 0.0;	/* clamp it */
	    }
	    emcmotStatus->feed_scale = emcmotCommand->scale;
	    break;

	case EMCMOT_FS_ENABLE:
	    /* enable/disable overriding speed */
	    /* can happen at any time */
	    if ( emcmotCommand->mode != 0 ) {
		rtapi_print_msg(RTAPI_MSG_DBG, "FEED SCALE: ON");
		emcmotStatus->enables_new |= FS_ENABLED;
            } else {
		rtapi_print_msg(RTAPI_MSG_DBG, "FEED SCALE: OFF");
		emcmotStatus->enables_new &= ~FS_ENABLED;
	    }
	    break;

	case EMCMOT_FH_ENABLE:
	    /* enable/disable feed hold */
	    /* can happen at any time */
	    if ( emcmotCommand->mode != 0 ) {
		rtapi_print_msg(RTAPI_MSG_DBG, "FEED HOLD: ENABLED");
		emcmotStatus->enables_new |= FH_ENABLED;
            } else {
		rtapi_print_msg(RTAPI_MSG_DBG, "FEED HOLD: DISABLED");
		emcmotStatus->enables_new &= ~FH_ENABLED;
	    }
	    break;

	case EMCMOT_SPINDLE_SCALE:
	    /* override spindle speed */
	    /* can happen at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE SCALE");
	    if (emcmotCommand->scale < 0.0) {
		emcmotCommand->scale = 0.0;	/* clamp it */
	    }
	    emcmotStatus->spindle_scale = emcmotCommand->scale;
	    break;

	case EMCMOT_SS_ENABLE:
	    /* enable/disable overriding spindle speed */
	    /* can happen at any time */
	    if ( emcmotCommand->mode != 0 ) {
		rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE SCALE: ON");
		emcmotStatus->enables_new |= SS_ENABLED;
            } else {
		rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE SCALE: OFF");
		emcmotStatus->enables_new &= ~SS_ENABLED;
	    }
	    break;

	case EMCMOT_AF_ENABLE:
	    /* enable/disable adaptive feedrate override from HAL pin */
	    /* can happen at any time */
	    if ( emcmotCommand->flags != 0 ) {
		rtapi_print_msg(RTAPI_MSG_DBG, "ADAPTIVE FEED: ON");
		emcmotStatus->enables_new |= AF_ENABLED;
            } else {
		rtapi_print_msg(RTAPI_MSG_DBG, "ADAPTIVE FEED: OFF");
		emcmotStatus->enables_new &= ~AF_ENABLED;
	    }
	    break;

	case EMCMOT_DISABLE:
	    /* go into disable */
	    /* can happen at any time */
	    /* reset the emcmotDebug->enabling flag to defer disable until
	       controller cycle (it *will* be honored) */
	    rtapi_print_msg(RTAPI_MSG_DBG, "DISABLE");
	    emcmotDebug->enabling = 0;
	    if (kinType == KINEMATICS_INVERSE_ONLY) {
		emcmotDebug->teleoperating = 0;
		emcmotDebug->coordinating = 0;
	    }
	    break;

	case EMCMOT_ENABLE:
	    /* come out of disable */
	    /* can happen at any time */
	    /* set the emcmotDebug->enabling flag to defer enable until
	       controller cycle */
	    rtapi_print_msg(RTAPI_MSG_DBG, "ENABLE");
	    if ( *(emcmot_hal_data->enable) == 0 ) {
		reportError("can't enable motion, enable input is false");
	    } else {
		emcmotDebug->enabling = 1;
		if (kinType == KINEMATICS_INVERSE_ONLY) {
		    emcmotDebug->teleoperating = 0;
		    emcmotDebug->coordinating = 0;
		}
	    }
	    break;

	case EMCMOT_ACTIVATE_JOINT:
	    /* make axis active, so that amps will be enabled when system is
	       enabled or disabled */
	    /* can be done at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "ACTIVATE_JOINT");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    if (joint == 0) {
		break;
	    }
	    SET_JOINT_ACTIVE_FLAG(joint, 1);
	    break;

	case EMCMOT_DEACTIVATE_JOINT:
	    /* make axis inactive, so that amps won't be affected when system
	       is enabled or disabled */
	    /* can be done at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "DEACTIVATE_AXIS");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    if (joint == 0) {
		break;
	    }
	    SET_JOINT_ACTIVE_FLAG(joint, 0);
	    break;
/*! \todo FIXME - need to replace the ext function */
	case EMCMOT_ENABLE_AMPLIFIER:
	    /* enable the amplifier directly, but don't enable calculations */
	    /* can be done at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "ENABLE_AMP");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    if (joint == 0) {
		break;
	    }
/*! \todo Another #if 0 */
#if 0
	    extAmpEnable(axis, 1);
#endif
	    break;

	case EMCMOT_DISABLE_AMPLIFIER:
	    /* disable the axis calculations and amplifier, but don't disable
	       calculations */
	    /* can be done at any time */
	    rtapi_print_msg(RTAPI_MSG_DBG, "DISABLE_AMP");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);
	    if (joint == 0) {
		break;
	    }
/*! \todo Another #if 0 */
#if 0
	    extAmpEnable(axis, 0);
#endif
	    break;

	case EMCMOT_HOME:
	    /* home the specified axis */
	    /* need to be in free mode, enable on */
	    /* this just sets the initial state, then the state machine in
	       control.c does the rest */
	    rtapi_print_msg(RTAPI_MSG_DBG, "HOME");
	    rtapi_print_msg(RTAPI_MSG_DBG, " %d", joint_num);

	    if (emcmotStatus->motion_state != EMCMOT_MOTION_FREE) {
		/* can't home unless in free mode */
		reportError("must be in joint mode to home");
		return;
	    }
	    if (!GET_MOTION_ENABLE_FLAG()) {
		break;
	    }

	    if(joint_num == -1) {
                if(emcmotStatus->homingSequenceState == HOME_SEQUENCE_IDLE)
                    emcmotStatus->homingSequenceState = HOME_SEQUENCE_START;
                else
                    reportError("homing sequence already in progress");
		break;
	    }

	    if (joint == NULL) {
		break;
	    }

            if(joint->home_state != HOME_IDLE) {
                reportError("homing already in progress");
            } else if(emcmotStatus->homingSequenceState != HOME_SEQUENCE_IDLE) {
                reportError("homing sequence already in progress");
            } else {
                /* abort any movement (jog, etc) that is in progress */
                joint->free_tp_enable = 0;
                
                /* prime the homing state machine */
                joint->home_state = HOME_START;
            }
	    break;

	case EMCMOT_ENABLE_WATCHDOG:
	    rtapi_print_msg(RTAPI_MSG_DBG, "ENABLE_WATCHDOG");
/*! \todo Another #if 0 */
#if 0
	    emcmotDebug->wdEnabling = 1;
	    emcmotDebug->wdWait = emcmotCommand->wdWait;
	    if (emcmotDebug->wdWait < 0) {
		emcmotDebug->wdWait = 0;
	    }
#endif
	    break;

	case EMCMOT_DISABLE_WATCHDOG:
	    rtapi_print_msg(RTAPI_MSG_DBG, "DISABLE_WATCHDOG");
/*! \todo Another #if 0 */
#if 0
	    emcmotDebug->wdEnabling = 0;
#endif
	    break;

	case EMCMOT_CLEAR_PROBE_FLAGS:
	    rtapi_print_msg(RTAPI_MSG_DBG, "CLEAR_PROBE_FLAGS");
	    emcmotStatus->probing = 0;
	    break;

	case EMCMOT_PROBE:
	    /* most of this is taken from EMCMOT_SET_LINE */
	    /* emcmotDebug->queue up a linear move */
	    /* requires coordinated mode, enable off, not on limits */
	    rtapi_print_msg(RTAPI_MSG_DBG, "PROBE");
	    if (!GET_MOTION_COORD_FLAG() || !GET_MOTION_ENABLE_FLAG()) {
		reportError
		    ("need to be enabled, in coord mode for probe move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_COMMAND;
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!inRange(emcmotCommand->pos)) {
		if(emcmotCommand->id > 0)
		    reportError("probe move on line %d would exceed limits",
			    emcmotCommand->id);
		else
		    reportError("probe move in MDI would exceed limits");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!limits_ok()) {
		reportError("can't do probe move with limits exceeded");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    }

	    /* append it to the emcmotDebug->queue */
	    tpSetId(&emcmotDebug->queue, emcmotCommand->id);
	    if (-1 == tpAddLine(&emcmotDebug->queue, emcmotCommand->pos, emcmotCommand->motion_type, emcmotCommand->vel, emcmotCommand->ini_maxvel, emcmotCommand->acc, emcmotStatus->enables_new)) {
		reportError("can't add probe move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_BAD_EXEC;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else {
		emcmotStatus->probing = 1;
		SET_MOTION_ERROR_FLAG(0);
		/* set flag that indicates all axes need rehoming, if any
		   axis is moved in joint mode, for machines with no forward
		   kins */
		rehomeAll = 1;
	    }
	    break;


	case EMCMOT_RIGID_TAP:
	    /* most of this is taken from EMCMOT_SET_LINE */
	    /* emcmotDebug->queue up a linear move */
	    /* requires coordinated mode, enable off, not on limits */
	    rtapi_print_msg(RTAPI_MSG_DBG, "RIGID_TAP");
	    if (!GET_MOTION_COORD_FLAG() || !GET_MOTION_ENABLE_FLAG()) {
		reportError
		    ("need to be enabled, in coord mode for rigid tap move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_COMMAND;
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!inRange(emcmotCommand->pos)) {
		if(emcmotCommand->id > 0)
		    reportError("rigid tap move on line %d would exceed limits",
			    emcmotCommand->id);
		else
		    reportError("rigid tap move in MDI would exceed limits");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else if (!limits_ok()) {
		reportError("can't do rigid tap move with limits exceeded");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_INVALID_PARAMS;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    }

	    /* append it to the emcmotDebug->queue */
	    tpSetId(&emcmotDebug->queue, emcmotCommand->id);
	    if (-1 == tpAddRigidTap(&emcmotDebug->queue, emcmotCommand->pos, emcmotCommand->vel, emcmotCommand->ini_maxvel, emcmotCommand->acc, emcmotStatus->enables_new)) {
		reportError("can't add rigid tap move");
		emcmotStatus->commandStatus = EMCMOT_COMMAND_BAD_EXEC;
		tpAbort(&emcmotDebug->queue);
		SET_MOTION_ERROR_FLAG(1);
		break;
	    } else {
		SET_MOTION_ERROR_FLAG(0);
	    }
	    break;

	case EMCMOT_SET_TELEOP_VECTOR:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_TELEOP_VECTOR");
	    if (!GET_MOTION_TELEOP_FLAG() || !GET_MOTION_ENABLE_FLAG()) {
		reportError
		    ("need to be enabled, in teleop mode for teleop move");
	    } else {
		double velmag;
		emcmotDebug->teleop_data.desiredVel = emcmotCommand->pos;
		pmCartMag(emcmotDebug->teleop_data.desiredVel.tran, &velmag);
		if (emcmotDebug->teleop_data.desiredVel.a > velmag) {
		    velmag = emcmotDebug->teleop_data.desiredVel.a;
		}
		if (emcmotDebug->teleop_data.desiredVel.b > velmag) {
		    velmag = emcmotDebug->teleop_data.desiredVel.b;
		}
		if (emcmotDebug->teleop_data.desiredVel.c > velmag) {
		    velmag = emcmotDebug->teleop_data.desiredVel.c;
		}
		if (velmag > emcmotConfig->limitVel) {
		    pmCartScalMult(emcmotDebug->teleop_data.desiredVel.tran,
			emcmotConfig->limitVel / velmag,
			&emcmotDebug->teleop_data.desiredVel.tran);
		    emcmotDebug->teleop_data.desiredVel.a *=
			emcmotConfig->limitVel / velmag;
		    emcmotDebug->teleop_data.desiredVel.b *=
			emcmotConfig->limitVel / velmag;
		    emcmotDebug->teleop_data.desiredVel.c *=
			emcmotConfig->limitVel / velmag;
		}
		/* flag that all joints need to be homed, if any joint is
		   jogged individually later */
		rehomeAll = 1;
	    }
	    break;

	case EMCMOT_SET_DEBUG:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_DEBUG");
	    emcmotConfig->debug = emcmotCommand->debug;
	    emcmot_config_change();
	    break;

	/* needed for synchronous I/O */
	case EMCMOT_SET_AOUT:
	    if (emcmotCommand->now) { //we set it right away
		emcmotAioWrite(emcmotCommand->out, emcmotCommand->minLimit);
	    } else { // we put it on the TP queue, warning: only room for one in there, any new ones will overwrite
		tpSetAout(&emcmotDebug->queue, emcmotCommand->out,
		    emcmotCommand->start, emcmotCommand->end);
	    }
	    break;

	case EMCMOT_SET_DOUT:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_DOUT");
	    if (emcmotCommand->now) { //we set it right away
		emcmotDioWrite(emcmotCommand->out, emcmotCommand->start);
	    } else { // we put it on the TP queue, warning: only room for one in there, any new ones will overwrite
		tpSetDout(&emcmotDebug->queue, emcmotCommand->out,
		    emcmotCommand->start, emcmotCommand->end);
	    }
	    break;

	case EMCMOT_SET_SPINDLE_VEL:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_SPINDLE_VEL");
	    emcmotStatus->spindle.speed = emcmotCommand->vel;
	    break;
	    
	case EMCMOT_SPINDLE_ON:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE_ON");
	    emcmotStatus->spindle.speed = emcmotCommand->vel;
	    emcmotStatus->spindle.css_factor = emcmotCommand->ini_maxvel;
	    emcmotStatus->spindle.xoffset = emcmotCommand->acc;
	    if (emcmotCommand->vel >= 0) {
		emcmotStatus->spindle.direction = 1;
	    } else {
		emcmotStatus->spindle.direction = -1;
	    }
	    emcmotStatus->spindle.brake = 0; //disengage brake
	    break;

	case EMCMOT_SPINDLE_OFF:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE_OFF");
	    emcmotStatus->spindle.speed = 0;
	    emcmotStatus->spindle.direction = 0;
	    emcmotStatus->spindle.brake = 1; // engage brake
	    break;

	case EMCMOT_SPINDLE_INCREASE:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE_INCREASE");
	    if (emcmotStatus->spindle.speed > 0) {
		emcmotStatus->spindle.speed += 100; //FIXME - make the step a HAL parameter
	    } else if (emcmotStatus->spindle.speed < 0) {
		emcmotStatus->spindle.speed -= 100;
	    }
	    break;

	case EMCMOT_SPINDLE_DECREASE:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE_DECREASE");
	    if (emcmotStatus->spindle.speed > 100) {
		emcmotStatus->spindle.speed -= 100; //FIXME - make the step a HAL parameter
	    } else if (emcmotStatus->spindle.speed < -100) {
		emcmotStatus->spindle.speed += 100;
	    }
	    break;

	case EMCMOT_SPINDLE_BRAKE_ENGAGE:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE_BRAKE_ENGAGE");
	    emcmotStatus->spindle.speed = 0;
	    emcmotStatus->spindle.direction = 0;
	    emcmotStatus->spindle.brake = 1;
	    break;

	case EMCMOT_SPINDLE_BRAKE_RELEASE:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SPINDLE_BRAKE_RELEASE");
	    emcmotStatus->spindle.brake = 0;
	    break;

	case EMCMOT_SET_JOINT_COMP:
	    rtapi_print_msg(RTAPI_MSG_DBG, "SET_JOINT_COMP for joint %d", joint_num);
	    if (joint == 0) {
		break;
	    }
	    if (joint->comp.entries >= EMCMOT_COMP_SIZE) {
		reportError("joint %d: too many compensation entries", joint_num);
		break;
	    }
	    /* point to last entry */
	    comp_entry = &(joint->comp.array[joint->comp.entries]);
	    if (emcmotCommand->comp_nominal <= comp_entry[0].nominal) {
		reportError("joint %d: compensation values must increase", joint_num);
		break;
	    }
	    /* store data to new entry */
	    comp_entry[1].nominal = emcmotCommand->comp_nominal;
	    comp_entry[1].fwd_trim = emcmotCommand->comp_forward;
	    comp_entry[1].rev_trim = emcmotCommand->comp_reverse;
	    /* calculate slopes from previous entry to the new one */
	    if ( comp_entry[0].nominal != -HUGE_VAL ) {
		/* but only if the previous entry is "real" */
		tmp1 = comp_entry[1].nominal - comp_entry[0].nominal;
		comp_entry[0].fwd_slope =
		    (comp_entry[1].fwd_trim - comp_entry[0].fwd_trim) / tmp1;
		comp_entry[0].rev_slope =
		    (comp_entry[1].rev_trim - comp_entry[0].rev_trim) / tmp1;
	    } else {
		/* previous entry is at minus infinity, slopes are zero */
		comp_entry[0].fwd_trim = comp_entry[1].fwd_trim;
		comp_entry[0].rev_trim = comp_entry[1].rev_trim;
	    }
	    joint->comp.entries++;
	    break;

	default:
	    rtapi_print_msg(RTAPI_MSG_DBG, "UNKNOWN");
	    reportError("unrecognized command %d", emcmotCommand->command);
	    emcmotStatus->commandStatus = EMCMOT_COMMAND_UNKNOWN_COMMAND;
	    break;

	}			/* end of: command switch */
	if (emcmotStatus->commandStatus != EMCMOT_COMMAND_OK) {
	    rtapi_print_msg(RTAPI_MSG_DBG, "ERRROR: %d",
		emcmotStatus->commandStatus);
	}
	rtapi_print_msg(RTAPI_MSG_DBG, "\n");
	/* synch tail count */
	emcmotStatus->tail = emcmotStatus->head;
	emcmotConfig->tail = emcmotConfig->head;
	emcmotDebug->tail = emcmotDebug->head;

    }
    /* end of: if-new-command */
check_stuff ( "after command_handler()" );

    return;
}