Exemple #1
0
void GenSOM::train(const multi_img &input, ProgressObserver *po)
{
	std::cout << "Start feeding" << std::endl;

	// matrices hold shuffled sequences of the input for number of iterations
	int maxIter = config.maxIter;
	cv::Mat_<int> shuffledY(1, maxIter);
	cv::Mat_<int> shuffledX(1, maxIter);

	// generate random sequence of the input x,y range
	cv::RNG rng(config.seed);
	rng.fill(shuffledY, cv::RNG::UNIFORM,
			 cv::Scalar(0), cv::Scalar(input.height));
	rng.fill(shuffledX, cv::RNG::UNIFORM,
			 cv::Scalar(0), cv::Scalar(input.width));

	// output percentage
	unsigned int hundred = std::max<unsigned int>(maxIter/100, 100);
	int percent = 1;
	if (config.verbosity > 0) {
		std::cout << "  0 %";
		std::cout.flush();
	}
	long sumOfUpdates = 0;

	// starting training (notifier needed by OpenCL impl.)
	notifyTrainingStart();

	cv::MatConstIterator_<int> itY = shuffledY.begin();
	cv::MatConstIterator_<int> itX = shuffledX.begin();
	for (int curIter = 0; curIter < maxIter; ++curIter, ++itX, ++itY)
	{
		// feed one sample
		const multi_img::Pixel &vec = input(*itY, *itX);
		sumOfUpdates += trainSingle(vec, curIter, maxIter);

		// print progress (and maybe exit)
		if ((config.verbosity > 0 || po) && (config.maxIter > 100)
			&& ((curIter % hundred) == 0) && (percent < 100)) {

			// send progress updates to observer or stdout
			if (po) {
				bool cont = po->update(curIter / (float)config.maxIter);
				if (!cont) {
					std::cerr << "Aborting training" << std::endl;
					return;
				}
			} else {
				std::cout << "\r " << (percent < 10 ? " " : "")
						  << percent << " %";
				std::cout.flush();
			}
			if (config.verbosity >= 2) {
				std::cout << " Feed #" << curIter
						  << ", avg. updates per iteration in the last "
						  << (maxIter / hundred) << " iterations: "
						  << ((double)sumOfUpdates / hundred)
						  << std::endl;
				sumOfUpdates = 0;
			}

			// print som each 20%
			if (config.verbosity >= 3 && (percent % 20) == 0)
			{
				// TODO
				/*multi_img somimg = som->export_2d();
				std::ostringstream filename, filename2;
				filename << "debug_som_";
				filename << std::setfill('0') << std::setw(2);
				filename << (ctr / (config.maxIter / 20));
				somimg.write_out(filename.str());
				filename2 << filename.str();

				filename << "-rgb.png";
				cv::imwrite(filename.str(), somimg.bgr() * 255.f);

				if (!updateMap.empty()) {
					cv::Mat3f upBGR(updateMap.rows, updateMap.cols);
					cv::cvtColor(updateMap, upBGR, CV_GRAY2BGR);
					for (cv::Mat3f::iterator it = upBGR.begin(); it != upBGR.end();++it)
						if (*it == cv::Vec3f(0.f))
							*it = cv::Vec3f(0.f, 0.f, 1.f);

					filename2 << "-updates.png";
					cv::imwrite(filename2.str(), upBGR * 255.f);
				}*/
			}

			percent++;
		}
	}
	if (config.verbosity > 0)
		std::cout << "\r100 %" <<std::endl;

	// finished training (notifier needed by OpenCL impl.)
	notifyTrainingEnd();

	std::cout <<"# Feeding done" <<std::endl;

	if (!config.somFile.empty()) {
		std::cout << "# writing SOM in binary format to \""
				  << config.somFile << "\"" << std::endl;
		saveFile(config.somFile);
	}
    if (config.verbosity > 2) {
        cv::imwrite("debug_som.png", bgr(input.meta, input.maxval)*255.f);
    }
 }
Exemple #2
0
void ViTrainer::trainSingle(ViNeuralNetwork *network)
{
	setNetwork(network);
	trainSingle();
}