Exemple #1
0
struct evdns_server_port *
regress_get_dnsserver(struct event_base *base,
    ev_uint16_t *portnum,
    evutil_socket_t *psock,
    evdns_request_callback_fn_type cb,
    void *arg)
{
	struct evdns_server_port *port = NULL;
	evutil_socket_t sock;
	struct sockaddr_in my_addr;

	sock = socket(AF_INET, SOCK_DGRAM, 0);
	if (sock <= 0) {
		tt_abort_perror("socket");
	}

	evutil_make_socket_nonblocking(sock);

	memset(&my_addr, 0, sizeof(my_addr));
	my_addr.sin_family = AF_INET;
	my_addr.sin_port = htons(*portnum);
	my_addr.sin_addr.s_addr = htonl(0x7f000001UL);
	if (bind(sock, (struct sockaddr*)&my_addr, sizeof(my_addr)) < 0) {
		tt_abort_perror("bind");
	}
	port = evdns_add_server_port_with_base(base, sock, 0, cb, arg);
	if (!*portnum)
		*portnum = regress_get_socket_port(sock);
	if (psock)
		*psock = sock;

	return port;
end:
	return NULL;
}
Exemple #2
0
static void
thread_basic(void *arg)
{
	THREAD_T threads[NUM_THREADS];
	struct event ev;
	struct timeval tv;
	int i;
	struct basic_test_data *data = arg;
	struct event_base *base = data->base;

	struct event *notification_event = NULL;
	struct event *sigchld_event = NULL;

	EVTHREAD_ALLOC_LOCK(count_lock, 0);
	tt_assert(count_lock);

	tt_assert(base);
	if (evthread_make_base_notifiable(base)<0) {
		tt_abort_msg("Couldn't make base notifiable!");
	}

#ifndef WIN32
	if (data->setup_data && !strcmp(data->setup_data, "forking")) {
		pid_t pid;
		int status;
		sigchld_event = evsignal_new(base, SIGCHLD, sigchld_cb, base);
		/* This piggybacks on the th_notify_fd weirdly, and looks
		 * inside libevent internals.  Not a good idea in non-testing
		 * code! */
		notification_event = event_new(base,
		    base->th_notify_fd[0], EV_READ|EV_PERSIST, notify_fd_cb,
		    NULL);
		event_add(sigchld_event, NULL);
		event_add(notification_event, NULL);

		if ((pid = fork()) == 0) {
			event_del(notification_event);
			if (event_reinit(base) < 0) {
				TT_FAIL(("reinit"));
				exit(1);
			}
			event_assign(notification_event, base,
			    base->th_notify_fd[0], EV_READ|EV_PERSIST,
			    notify_fd_cb, NULL);
			event_add(notification_event, NULL);
	 		goto child;
		}

		event_base_dispatch(base);

		if (waitpid(pid, &status, 0) == -1)
			tt_abort_perror("waitpid");
		TT_BLATHER(("Waitpid okay\n"));

		tt_assert(got_sigchld);
		tt_int_op(notification_fd_used, ==, 0);

		goto end;
	}
Exemple #3
0
static void
test_edgetriggered(void *et)
{
	struct event *ev = NULL;
	struct event_base *base = NULL;
	const char *test = "test string";
	evutil_socket_t pair[2] = {-1,-1};
	int supports_et;

	if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair) == -1) {
		tt_abort_perror("socketpair");
	}

	called = was_et = 0;

	send(pair[0], test, (int)strlen(test)+1, 0);
	shutdown(pair[0], SHUT_WR);

	/* Initalize the event library */
	base = event_base_new();

	if (!strcmp(event_base_get_method(base), "epoll") ||
	    !strcmp(event_base_get_method(base), "epoll (with changelist)") ||
	    !strcmp(event_base_get_method(base), "kqueue"))
		supports_et = 1;
	else
		supports_et = 0;

	TT_BLATHER(("Checking for edge-triggered events with %s, which should %s"
				"support edge-triggering", event_base_get_method(base),
				supports_et?"":"not "));

	/* Initalize one event */
	ev = event_new(base, pair[1], EV_READ|EV_ET|EV_PERSIST, read_cb, &ev);

	event_add(ev, NULL);

	/* We're going to call the dispatch function twice.  The first invocation
	 * will read a single byte from pair[1] in either case.  If we're edge
	 * triggered, we'll only see the event once (since we only see transitions
	 * from no data to data), so the second invocation of event_base_loop will
	 * do nothing.  If we're level triggered, the second invocation of
	 * event_base_loop will also activate the event (because there's still
	 * data to read). */
	event_base_loop(base,EVLOOP_NONBLOCK|EVLOOP_ONCE);
	event_base_loop(base,EVLOOP_NONBLOCK|EVLOOP_ONCE);

	if (supports_et) {
		tt_int_op(called, ==, 1);
		tt_assert(was_et);
	} else {
static void
test_edgetriggered(void *et)
{
	struct event *ev = NULL;
	struct event_base *base = NULL;
	const char *test = "test string";
	evutil_socket_t pair[2] = {-1,-1};
	int supports_et;

	/* On Linux 3.2.1 (at least, as patched by Fedora and tested by Nick),
	 * doing a "recv" on an AF_UNIX socket resets the readability of the
	 * socket, even though there is no state change, so we don't actually
	 * get edge-triggered behavior.  Yuck!  Linux 3.1.9 didn't have this
	 * problem.
	 */
#ifdef __linux__
	if (evutil_ersatz_socketpair_(AF_INET, SOCK_STREAM, 0, pair) == -1) {
		tt_abort_perror("socketpair");
	}
#else
	if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair) == -1) {
		tt_abort_perror("socketpair");
	}
#endif

	called = was_et = 0;

	tt_int_op(send(pair[0], test, (int)strlen(test)+1, 0), >, 0);
	shutdown(pair[0], SHUT_WR);

	/* Initalize the event library */
	base = event_base_new();

	if (!strcmp(event_base_get_method(base), "epoll") ||
	    !strcmp(event_base_get_method(base), "epoll (with changelist)") ||
	    !strcmp(event_base_get_method(base), "kqueue"))
		supports_et = 1;
	else
		supports_et = 0;

	TT_BLATHER(("Checking for edge-triggered events with %s, which should %s"
				"support edge-triggering", event_base_get_method(base),
				supports_et?"":"not "));

	/* Initalize one event */
	ev = event_new(base, pair[1], EV_READ|EV_ET|EV_PERSIST, read_cb, &ev);

	event_add(ev, NULL);

	/* We're going to call the dispatch function twice.  The first invocation
	 * will read a single byte from pair[1] in either case.  If we're edge
	 * triggered, we'll only see the event once (since we only see transitions
	 * from no data to data), so the second invocation of event_base_loop will
	 * do nothing.  If we're level triggered, the second invocation of
	 * event_base_loop will also activate the event (because there's still
	 * data to read). */
	event_base_loop(base,EVLOOP_NONBLOCK|EVLOOP_ONCE);
	event_base_loop(base,EVLOOP_NONBLOCK|EVLOOP_ONCE);

	if (supports_et) {
		tt_int_op(called, ==, 1);
		tt_assert(was_et);
	} else {
Exemple #5
0
static void
dns_server(void)
{
        evutil_socket_t sock=-1;
	struct sockaddr_in my_addr;
	struct evdns_server_port *port=NULL;
	struct in_addr resolve_addr;
	struct in6_addr resolve_addr6;
	struct evdns_base *base=NULL;
	struct evdns_request *req=NULL;

	dns_ok = 1;

	base = evdns_base_new(NULL, 0);

	/* Add ourself as the only nameserver, and make sure we really are
	 * the only nameserver. */
	evdns_base_nameserver_ip_add(base, "127.0.0.1:35353");

	tt_int_op(evdns_base_count_nameservers(base), ==, 1);
	/* Now configure a nameserver port. */
	sock = socket(AF_INET, SOCK_DGRAM, 0);
        if (sock<0) {
                tt_abort_perror("socket");
        }

        evutil_make_socket_nonblocking(sock);

	memset(&my_addr, 0, sizeof(my_addr));
	my_addr.sin_family = AF_INET;
	my_addr.sin_port = htons(35353);
	my_addr.sin_addr.s_addr = htonl(0x7f000001UL);
	if (bind(sock, (struct sockaddr*)&my_addr, sizeof(my_addr)) < 0) {
		tt_abort_perror("bind");
	}
	port = evdns_add_server_port(sock, 0, dns_server_request_cb, NULL);

	/* Send some queries. */
	evdns_base_resolve_ipv4(base, "zz.example.com", DNS_QUERY_NO_SEARCH,
					   dns_server_gethostbyname_cb, NULL);
	evdns_base_resolve_ipv6(base, "zz.example.com", DNS_QUERY_NO_SEARCH,
					   dns_server_gethostbyname_cb, NULL);
	resolve_addr.s_addr = htonl(0xc0a80b0bUL); /* 192.168.11.11 */
	evdns_base_resolve_reverse(base, &resolve_addr, 0,
            dns_server_gethostbyname_cb, NULL);
	memcpy(resolve_addr6.s6_addr,
	    "\xff\xf0\x00\x00\x00\x00\xaa\xaa"
	    "\x11\x11\x00\x00\x00\x00\xef\xef", 16);
	evdns_base_resolve_reverse_ipv6(base, &resolve_addr6, 0,
            dns_server_gethostbyname_cb, (void*)6);

	req = evdns_base_resolve_ipv4(base,
	    "drop.example.com", DNS_QUERY_NO_SEARCH,
	    dns_server_gethostbyname_cb, (void*)(char*)90909);

	evdns_cancel_request(base, req);

	event_dispatch();

	tt_assert(dns_got_cancel);
        test_ok = dns_ok;

end:
        if (port)
                evdns_close_server_port(port);
        if (sock >= 0)
                EVUTIL_CLOSESOCKET(sock);
	if (base)
		evdns_base_free(base, 0);
}
Exemple #6
0
void
test_bufferevent_zlib(void *arg)
{
	struct bufferevent *bev1=NULL, *bev2=NULL;
	char buffer[8333];
	z_stream z_input, z_output;
	int i, pair[2]={-1,-1}, r;
	(void)arg;

	infilter_calls = outfilter_calls = readcb_finished = writecb_finished
	    = errorcb_invoked = 0;

	if (evutil_socketpair(AF_UNIX, SOCK_STREAM, 0, pair) == -1) {
		tt_abort_perror("socketpair");
	}

	evutil_make_socket_nonblocking(pair[0]);
	evutil_make_socket_nonblocking(pair[1]);

	bev1 = bufferevent_socket_new(NULL, pair[0], 0);
	bev2 = bufferevent_socket_new(NULL, pair[1], 0);

	memset(&z_output, 0, sizeof(z_output));
	r = deflateInit(&z_output, Z_DEFAULT_COMPRESSION);
	tt_int_op(r, ==, Z_OK);
	memset(&z_input, 0, sizeof(z_input));
	r = inflateInit(&z_input);
	tt_int_op(r, ==, Z_OK);

	/* initialize filters */
	bev1 = bufferevent_filter_new(bev1, NULL, zlib_output_filter,
	    BEV_OPT_CLOSE_ON_FREE, zlib_deflate_free, &z_output);
	bev2 = bufferevent_filter_new(bev2, zlib_input_filter,
	    NULL, BEV_OPT_CLOSE_ON_FREE, zlib_inflate_free, &z_input);
	bufferevent_setcb(bev1, readcb, writecb, errorcb, NULL);
	bufferevent_setcb(bev2, readcb, writecb, errorcb, NULL);

	bufferevent_disable(bev1, EV_READ);
	bufferevent_enable(bev1, EV_WRITE);

	bufferevent_enable(bev2, EV_READ);

	for (i = 0; i < (int)sizeof(buffer); i++)
		buffer[i] = i;

	/* break it up into multiple buffer chains */
	bufferevent_write(bev1, buffer, 1800);
	bufferevent_write(bev1, buffer + 1800, sizeof(buffer) - 1800);

	/* we are done writing - we need to flush everything */
	bufferevent_flush(bev1, EV_WRITE, BEV_FINISHED);

	event_dispatch();

	tt_want(infilter_calls);
	tt_want(outfilter_calls);
	tt_want(readcb_finished);
	tt_want(writecb_finished);
	tt_want(!errorcb_invoked);

	test_ok = 1;
end:
	if (bev1)
		bufferevent_free(bev1);
	if (bev2)
		bufferevent_free(bev2);

	if (pair[0] >= 0)
		evutil_closesocket(pair[0]);
	if (pair[1] >= 0)
		evutil_closesocket(pair[1]);
}
Exemple #7
0
static void
test_config_check_or_create_data_subdir(void *arg)
{
  or_options_t *options = get_options_mutable();
  char *datadir;
  const char *subdir = "test_stats";
  char *subpath;
  struct stat st;
  int r;
#if !defined (_WIN32)
  unsigned group_permission;
#endif
  (void)arg;

  tor_free(options->DataDirectory);
  datadir = options->DataDirectory = tor_strdup(get_fname("datadir-0"));
  subpath = get_datadir_fname(subdir);

#if defined (_WIN32)
  tt_int_op(mkdir(options->DataDirectory), ==, 0);
#else
  tt_int_op(mkdir(options->DataDirectory, 0700), ==, 0);
#endif

  r = stat(subpath, &st);

  // The subdirectory shouldn't exist yet,
  // but should be created by the call to check_or_create_data_subdir.
  test_assert(r && (errno == ENOENT));
  test_assert(!check_or_create_data_subdir(subdir));
  test_assert(is_private_dir(subpath));

  // The check should return 0, if the directory already exists
  // and is private to the user.
  test_assert(!check_or_create_data_subdir(subdir));

  r = stat(subpath, &st);
  if (r) {
    tt_abort_perror("stat");
  }

#if !defined (_WIN32)
  group_permission = st.st_mode | 0070;
  r = chmod(subpath, group_permission);

  if (r) {
    tt_abort_perror("chmod");
  }

  // If the directory exists, but its mode is too permissive
  // a call to check_or_create_data_subdir should reset the mode.
  test_assert(!is_private_dir(subpath));
  test_assert(!check_or_create_data_subdir(subdir));
  test_assert(is_private_dir(subpath));
#endif

 done:
  rmdir(subpath);
  tor_free(datadir);
  tor_free(subpath);
}