Exemple #1
0
void
mexFunction(int nout, mxArray *out[], 
            int nin, const mxArray *in[])
{
  enum { X=0,Y } ;
  enum { U } ;
  
  int NP, NCP ;
  int i,j ;
  double *X_pt, *Y_pt, *U_pt ;  
  const double small = 2.220446049250313e-16 ;
	  
  /* -----------------------------------------------------------------
   *                                               Check the arguments
   * -------------------------------------------------------------- */
  if(nin != 2) {
    mexErrMsgTxt("Two input arguments required") ;
  }
  
  if(!uIsRealMatrix(in[X], 2, -1)) {
    mexErrMsgTxt("X must be a 2xNP real matrix") ;
  }
  
  if(!uIsRealMatrix(in[Y], 2, -1)) {
    mexErrMsgTxt("Y must be a 2xNCP real matrix") ;
  }

  NP  = getN(X) ;
  NCP = getN(Y) ;

  X_pt = getPr(X);
  Y_pt = getPr(Y) ;
  
  /* Allocate the result. */
  out[U] = mxCreateDoubleMatrix(NP, NCP, mxREAL) ;
  U_pt = mxGetPr(out[U]) ;
    
  /* -----------------------------------------------------------------
   *                                               Check the arguments
   * -------------------------------------------------------------- */
  for(j = 0 ; j < NCP ; ++j) {
    double xcp = *Y_pt++ ;
    double ycp = *Y_pt++ ;
    for(i = 0 ; i < NP ; ++i) {
      double dx = *X_pt++ - xcp ;
      double dy = *X_pt++ - ycp ;
      double r2 = dx*dx + dy*dy ;
      *U_pt++ = (r2 <= small) ? 0 : r2 * log (r2) ;			
    }
    X_pt -= 2*NP ;		
  }
}
Exemple #2
0
void 
mexFunction(int nout, mxArray *out[], 
            int nin, const mxArray *in[])
{
  int k,K ;
  double const * om_pt ;
  double* R_pt ;
  double* dR_pt ;

  if(nin != 1) {
    mexErrMsgTxt("Exactly one argument required.") ;
  }

  if(!uIsRealMatrix(in[IN_OM],-1,-1)) {
    mexErrMsgTxt("OM must be a DOUBLE array") ;
  }

  K = mxGetNumberOfElements(in[IN_OM]) ;
  if(K % 3 || K < 3) {
    mexErrMsgTxt("The number of elements of OM must be a multiple of 3") ;
  }
  K /= 3 ;
  om_pt = mxGetPr(in[IN_OM]) ;

  /* space for output (R) */
  if( K == 1 ) {
    out[OUT_R] = mxCreateDoubleMatrix(3,3,mxREAL) ;
  } else {
    mwSize dims [3] ;
    dims[0] = 3 ; dims[1] = 3 ; dims[2] = K ;
    out[OUT_R] = mxCreateNumericArray(3,dims,mxDOUBLE_CLASS,mxREAL) ;
  }
  R_pt = mxGetPr(out[OUT_R]) ;

  /* space for optional output (dR) */
  dR_pt = NULL ;
  if( nout > 1 ) {
    if( K == 1 ) {
      out[OUT_DR] = mxCreateDoubleMatrix(9,3,mxREAL) ;
    } else {
      mwSize dims [3] ;
      dims[0] = 9 ; dims[1] = 3 ; dims[2] = K ;
      out[OUT_DR] = mxCreateNumericArray(3,dims,mxDOUBLE_CLASS,mxREAL) ;
    }
    dR_pt = mxGetPr(out[OUT_DR]) ;
  }

  /* -----------------------------------------------------------------
  **                                                           Process
  ** -------------------------------------------------------------- */
  for(k = 0 ; k < K ; ++k) {
    vl_rodrigues(R_pt, dR_pt, om_pt) ;
    om_pt += 3 ;
    R_pt  += 3*3 ;
    dR_pt += 9*3 ;
  }  
}
void 
mexFunction(int nout, mxArray *out[], 
            int nin, const mxArray *in[])
{
  int k,K ;
  double* om_pt ;
  double* dom_pt ;
  double const * R_pt ;

  /* -----------------------------------------------------------------
  **                                               Check the arguments
  ** -------------------------------------------------------------- */
  if(nin != 1) {
    mexErrMsgTxt("Exactly one argument required.") ;
  }

  if(!uIsRealMatrix(in[IN_R],-1,-1)) {
    mexErrMsgTxt("R must be a DOUBLE array") ;
  }

  K = mxGetNumberOfElements(in[IN_R]) ;
  if(K % 9 || K < 9) {
    mexErrMsgTxt("The elements of R must be a multiple of 9.") ;
  }
  K /= 9 ;
  R_pt = mxGetPr(in[IN_R]) ;

  /* space for output (OM) */
  out[OUT_OM] = mxCreateDoubleMatrix(3,1,mxREAL) ;
  om_pt = mxGetPr(out[OUT_OM]) ;

  /* space for optional output (dR) */
  dom_pt = NULL ;
  if( nout > 1 ) {
    if( K == 1 ) {
      out[OUT_DOM] = mxCreateDoubleMatrix(3,9,mxREAL) ;
    } else {
      mwSize dims [3] ;
      dims[0] = 3 ; dims[1] = 9 ; dims[2] = K ;
      out[OUT_DOM] = mxCreateNumericArray(3,dims,mxDOUBLE_CLASS,mxREAL) ;
    }
    dom_pt = mxGetPr(out[OUT_DOM]) ;
  }

  /* -----------------------------------------------------------------
  **                                                           Process
  ** -------------------------------------------------------------- */
  for(k = 0 ; k < K ; ++k) {
    vl_irodrigues(om_pt, dom_pt, R_pt) ;
    om_pt  += 3 ;
    dom_pt += 3*9 ;
    R_pt   += 3*3 ;
  }
  
}
/** @brief MATLAB Driver.
 **/
void
mexFunction(int nout, mxArray *out[], 
            int nin, const mxArray *in[])
{
  int M,N,S=0,smin=0,K,num_levels=0 ;
  const int* dimensions ;
  const double* P_pt ;
  const double* G_pt ;
  float* descr_pt ;
  float* buffer_pt ;
  float sigma0 ;
  float magnif = 3.0f ; /* Spatial bin extension factor. */
  int NBP = 4 ;         /* Number of bins for one spatial direction (even). */
  int NBO = 8 ;         /* Number of bins for the ortientation. */
  int mode = NOSCALESPACE ;
  int buffer_size=0;

  enum {IN_G=0,IN_P,IN_SIGMA0,IN_S,IN_SMIN} ;
  enum {OUT_L=0} ;

  /* ------------------------------------------------------------------
  **                                                Check the arguments
  ** --------------------------------------------------------------- */ 
 
  if (nin < 3) {
    mexErrMsgTxt("At least three arguments are required") ;
  } else if (nout > 1) {
    mexErrMsgTxt("Too many output arguments.");
  }
                
  if( !uIsRealScalar(in[IN_SIGMA0]) ) {
    mexErrMsgTxt("SIGMA0 should be a real scalar") ;
  }
        
  if(!mxIsDouble(in[IN_G]) ||
     mxGetNumberOfDimensions(in[IN_G]) > 3) {
    mexErrMsgTxt("G should be a real matrix or 3-D array") ;
  }
  
  sigma0 = (float) *mxGetPr(in[IN_SIGMA0]) ;
  
  dimensions = mxGetDimensions(in[IN_G]) ;
  M = dimensions[0] ;
  N = dimensions[1] ;
  G_pt = mxGetPr(in[IN_G]) ;
  
  P_pt = mxGetPr(in[IN_P]) ;    
  K = mxGetN(in[IN_P]) ;
  
  if( !uIsRealMatrix(in[IN_P],-1,-1)) {
    mexErrMsgTxt("P should be a real matrix") ;
  }

  if ( mxGetM(in[IN_P])  == 4) {
    /* Standard (scale space) mode */ 
    mode = SCALESPACE ;
    num_levels = dimensions[2] ;
    
    if(nin < 5) {
      mexErrMsgTxt("Five arguments are required in standard mode") ;
    }
    
    if( !uIsRealScalar(in[IN_S]) ) {
      mexErrMsgTxt("S should be a real scalar") ;
    }
    
    if( !uIsRealScalar(in[IN_SMIN]) ) {
      mexErrMsgTxt("SMIN should be a real scalar") ;
    }
    
    if( !uIsRealMatrix(in[IN_P],4,-1)) {
      mexErrMsgTxt("When the e mode P should be a 4xK matrix.") ;
    }
    
    S = (int)(*mxGetPr(in[IN_S])) ;
    smin = (int)(*mxGetPr(in[IN_SMIN])) ;
    
  } else if (  mxGetM(in[IN_P])  == 3 ) {
    mode = NOSCALESPACE ;
    num_levels = 1 ;
    S      = 1 ;
    smin   = 0 ;
  } else {
    mexErrMsgTxt("P should be either a 3xK or a 4xK matrix.") ;
  }

  /* Parse the property-value pairs */
  {
    char str [80] ;
    int arg = (mode == SCALESPACE) ? IN_SMIN + 1 : IN_SIGMA0 + 1 ;

    while(arg < nin) {
      int k ;

      if( !uIsString(in[arg],-1) ) {
        mexErrMsgTxt("The first argument in a property-value pair"
                     " should be a string") ;
      }
      mxGetString(in[arg], str, 80) ;

#ifdef WINDOWS      
      for(k = 0 ; properties[k] && strcmpi(str, properties[k]) ; ++k) ;
#else
      for(k = 0 ; properties[k] && strcasecmp(str, properties[k]) ; ++k) ;
#endif

      switch (k) {
      case PROP_NBP:
        if( !uIsRealScalar(in[arg+1]) ) {
          mexErrMsgTxt("'NumSpatialBins' should be real scalar") ;
        }
        NBP = (int) *mxGetPr(in[arg+1]) ;
        if( NBP <= 0 || (NBP & 0x1) ) {
          mexErrMsgTxt("'NumSpatialBins' must be positive and even") ;
        }
        break ;

      case PROP_NBO:
        if( !uIsRealScalar(in[arg+1]) ) {
          mexErrMsgTxt("'NumOrientBins' should be a real scalar") ;
        }
        NBO = (int) *mxGetPr(in[arg+1]) ;
        if( NBO <= 0 ) {
          mexErrMsgTxt("'NumOrientlBins' must be positive") ;
        }
        break ;

      case PROP_MAGNIF:
        if( !uIsRealScalar(in[arg+1]) ) {
          mexErrMsgTxt("'Magnif' should be a real scalar") ;
        }
        magnif = (float) *mxGetPr(in[arg+1]) ;
        if( magnif <= 0 ) {
          mexErrMsgTxt("'Magnif' must be positive") ;
        }
        break ;

      case PROP_UNKNOWN:
        mexErrMsgTxt("Property unknown.") ;
        break ;
      }
      arg += 2 ;
    }
  }
  
  /* -----------------------------------------------------------------
   *                                   Pre-compute gradient and angles
   * -------------------------------------------------------------- */
  /* Alloc two buffers and make sure their size is multiple of 128 for
   * better alignment (used also by the Altivec code below.)
   */
  buffer_size = (M*N*num_levels + 0x7f) & (~ 0x7f) ;
  buffer_pt = (float*) mxMalloc( sizeof(float) * 2 * buffer_size ) ;
  descr_pt  = (float*) mxCalloc( NBP*NBP*NBO*K,  sizeof(float)  ) ;

  {
    /* Offsets to move in the scale space. */
    const int yo = 1 ;
    const int xo = M ;
    const int so = M*N ;
    int x,y,s ;

#define at(x,y) (*(pt + (x)*xo + (y)*yo))

    /* Compute the gradient */
    for(s = 0 ; s < num_levels ; ++s) {
      const double* pt = G_pt + s*so ;
      for(x = 1 ; x < N-1 ; ++x) {
        for(y = 1 ; y < M-1 ; ++y) {
          float Dx = 0.5 * ( at(x+1,y) - at(x-1,y) ) ;
          float Dy = 0.5 * ( at(x,y+1) - at(x,y-1) ) ;
          buffer_pt[(x*xo+y*yo+s*so) + 0          ] = Dx ;
          buffer_pt[(x*xo+y*yo+s*so) + buffer_size] = Dy ;
        }
      }
    }
    
    /* Compute angles and modules */
    {
      float* pt = buffer_pt ;
      int j = 0 ;
      while (j < N*M*num_levels) {

#if defined( MACOSX ) && defined( __ALTIVEC__ )
        if( ((unsigned int)pt & 0x7) == 0 && j+3 < N*M*num_levels ) {
          /* If aligned to 128 bit and there are at least 4 pixels left */
          float4 a, b, c, d ;
          a.vec = vec_ld(0,(vector float*)(pt              )) ;
          b.vec = vec_ld(0,(vector float*)(pt + buffer_size)) ;
          c.vec = vatan2f(b.vec,a.vec) ;
          a.x[0] = a.x[0]*a.x[0]+b.x[0]*b.x[0] ;
          a.x[1] = a.x[1]*a.x[1]+b.x[1]*b.x[1] ;
          a.x[2] = a.x[2]*a.x[2]+b.x[2]*b.x[2] ;
          a.x[3] = a.x[3]*a.x[3]+b.x[3]*b.x[3] ;
          d.vec = vsqrtf(a.vec) ;
          vec_st(c.vec,0,(vector float*)(pt + buffer_size)) ;
          vec_st(d.vec,0,(vector float*)(pt              )) ;
          j += 4 ;
          pt += 4 ;
        } else {
#endif
          float Dx = *(pt              ) ;
          float Dy = *(pt + buffer_size) ;
          *(pt              ) = sqrtf(Dx*Dx + Dy*Dy) ;
          if (*pt > 0) 
            *(pt + buffer_size) = atan2f(Dy, Dx) ;
          else
            *(pt + buffer_size) = 0 ;
          j += 1 ;
          pt += 1 ;
#if defined( MACOSX ) && defined( __ALTIVEC__ )
        }
#endif

      }
    }
  }

  /* -----------------------------------------------------------------
   *                                                        Do the job
   * -------------------------------------------------------------- */ 
  if(K > 0) {    
    int p ;

    /* Offsets to move in the buffer */
    const int yo = 1 ;
    const int xo = M ;
    const int so = M*N ;

    /* Offsets to move in the descriptor. */
    /* Use Lowe's convention. */
    const int binto = 1 ;
    const int binyo = NBO * NBP ;
    const int binxo = NBO ;
    const int bino  = NBO * NBP * NBP ;

    for(p = 0 ; p < K ; ++p, descr_pt += bino) {
      /* The SIFT descriptor is a  three dimensional histogram of the position
       * and orientation of the gradient.  There are NBP bins for each spatial
       * dimesions and NBO  bins for the orientation dimesion,  for a total of
       * NBP x NBP x NBO bins.
       *
       * The support  of each  spatial bin  has an extension  of SBP  = 3sigma
       * pixels, where sigma is the scale  of the keypoint.  Thus all the bins
       * together have a  support SBP x NBP pixels wide  . Since weighting and
       * interpolation of  pixel is used, another  half bin is  needed at both
       * ends of  the extension. Therefore, we  need a square window  of SBP x
       * (NBP + 1) pixels. Finally, since the patch can be arbitrarly rotated,
       * we need to consider  a window 2W += sqrt(2) x SBP  x (NBP + 1) pixels
       * wide.
       */      
      const float x = (float) *P_pt++ ;
      const float y = (float) *P_pt++ ;
      const float s = (float) (mode == SCALESPACE) ? (*P_pt++) : 0.0 ;
      const float theta0 = (float) *P_pt++ ;

      const float st0 = sinf(theta0) ;
      const float ct0 = cosf(theta0) ;
      const int xi = (int) floor(x+0.5) ; /* Round-off */
      const int yi = (int) floor(y+0.5) ;
      const int si = (int) floor(s+0.5) - smin ;
      const float sigma = sigma0 * powf(2, s / S) ;
      const float SBP = magnif * sigma ;
      const int W = (int) floor( sqrt(2.0) * SBP * (NBP + 1) / 2.0 + 0.5) ;      
      int bin ;
      int dxi ;
      int dyi ;
      const float* pt ;
      float* dpt ;
      
      /* Check that keypoints are within bounds . */

      if(xi < 0   || 
         xi > N-1 || 
         yi < 0   || 
         yi > M-1 ||
         ((mode==SCALESPACE) && 
          (si < 0   ||
           si > dimensions[2]-1) ) )
        continue ;

      /* Center the scale space and the descriptor on the current keypoint. 
       * Note that dpt is pointing to the bin of center (SBP/2,SBP/2,0).
       */
      pt  = buffer_pt + xi*xo + yi*yo + si*so ;
      dpt = descr_pt + (NBP/2) * binyo + (NBP/2) * binxo ;
     
#define atd(dbinx,dbiny,dbint) (*(dpt + (dbint)*binto + (dbiny)*binyo + (dbinx)*binxo))
      
      /*
       * Process each pixel in the window and in the (1,1)-(M-1,N-1)
       * rectangle.
       */
      for(dxi = max(-W, 1-xi) ; dxi <= min(+W, N-2-xi) ; ++dxi) {
        for(dyi = max(-W, 1-yi) ; dyi <= min(+W, M-2-yi) ; ++dyi) {

          /* Compute the gradient. */
          float mod   = *(pt + dxi*xo + dyi*yo + 0           ) ;
          float angle = *(pt + dxi*xo + dyi*yo + buffer_size ) ;
#ifdef LOWE_COMPATIBLE         
          float theta = fast_mod(-angle + theta0) ;
#else
          float theta = fast_mod(angle - theta0) ;
#endif
          /* Get the fractional displacement. */
          float dx = ((float)(xi+dxi)) - x;
          float dy = ((float)(yi+dyi)) - y;

          /* Get the displacement normalized w.r.t. the keypoint orientation
           * and extension. */
          float nx = ( ct0 * dx + st0 * dy) / SBP ;
          float ny = (-st0 * dx + ct0 * dy) / SBP ; 
          float nt = NBO * theta / (2*M_PI) ;

          /* Get the gaussian weight of the sample. The gaussian window
           * has a standard deviation of NBP/2. Note that dx and dy are in
           * the normalized frame, so that -NBP/2 <= dx <= NBP/2. */
          const float wsigma = NBP/2 ;
          float win =  expf(-(nx*nx + ny*ny)/(2.0 * wsigma * wsigma)) ;

          /* The sample will be distributed in 8 adijacient bins. 
           * Now we get the ``lower-left'' bin. */
          int binx = fast_floor( nx - 0.5 ) ;
          int biny = fast_floor( ny - 0.5 ) ;
          int bint = fast_floor( nt ) ;
          float rbinx = nx - (binx+0.5) ;
          float rbiny = ny - (biny+0.5) ;
          float rbint = nt - bint ;
          int dbinx ;
          int dbiny ;
          int dbint ;

          /* Distribute the current sample into the 8 adijacient bins. */
          for(dbinx = 0 ; dbinx < 2 ; ++dbinx) {
            for(dbiny = 0 ; dbiny < 2 ; ++dbiny) {
              for(dbint = 0 ; dbint < 2 ; ++dbint) {
                
                if( binx+dbinx >= -(NBP/2) &&
                    binx+dbinx <   (NBP/2) &&
                    biny+dbiny >= -(NBP/2) &&
                    biny+dbiny <   (NBP/2) ) {
                  float weight = win 
                    * mod 
                    * fabsf(1 - dbinx - rbinx)
                    * fabsf(1 - dbiny - rbiny)
                    * fabsf(1 - dbint - rbint) ;

                      atd(binx+dbinx, biny+dbiny, (bint+dbint) % NBO) += weight ;
                }
              }            
            }
          }
        }  
      }


      {
        /* Normalize the histogram to L2 unit length. */        
        normalize_histogram(descr_pt, descr_pt + NBO*NBP*NBP) ;
        
        /* Truncate at 0.2. */
        for(bin = 0; bin < NBO*NBP*NBP ; ++bin) {
          if (descr_pt[bin] > 0.2) descr_pt[bin] = 0.2;
        }
        
        /* Normalize again. */
        normalize_histogram(descr_pt, descr_pt + NBO*NBP*NBP) ;
      }
    }
  }

  /* Restore pointer to the beginning of the descriptors. */
  descr_pt -= NBO*NBP*NBP*K ;

  {
    int k ;
    double* L_pt ;
    out[OUT_L] = mxCreateDoubleMatrix(NBP*NBP*NBO, K, mxREAL) ;
    L_pt = mxGetPr(out[OUT_L]) ;
    for(k = 0 ; k < NBP*NBP*NBO*K ; ++k) {
      L_pt[k] = descr_pt[k] ;
    }
  }

  mxFree(descr_pt) ;  
  mxFree(buffer_pt) ;
}
void
mexFunction(int nout, mxArray *out[], 
            int nin, const mxArray *in[])
{
  enum {IN_GRAD=0,IN_FRAMES,IN_END} ;
  enum {OUT_DESCRIPTORS} ;

  int                verbose = 0 ;
  int                opt ;
  int                next = IN_END ;
  mxArray const     *optarg ;
     
  mxArray           *grad_array ;
  vl_sift_pix       *grad ;
  int                M, N ;

  double             magnif = -1 ;
  double            *ikeys = 0 ;
  int                nikeys = 0 ;

  int i,j ;
  
  VL_USE_MATLAB_ENV ;
  
  /* -----------------------------------------------------------------
   *                                               Check the arguments
   * -------------------------------------------------------------- */

  if (nin < 2) {
    mexErrMsgTxt("Two arguments required.") ;
  } else if (nout > 1) {
    mexErrMsgTxt("Too many output arguments.");
  }
  
  if (mxGetNumberOfDimensions (in[IN_GRAD])    != 3              ||
      mxGetClassID            (in[IN_GRAD])    != mxSINGLE_CLASS ||
      mxGetDimensions         (in[IN_GRAD])[0] != 2              ) {
    mexErrMsgTxt("GRAD must be a 2xMxN matrix of class SINGLE.") ;
  }

  if (!uIsRealMatrix(in[IN_FRAMES], 4, -1)) {
    mexErrMsgTxt("FRAMES must be a 4xN matrix.") ;
  }
  nikeys = mxGetN (in[IN_FRAMES]) ;
  ikeys  = mxGetPr(in[IN_FRAMES]) ;
  
  while ((opt = uNextOption(in, nin, options, &next, &optarg)) >= 0) {
    switch (opt) {
        
      case opt_verbose :
        ++ verbose ;
        break ;
        
      case opt_magnif :
        if (!uIsRealScalar(optarg) || (magnif = *mxGetPr(optarg)) < 0) {
          mexErrMsgTxt("MAGNIF must be a non-negative scalar.") ;
        }
        break ;
        
      default :
        assert(0) ;
        break ;
    }
  }
  
  grad_array = mxDuplicateArray(in[IN_GRAD]) ;  
  grad = (vl_sift_pix*) mxGetData (grad_array) ;
  M    = mxGetDimensions(in[IN_GRAD])[1] ;
  N    = mxGetDimensions(in[IN_GRAD])[2] ;

  /* transpose angles */
  for (i = 1 ; i < 2*M*N ; i+=2) {
    grad [i] = VL_PI/2 - grad [i] ;
  }

  /* -----------------------------------------------------------------
   *                                                            Do job
   * -------------------------------------------------------------- */
  {
    VlSiftFilt *filt = 0 ;    
    vl_uint8   *descr = 0 ;

    /* create a filter to process the image */
    filt = vl_sift_new (M, N, -1, -1, 0) ;
    
    if (magnif >= 0) vl_sift_set_magnif (filt, magnif) ;
    
    if (verbose) {    
      mexPrintf("siftdescriptor: filter settings:\n") ;
      mexPrintf("siftdescriptor:   magnif                = %g\n",
                vl_sift_get_magnif (filt)) ;
      mexPrintf("siftdescriptor:   num of frames         = %d\n",
                nikeys) ;
    }

    {
      mwSize dims [2] ;
      dims [0] = 128 ;
      dims [1] = nikeys ;
      out[OUT_DESCRIPTORS]= mxCreateNumericArray 
        (2, dims, mxUINT8_CLASS,  mxREAL) ;
      descr = mxGetData(out[OUT_DESCRIPTORS]) ;
    }
    
    /* ...............................................................
     *                                             Process each octave
     * ............................................................ */
    for (i = 0 ; i < nikeys ; ++i) {
      vl_sift_pix  buf [128], rbuf [128] ;

      double y  = *ikeys++ - 1 ;
      double x  = *ikeys++ - 1 ;
      double s  = *ikeys++ ;
      double th = VL_PI / 2 - *ikeys++ ;

      vl_sift_calc_raw_descriptor (filt, 
                                   grad, 
                                   buf,
                                   M, N,
                                   x, y, s, th) ;
      
      transpose_descriptor (rbuf, buf) ;
      
      for (j = 0 ; j < 128 ; ++j) {
        double x = 512.0 * rbuf [j] ;
        x = (x < 255.0) ? x : 255.0 ;
        *descr++ = (vl_uint8) (x) ;
      }
    }    
    /* cleanup */
    mxDestroyArray (grad_array) ;
    vl_sift_delete (filt) ;
  } /* job done */    
}
void
mexFunction(int nout, mxArray *out[], 
            int nin, const mxArray *in[])
{
  int M,N,S,smin,K ;
  const int* dimensions ;
  const double* P_pt ;
  const double* G_pt ;
  double* TH_pt ; 
  double sigma0 ;
  double H_pt [ NBINS ] ;

  enum {IN_P=0,IN_G,IN_S,IN_SMIN,IN_SIGMA0} ;
  enum {OUT_Q=0} ;

  /* -----------------------------------------------------------------
  **                                               Check the arguments
  ** -------------------------------------------------------------- */ 
  if (nin != 5) {
    mexErrMsgTxt("Exactly five input arguments required.");
  } else if (nout > 1) {
    mexErrMsgTxt("Too many output arguments.");
  }
  
  if( !uIsRealScalar(in[IN_S]) ) {
    mexErrMsgTxt("S should be a real scalar") ;
  }
		
  if( !uIsRealScalar(in[IN_SMIN]) ) {
    mexErrMsgTxt("SMIN should be a real scalar") ;
  }
	
  if( !uIsRealScalar(in[IN_SIGMA0]) ) {
    mexErrMsgTxt("SIGMA0 should be a real scalar") ;
  }
	
  if( !uIsRealMatrix(in[IN_P],3,-1)) {
    mexErrMsgTxt("P should be a 3xK real matrix") ;
  }
	
  if(mxGetNumberOfDimensions(in[IN_G]) != 3) {
    mexErrMsgTxt("SSO must be a three dimensional array") ;
  }

  dimensions = mxGetDimensions(in[IN_G]) ;
  M = dimensions[0] ;
  N = dimensions[1] ;
  S = (int)(*mxGetPr(in[IN_S])) ;
  smin = (int)(*mxGetPr(in[IN_SMIN])) ;
  sigma0 = *mxGetPr(in[IN_SIGMA0]) ;
	
  K = mxGetN(in[IN_P]) ;
  P_pt = mxGetPr(in[IN_P]) ;
  G_pt = mxGetPr(in[IN_G]) ;
	

  /* If the input array is empty, then output an empty array as well. */
  if(K == 0) {    
    out[OUT_Q] = mxCreateDoubleMatrix(4,0,mxREAL) ;
    return ;
  }

  /* ------------------------------------------------------------------
   *                                                         Do the job
   * --------------------------------------------------------------- */ 
  {
    int p ;
    const int yo = 1 ;
    const int xo = M ;
    const int so = M*N ;

    int buffer_size = K*4 ;
    double* buffer_start = (double*) mxMalloc( buffer_size *sizeof(double)) ;
    double* buffer_iterator = buffer_start ;
    double* buffer_end = buffer_start + buffer_size ;

    for(p = 0 ; p < K ; ++p, TH_pt += 2) {
      const double x = *P_pt++ ;
      const double y = *P_pt++ ;
      const double s = *P_pt++ ;
      int xi = ((int) (x+0.5)) ; /* Round them off. */
      int yi = ((int) (y+0.5)) ;
      int si = ((int) (s+0.5)) - smin ;
      int xs ;
      int ys ;
      double sigmaw = win_factor * sigma0 * pow(2, ((double)s) / S) ;
      int W = (int) ceil(3.0 * sigmaw) ;
      int bin ;
      const double* pt ;

      /* Make sure that the rounded off keypoint index is within bound.
       */
      if(xi < 0   || 
         xi > N-1 || 
         yi < 0   || 
         yi > M-1 || 
         si < 0   || 
         si > dimensions[2]-1 ) {
        mexPrintf("Dropping %d: W %d x %d y %d si [%d,%d,%d,%d]\n",p,W,xi,yi,si,M,N,dimensions[2]) ;
        continue ;
      }
      
      /* Clear histogram buffer. */
      {
        int i ;
        for(i = 0 ; i < NBINS ; ++i) 
          H_pt[i] = 0 ;
      }

      pt = G_pt + xi*xo + yi*yo + si*so ;      

#define at(dx,dy) (*(pt + (dx)*xo + (dy)*yo))

      for(xs = max(-W, 1-xi) ; xs <= min(+W, N -2 -xi) ; ++xs) {
        for(ys = max(-W, 1-yi) ; ys <= min(+W, M -2 -yi) ; ++ys) {
          double Dx = 0.5 * ( at(xs+1,ys) - at(xs-1,ys) ) ;
          double Dy = 0.5 * ( at(xs,ys+1) - at(xs,ys-1) ) ;
          double dx = ((double)(xi+xs)) - x;
          double dy = ((double)(yi+ys)) - y;
					
          if(dx*dx + dy*dy > W*W+0.5) continue ;

          {
            double win = exp( - (dx*dx + dy*dy)/(2*sigmaw*sigmaw) ) ;
            double mod = sqrt(Dx*Dx + Dy*Dy) ;
            double theta = fmod(atan2(Dy, Dx) + 2*M_PI, 2*M_PI) ; 
            bin = (int) floor( NBINS * theta / (2*M_PI) ) ;
            H_pt[bin] += mod*win ;        
          }
        }
      }
			
      /* Smooth histogram */			
      {
        int iter, i ;
        for (iter = 0; iter < 6; iter++) {
          double prev;
          prev = H_pt[NBINS-1];
          for (i = 0; i < NBINS; i++) {
            float newh = (prev + H_pt[i] + H_pt[(i+1) % NBINS]) / 3.0;
            prev = H_pt[i] ;
            H_pt[i] = newh ;
          }
        }
      }
			
      /* Find most strong peaks. */
      {
        int i ;
        double maxh = H_pt[0] ;
        for(i = 1 ; i < NBINS ; ++i)
          maxh = max(maxh, H_pt[i]) ;
				
        for(i = 0 ; i < NBINS ; ++i) {
          double h0 = H_pt[i] ;
          double hm = H_pt[(i-1+NBINS) % NBINS] ;
          double hp = H_pt[(i+1+NBINS) % NBINS] ;
          
          if( h0 > 0.8*maxh && h0 > hm && h0 > hp ) {

            double di = -0.5 * (hp-hm) / (hp+hm-2*h0) ; /*di=0;*/
            double th = 2*M_PI*(i+di+0.5)/NBINS ;

            if( buffer_iterator == buffer_end ) {
              int offset = buffer_iterator - buffer_start ;
              buffer_size += 4*max(1, K/16) ;
              buffer_start = (double*) mxRealloc(buffer_start,
                                                 buffer_size*sizeof(double)) ;
              buffer_end = buffer_start + buffer_size ;
              buffer_iterator = buffer_start + offset ;
            }
            
            *buffer_iterator++ = x ;
            *buffer_iterator++ = y ;
            *buffer_iterator++ = s ;
            *buffer_iterator++ = th ;
          }
        } /* Scan histogram */
      } /* Find peaks */
    }

    /* Save back the result. */
    {
      double* result ;
      int NL = (buffer_iterator - buffer_start)/4 ;
      out[OUT_Q] = mxCreateDoubleMatrix(4, NL, mxREAL) ;
      result  = mxGetPr(out[OUT_Q]);
      memcpy(result, buffer_start, sizeof(double) * 4 * NL) ;
    }
    mxFree(buffer_start) ;
  }
}
void
mexFunction(int nout, mxArray *out[],
            int nin, const mxArray *in[])
{
  int M,N,S,smin,K ;
  const int* dimensions ;
  const double* P_pt ;
  const double* D_pt ;
  double threshold = 0.01 ; /*0.02 ;*/
  double r = 10.0 ;
  double* result ;
  enum {IN_P=0,IN_D,IN_SMIN,IN_THRESHOLD,IN_R} ;
  enum {OUT_Q=0} ;

  /* -----------------------------------------------------------------
  **                                               Check the arguments
  ** -------------------------------------------------------------- */
  if (nin < 3) {
    mexErrMsgTxt("At least three input arguments required.");
  } else if (nout > 1) {
    mexErrMsgTxt("Too many output arguments.");
  }

  if( !uIsRealMatrix(in[IN_P],3,-1) ) {
    mexErrMsgTxt("P must be a 3xK real matrix") ;
  }

  if( !mxIsDouble(in[IN_D]) || mxGetNumberOfDimensions(in[IN_D]) != 3) {
    mexErrMsgTxt("G must be a three dimensional real array.") ;
  }

  if( !uIsRealScalar(in[IN_SMIN]) ) {
    mexErrMsgTxt("SMIN must be a real scalar.") ;
  }

  if(nin >= 4) {
    if(!uIsRealScalar(in[IN_THRESHOLD])) {
      mexErrMsgTxt("THRESHOLD must be a real scalar.") ;
    }
    threshold = *mxGetPr(in[IN_THRESHOLD]) ;
  }

  if(nin >= 5) {
    if(!uIsRealScalar(in[IN_R])) {
      mexErrMsgTxt("R must be a real scalar.") ;
    }
    r = *mxGetPr(in[IN_R]) ;
  }

  dimensions = mxGetDimensions(in[IN_D]) ;
  M = dimensions[0] ;
  N = dimensions[1] ;
  S = dimensions[2] ;
  smin = (int)(*mxGetPr(in[IN_SMIN])) ;

  if(S < 3 || M < 3 || N < 3) {
    mexErrMsgTxt("All dimensions of DOG must be not less than 3.") ;
  }

  K = mxGetN(in[IN_P]) ;
  P_pt = mxGetPr(in[IN_P]) ;
  D_pt = mxGetPr(in[IN_D]) ;

  /* If the input array is empty, then output an empty array as well. */
  if( K == 0) {
    out[OUT_Q] = mxDuplicateArray(in[IN_P]) ;
    return ;
  }

  /* -----------------------------------------------------------------
   *                                                        Do the job
   * -------------------------------------------------------------- */
  {
    double* buffer = (double*) mxMalloc(K*3*sizeof(double)) ;
    double* buffer_iterator = buffer ;
    int p ;
    const int yo = 1 ;
    const int xo = M ;
    const int so = M*N ;

    for(p = 0 ; p < K ; ++p) {
      int x = ((int)*P_pt++) ;
      int y = ((int)*P_pt++) ;
      int s = ((int)*P_pt++) - smin ;
      int iter ;
      double b[3] ;

      /* Local maxima extracted from the DOG
       * have coorrinates 1<=x<=N-2, 1<=y<=M-2
       * and 1<=s-mins<=S-2. This is also the range of the points
       * that we can refine.
       */
      if(x < 1 || x > N-2 ||
         y < 1 || y > M-2 ||
         s < 1 || s > S-2) {
        continue ;
      }

#define at(dx,dy,ds) (*(pt + (dx)*xo + (dy)*yo + (ds)*so))

      {
        const double* pt = D_pt + y*yo + x*xo + s*so ;
        double Dx=0,Dy=0,Ds=0,Dxx=0,Dyy=0,Dss=0,Dxy=0,Dxs=0,Dys=0 ;
        int dx = 0 ;
        int dy = 0 ;
        int j, i, jj, ii ;

        for(iter = 0 ; iter < max_iter ; ++iter) {

          double A[3*3] ;

#define Aat(i,j) (A[(i)+(j)*3])

          x += dx ;
          y += dy ;
          pt = D_pt + y*yo + x*xo + s*so ;

          /* Compute the gradient. */
          Dx = 0.5 * (at(+1,0,0) - at(-1,0,0)) ;
          Dy = 0.5 * (at(0,+1,0) - at(0,-1,0));
          Ds = 0.5 * (at(0,0,+1) - at(0,0,-1)) ;

          /* Compute the Hessian. */
          Dxx = (at(+1,0,0) + at(-1,0,0) - 2.0 * at(0,0,0)) ;
          Dyy = (at(0,+1,0) + at(0,-1,0) - 2.0 * at(0,0,0)) ;
          Dss = (at(0,0,+1) + at(0,0,-1) - 2.0 * at(0,0,0)) ;

          Dxy = 0.25 * ( at(+1,+1,0) + at(-1,-1,0) - at(-1,+1,0) - at(+1,-1,0) ) ;
          Dxs = 0.25 * ( at(+1,0,+1) + at(-1,0,-1) - at(-1,0,+1) - at(+1,0,-1) ) ;
          Dys = 0.25 * ( at(0,+1,+1) + at(0,-1,-1) - at(0,-1,+1) - at(0,+1,-1) ) ;

          /* Solve linear system. */
          Aat(0,0) = Dxx ;
          Aat(1,1) = Dyy ;
          Aat(2,2) = Dss ;
          Aat(0,1) = Aat(1,0) = Dxy ;
          Aat(0,2) = Aat(2,0) = Dxs ;
          Aat(1,2) = Aat(2,1) = Dys ;

          b[0] = - Dx ;
          b[1] = - Dy ;
          b[2] = - Ds ;

          /* Gauss elimination */
          for(j = 0 ; j < 3 ; ++j) {
            double maxa    = 0 ;
            double maxabsa = 0 ;
            int    maxi    = -1 ;
            double tmp ;

            /* look for the maximally stable pivot */
            for (i = j ; i < 3 ; ++i) {
              double a    = Aat (i,j) ;
              double absa = abs (a) ;
              if (absa > maxabsa) {
                maxa    = a ;
                maxabsa = absa ;
                maxi    = i ;
              }
            }

            /* if singular give up */
            if (maxabsa < 1e-10f) {
              b[0] = 0 ;
              b[1] = 0 ;
              b[2] = 0 ;
              break ;
            }

            i = maxi ;

            /* swap j-th row with i-th row and normalize j-th row */
            for(jj = j ; jj < 3 ; ++jj) {
              tmp = Aat(i,jj) ; Aat(i,jj) = Aat(j,jj) ; Aat(j,jj) = tmp ;
              Aat(j,jj) /= maxa ;
            }
            tmp = b[j] ; b[j] = b[i] ; b[i] = tmp ;
            b[j] /= maxa ;

            /* elimination */
            for (ii = j+1 ; ii < 3 ; ++ii) {
              double x = Aat(ii,j) ;
              for (jj = j ; jj < 3 ; ++jj) {
                Aat(ii,jj) -= x * Aat(j,jj) ;
              }
              b[ii] -= x * b[j] ;
            }
          }

          /* backward substitution */
          for (i = 2 ; i > 0 ; --i) {
            double x = b[i] ;
            for (ii = i-1 ; ii >= 0 ; --ii) {
              b[ii] -= x * Aat(ii,i) ;
            }
          }

          /* If the translation of the keypoint is big, move the keypoint
           * and re-iterate the computation. Otherwise we are all set.
           */
          dx= ((b[0] >  0.6 && x < N-2) ?  1 : 0 )
            + ((b[0] < -0.6 && x > 1  ) ? -1 : 0 ) ;

          dy= ((b[1] >  0.6 && y < M-2) ?  1 : 0 )
            + ((b[1] < -0.6 && y > 1  ) ? -1 : 0 ) ;

          if( dx == 0 && dy == 0 ) break ;

        }

        {
          double val = at(0,0,0) + 0.5 * (Dx * b[0] + Dy * b[1] + Ds * b[2]) ;
          double score = (Dxx+Dyy)*(Dxx+Dyy) / (Dxx*Dyy - Dxy*Dxy) ;
          double xn = x + b[0] ;
          double yn = y + b[1] ;
          double sn = s + b[2] ;

          if(fabs(val) > threshold &&
             score < (r+1)*(r+1)/r &&
             score >= 0 &&
             fabs(b[0]) < 1.5 &&
             fabs(b[1]) < 1.5 &&
             fabs(b[2]) < 1.5 &&
             xn >= 0 &&
             xn <= N-1 &&
             yn >= 0 &&
             yn <= M-1 &&
             sn >= 0 &&
             sn <= S-1) {
            *buffer_iterator++ = xn ;
            *buffer_iterator++ = yn ;
            *buffer_iterator++ = sn+smin  ;
          }
        }
      }
    }

    /* Copy the result into an array. */
    {
      int NL = (buffer_iterator - buffer)/3 ;
      out[OUT_Q] = mxCreateDoubleMatrix(3, NL, mxREAL) ;
      result = mxGetPr(out[OUT_Q]);
      memcpy(result, buffer, sizeof(double) * 3 * NL) ;
    }
    mxFree(buffer) ;
  }

}
void
mexFunction(int nout, mxArray *out[], 
            int nin, const mxArray *in[])
{
  enum { X=0,Y,I,iwXp,iwYp } ;
  enum { wI=0, wIx, wIy } ;

  int M, N, Mp, Np, ip, jp ;
  double 
    *X_pt, 
    *Y_pt, 
    *I_pt, 
    *iwXp_pt, 
    *iwYp_pt, 
    *wI_pt, 
    *wIx_pt   = 0,
    *wIy_pt   = 0 ;

  double Xmin, Xmax, Ymin, Ymax ;
  const double NaN = mxGetNaN() ;
  
  /* -----------------------------------------------------------------
   *                                               Check the arguments
   * -------------------------------------------------------------- */
  if(nin != 5) {
    mexErrMsgTxt("Five input argumets required.") ;
  }

  if (nout > 3) {
    mexErrMsgTxt("Too many output arguments") ;
  }
  
  if(!uIsRealMatrix(in[I], -1, -1)) {
    mexErrMsgTxt("I must be a real matrix of class DOUBLE") ;
  }
  
  if(!uIsRealMatrix(in[iwXp], -1, -1)) {
    mexErrMsgTxt("iwXp must be a real matrix") ;
  }
  
  M = getM(I) ;
  N = getN(I) ;
  Mp = getM(iwXp) ;
  Np = getN(iwXp) ;

  if(!uIsRealMatrix(in[iwYp], Mp, Np)) {
      mexErrMsgTxt
	  ("iwXp and iwYp must be a real matrices of the same dimension") ;
  }

  if(!uIsRealVector(in[X],N) || !uIsRealVector(in[Y],M)) {
      mexErrMsgTxt
	  ("X and Y must be vectors of the same dimensions "
	   "of the columns/rows of I, respectivelye") ;
  }

  X_pt = getPr(X); 
  Y_pt = getPr(Y) ;
  I_pt = getPr(I) ;
  iwXp_pt = getPr(iwXp) ;
  iwYp_pt = getPr(iwYp) ;

  /* Allocate the result. */
  out[wI] = mxCreateDoubleMatrix(Mp, Np, mxREAL) ;
  wI_pt = mxGetPr(out[wI]) ;

  if (nout > 1) {
    out[wIx] = mxCreateDoubleMatrix(Mp, Np, mxREAL) ;
    out[wIy] = mxCreateDoubleMatrix(Mp, Np, mxREAL) ;
    wIx_pt = mxGetPr (out[wIx]) ;
    wIy_pt = mxGetPr (out[wIy]) ;
  }

  /* -----------------------------------------------------------------
   *                                                        Do the job
   * -------------------------------------------------------------- */
  Xmin = X_pt [0] ;
  Xmax = X_pt [N - 1] ;
  Ymin = Y_pt [0] ;
  Ymax = Y_pt [M - 1] ;

  if (nout <= 1) {

    /* optimized for only image output */
    for(jp = 0 ; jp < Np ; ++jp) {
      for(ip = 0 ; ip < Mp ; ++ip) {    
	/* Search for the four neighbors of the backprojected point. */     
	double x = *iwXp_pt++ ;
	double y = *iwYp_pt++ ;
	double z = NaN ;
	
	/* This messy code allows the identity transformation
	 * to be processed as expected. */
	if(x >= Xmin && x <= Xmax &&
	   y >= Ymin && y <= Ymax) {
	  int j = findNeighbor(x, X_pt, N) ;
	  int i = findNeighbor(y, Y_pt, M) ;
	  double* pt  = I_pt + j*M + i ;
	  
	  /* Weights. */
	  double x0 = X_pt[j] ;
	  double x1 = X_pt[j+1] ;
	  double y0 = Y_pt[i] ;
	  double y1 = Y_pt[i+1] ;
	  double wx = (x-x0)/(x1-x0) ;
	  double wy = (y-y0)/(y1-y0) ;
	  
	  /* Load all possible neighbors. */
	  double z00 = 0.0 ;
	  double z10 = 0.0 ;
	  double z01 = 0.0 ;
	  double z11 = 0.0 ;

	  if(j > -1) {
	    if(i > -1 ) z00 = *pt ;
	    pt++ ;
	    if(i < M-1) z10 = *pt ;
	  } else {
	    pt++ ;
	  }
	  
	  pt += M - 1;
	  
	  if(j < N-1) {
	    if(i > -1 ) z01 = *pt ; 
	    pt++ ;
	    if(i < M-1) z11 = *pt ;
	  }       
	  
	  /* Bilinear interpolation. */
	  z = 
	    (1 - wy) * ((1-wx) * z00 + wx * z01) +
	    (    wy) * ((1-wx) * z10 + wx * z11) ; 
	}
	
	*(wI_pt + jp*Mp + ip) = z ;
      }
    }
  }
  
  /* do also the derivatives */
  else {

    /* optimized for only image output */
    for(jp = 0 ; jp < Np ; ++jp) {
      for(ip = 0 ; ip < Mp ; ++ip) {    
	/* Search for the four neighbors of the backprojected point. */     
	double x = *iwXp_pt++ ;
	double y = *iwYp_pt++ ;
	double z = NaN, zx = NaN, zy = NaN ;
	
	/* This messy code allows the identity transformation
	 * to be processed as expected. */
	if(x >= Xmin && x <= Xmax &&
	   y >= Ymin && y <= Ymax) {
	  int j = findNeighbor(x, X_pt, N) ;
	  int i = findNeighbor(y, Y_pt, M) ;
	  double* pt  = I_pt + j*M + i ;
	  
	  /* Weights. */
	  double x0 = X_pt[j] ;
	  double x1 = X_pt[j+1] ;
	  double y0 = Y_pt[i] ;
	  double y1 = Y_pt[i+1] ;
	  double wx = (x-x0)/(x1-x0) ;
	  double wy = (y-y0)/(y1-y0) ;
	  
	  /* Load all possible neighbors. */
	  double z00 = 0.0 ;
	  double z10 = 0.0 ;
	  double z01 = 0.0 ;
	  double z11 = 0.0 ;
	  
	  if(j > -1) {
	    if(i > -1 ) z00 = *pt ;
	    pt++ ;
	    if(i < M-1) z10 = *pt ;
	  } else {
	    pt++ ;
	  }
	  
	  pt += M - 1;
	  
	  if(j < N-1) {
	    if(i > -1 ) z01 = *pt ; 
	    pt++ ;
	    if(i < M-1) z11 = *pt ;
	  }       
	  
	  /* Bilinear interpolation. */
	  z = 
	    (1-wy)*( (1-wx) * z00 + wx * z01) +
	    wy*( (1-wx) * z10 + wx * z11) ;
	  
	  zx = 
	    (1-wy) * (z01 - z00) +
	       wy  * (z11 - z10) ;

	  zy = 
	    (1-wx) * (z10 - z00) +
	       wx  * (z11 - z01) ;
	}
	
	*(wI_pt  + jp*Mp + ip) = z ;
	*(wIx_pt + jp*Mp + ip) = zx ;
	*(wIy_pt + jp*Mp + ip) = zy ;
      }
    }
  }
}
Exemple #9
0
void
mexFunction(int nout, mxArray *out[], 
            int nin, const mxArray *in[])
{
  enum {IN_I=0,IN_END} ;
  enum {OUT_FRAMES=0, OUT_DESCRIPTORS} ;

  int                verbose = 0 ;
  int                opt ;
  int                next = IN_END ;
  mxArray const     *optarg ;
     
  vl_sift_pix const *data ;
  int                M, N ;

  int                O     = - 1 ;
  int                S     =   3 ;
  int                o_min =   0 ; 

  double             edge_thresh = -1 ;
  double             peak_thresh = -1 ;
  double             norm_thresh = -1 ;

  mxArray           *ikeys_array = 0 ;
  double            *ikeys = 0 ;
  int                nikeys = -1 ;
  vl_bool            force_orientations = 0 ;

  VL_USE_MATLAB_ENV ;
 
  /* -----------------------------------------------------------------
   *                                               Check the arguments
   * -------------------------------------------------------------- */

  if (nin < 1) {
    mexErrMsgTxt("One argument required.") ;
  } else if (nout > 2) {
    mexErrMsgTxt("Too many output arguments.");
  }
  
  if (mxGetNumberOfDimensions (in[IN_I]) != 2              ||
      mxGetClassID            (in[IN_I]) != mxSINGLE_CLASS  ) {
    mexErrMsgTxt("I must be a matrix of class SINGLE") ;
  }
  
  data = (vl_sift_pix*) mxGetData (in[IN_I]) ;
  M    = mxGetM (in[IN_I]) ;
  N    = mxGetN (in[IN_I]) ;
  
  while ((opt = uNextOption(in, nin, options, &next, &optarg)) >= 0) {
    switch (opt) {

    case opt_verbose :
      ++ verbose ;
      break ;

    case opt_octaves :
      if (!uIsRealScalar(optarg) || (O = (int) *mxGetPr(optarg)) < 0) {
        mexErrMsgTxt("'Octaves' must be a positive integer.") ;
      }
      break ;
      
    case opt_levels :
      if (! uIsRealScalar(optarg) || (S = (int) *mxGetPr(optarg)) < 1) {
        mexErrMsgTxt("'Levels' must be a positive integer.") ;
      }
      break ;
      
    case opt_first_octave :
      if (!uIsRealScalar(optarg)) {
        mexErrMsgTxt("'FirstOctave' must be an integer") ;
      }
      o_min = (int) *mxGetPr(optarg) ;
      break ;

    case opt_edge_thresh :
      if (!uIsRealScalar(optarg) || (edge_thresh = *mxGetPr(optarg)) < 1) {
        mexErrMsgTxt("'EdgeThresh' must be not smaller than 1.") ;
      }
      break ;

    case opt_peak_thresh :
      if (!uIsRealScalar(optarg) || (peak_thresh = *mxGetPr(optarg)) < 0) {
        mexErrMsgTxt("'PeakThresh' must be a non-negative real.") ;
      }
      break ;

    case opt_norm_thresh :
      if (!uIsRealScalar(optarg) || (norm_thresh = *mxGetPr(optarg)) < 0) {
        mexErrMsgTxt("'NormThresh' must be a non-negative real.") ;
      }
      break ;

    case opt_frames :
      if (!uIsRealMatrix(optarg, 4, -1)) {
        mexErrMsgTxt("'Frames' must be a 4 x N matrix.x") ;
      }
      ikeys_array = mxDuplicateArray (optarg) ;
      nikeys      = mxGetN (optarg) ;
      ikeys       = mxGetPr (ikeys_array) ;
      if (! check_sorted (ikeys, nikeys)) {
        qsort (ikeys, nikeys, 4 * sizeof(double), korder) ;
      }
      break ;
      
    case opt_orientations :
      force_orientations = 1 ;
      break ;
      
    default :
      assert(0) ;
      break ;
    }
  }
  
  /* -----------------------------------------------------------------
   *                                                            Do job
   * -------------------------------------------------------------- */
  {
    VlSiftFilt        *filt ;    
    vl_bool            first ;
    double            *frames = 0 ;
    vl_uint8          *descr  = 0 ;
    int                nframes = 0, reserved = 0, i,j,q ;
    
    /* create a filter to process the image */
    filt = vl_sift_new (M, N, O, S, o_min) ;

    if (peak_thresh >= 0) vl_sift_set_peak_thresh (filt, peak_thresh) ;
    if (edge_thresh >= 0) vl_sift_set_edge_thresh (filt, edge_thresh) ;
    if (norm_thresh >= 0) vl_sift_set_norm_thresh (filt, norm_thresh) ;
    
    if (verbose) {    
      mexPrintf("siftmx: filter settings:\n") ;
      mexPrintf("siftmx:   octaves      (O)     = %d\n", 
                vl_sift_get_octave_num   (filt)) ;
      mexPrintf("siftmx:   levels       (S)     = %d\n",
                vl_sift_get_level_num    (filt)) ;
      mexPrintf("siftmx:   first octave (o_min) = %d\n", 
                vl_sift_get_octave_first (filt)) ;
      mexPrintf("siftmx:   edge thresh           = %g\n",
                vl_sift_get_edge_thresh   (filt)) ;
      mexPrintf("siftmx:   peak thresh           = %g\n",
                vl_sift_get_peak_thresh   (filt)) ;
      mexPrintf("siftmx:   norm thresh           = %g\n",
                vl_sift_get_norm_thresh   (filt)) ;
      mexPrintf((nikeys >= 0) ? 
                "siftmx: will source frames? yes (%d)\n" :
                "siftmx: will source frames? no\n", nikeys) ;
      mexPrintf("siftmx: will force orientations? %s\n",
                force_orientations ? "yes" : "no") ;      
    }
    
    /* ...............................................................
     *                                             Process each octave
     * ............................................................ */
    i     = 0 ;
    first = 1 ;
    while (true) {
      int                   err ;
      VlSiftKeypoint const *keys  = 0 ;
      int                   nkeys = 0 ;
      
      if (verbose) {
        mexPrintf ("siftmx: processing octave %d\n",
                   vl_sift_get_octave_index (filt)) ;
      }

      /* Calculate the GSS for the next octave .................... */
      if (first) {
        err   = vl_sift_process_first_octave (filt, data) ;
        first = 0 ;
      } else {
        err   = vl_sift_process_next_octave  (filt) ;
      }        

      if (err) break ;
      
      if (verbose > 1) {
        printf("siftmx: GSS octave %d computed\n",
               vl_sift_get_octave_index (filt));
      }

      /* Run detector ............................................. */
      if (nikeys < 0) {
        vl_sift_detect (filt) ;
        
        keys  = vl_sift_get_keypoints     (filt) ;
        nkeys = vl_sift_get_keypoints_num (filt) ;
        i     = 0 ;
        
        if (verbose > 1) {
          printf ("siftmx: detected %d (unoriented) keypoints\n", nkeys) ;
        }
      } else {
        nkeys = nikeys ;
      }

      /* For each keypoint ........................................ */
      for (; i < nkeys ; ++i) {
        double                angles [4] ;
        int                   nangles ;
        VlSiftKeypoint        ik ;
        VlSiftKeypoint const *k ;

        /* Obtain keypoint orientations ........................... */
        if (nikeys >= 0) {
          vl_sift_keypoint_init (filt, &ik, 
                                 ikeys [4 * i + 1] - 1,
                                 ikeys [4 * i + 0] - 1,
                                 ikeys [4 * i + 2]) ;
          
          if (ik.o != vl_sift_get_octave_index (filt)) {
            break ;
          }

          k = &ik ;
          
          /* optionally compute orientations too */
          if (force_orientations) {
            nangles = vl_sift_calc_keypoint_orientations 
              (filt, angles, k) ;            
          } else {
            angles [0] = VL_PI / 2 - ikeys [4 * i + 3] ;
            nangles    = 1 ;
          }
        } else {
          k = keys + i ;
          nangles = vl_sift_calc_keypoint_orientations 
            (filt, angles, k) ;
        }

        /* For each orientation ................................... */
        for (q = 0 ; q < nangles ; ++q) {
          vl_sift_pix  buf [128] ;
          vl_sift_pix rbuf [128] ;

          /* compute descriptor (if necessary) */
          if (nout > 1) {
            vl_sift_calc_keypoint_descriptor 
              (filt, buf, k, angles [q]) ;
            transpose_descriptor (rbuf, buf) ;
          }

          /* make enough room for all these keypoints and more */
          if (reserved < nframes + 1) {
            reserved += 2 * nkeys ;
            frames = mxRealloc (frames, 4 * sizeof(double) * reserved) ;
            if (nout > 1) {
              descr  = mxRealloc (descr,  128 * sizeof(double) * reserved) ;
            }
          }

          /* Save back with MATLAB conventions. Notice tha the input
           * image was the transpose of the actual image. */
          frames [4 * nframes + 0] = k -> y + 1 ;
          frames [4 * nframes + 1] = k -> x + 1 ;
          frames [4 * nframes + 2] = k -> sigma ;
          frames [4 * nframes + 3] = VL_PI / 2 - angles [q] ;
          
          if (nout > 1) {
            for (j = 0 ; j < 128 ; ++j) {
              double x = 512.0 * rbuf [j] ;
              x = (x < 255.0) ? x : 255.0 ;
              descr [128 * nframes + j] = (vl_uint8) (x) ;
            }
          }

          ++ nframes ;
        } /* next orientation */
      } /* next keypoint */
    } /* next octave */
    
    if (verbose) {
      mexPrintf ("siftmx: found %d keypoints\n", nframes) ;
    }

    /* ...............................................................
     *                                                       Save back
     * ............................................................ */

    {
      int dims [2] ;
      
      /* create an empty array */
      dims [0] = 0 ;
      dims [1] = 0 ;      
      out[OUT_FRAMES] = mxCreateNumericArray 
        (2, dims, mxDOUBLE_CLASS, mxREAL) ;

      /* set array content to be the frames buffer */
      dims [0] = 4 ;
      dims [1] = nframes ;
      mxSetDimensions (out[OUT_FRAMES], dims, 2) ;
      mxSetPr         (out[OUT_FRAMES], frames) ;
      
      if (nout > 1) {
        
        /* create an empty array */
        dims [0] = 0 ;
        dims [1] = 0 ;
        out[OUT_DESCRIPTORS]= mxCreateNumericArray 
          (2, dims, mxUINT8_CLASS,  mxREAL) ;
        
        /* set array content to be the descriptors buffer */
        dims [0] = 128 ;
        dims [1] = nframes ;
        mxSetDimensions (out[OUT_DESCRIPTORS], dims, 2) ;
        mxSetData       (out[OUT_DESCRIPTORS], descr) ;
      }
    }
    
    /* cleanup */
    vl_sift_delete (filt) ;
    
    if (ikeys_array) 
      mxDestroyArray(ikeys_array) ;

  } /* end: do job */
}
Exemple #10
0
void 
mexFunction (int nout, mxArray * out[], int nin, const mxArray * in[])
{
  enum {IN_PARENTS = 0, IN_DATA, IN_OPT} ;
  enum {OUT_TREE} ;

  vl_uint32 const *parents ;  
  vl_uint32 *tree ;
  double const *data ;

  int nnull = 0 ;
  int histmode = 0 ;
  
  int i, P, N ;

  /* -----------------------------------------------------------------
   *                                               Check the arguments
   * -------------------------------------------------------------- */

  if ((nin < 2) || (nin > 3)) {
    mexErrMsgTxt ("Two or three arguments required.") ;
  }

  if (nout > 1) {
    mexErrMsgTxt ("Too many output arguments.") ;
  }
  
  if (!uIsRealMatrix(in[IN_DATA], -1, -1)) {
    mexErrMsgTxt ("DATA must be a matrix of DOUBLE");
  }

  if (!uIsVector(in[IN_PARENTS], -1)) {
    mexErrMsgTxt ("PARENTS must be a vector") ;   
  }

  if (mxGetClassID(in[IN_PARENTS]) != mxUINT32_CLASS) {
    mexErrMsgTxt ("PARENTS must be UINT32") ;
  }
  
  N = mxGetNumberOfElements (in[IN_DATA]) ;
  data = mxGetPr (in[IN_DATA]) ;

  P = mxGetNumberOfElements (in[IN_PARENTS]) ;
  parents = mxGetData (in[IN_PARENTS]) ;
  
  if (nin > 2) {
    enum {buflen = 32} ;
    char buf [buflen] ;
    if (!uIsString(in[IN_OPT], -1)) {
      mexErrMsgTxt("OPT must be a string") ;
    }
    mxGetString(in[IN_OPT], buf, buflen) ;
    buf [buflen - 1] = 0 ;
    if (!uStrICmp("hist", buf)) {
      mexErrMsgTxt("OPT must be equal to 'hist'") ;
    }
    histmode = 1 ;
  }
  
  out[OUT_TREE] = mxCreateNumericMatrix(1, P,mxUINT32_CLASS, mxREAL) ;
  tree = mxGetData (out[OUT_TREE]) ;

  /* -----------------------------------------------------------------
   *                                                        Do the job
   * -------------------------------------------------------------- */

  {   
    char buf [1024] ;
    vl_uint32 max_node = 0 ;
    vl_uint32 min_node = 0 ;
    vl_uint32 last_leaf = 0 ;
    vl_uint32 root = 0 ;

    /* exhamine parents for errors and informations */
    for (i = 0 ; i  < P ; ++i) {
      vl_uint32 node = parents [i] ;

      if ((node != 0) & (node != 1)) {
        max_node = VL_MAX (node, max_node) ;
        min_node = VL_MIN (node, min_node) ;
      }

      /* check no node points outside the tree */
      if (node > P) {
        snprintf(buf, sizeof(buf),
                 "Out of bounds link PARENTS[%d] = %u > %u", i, node, P) ;
        mexErrMsgTxt (buf) ;
      }
      
      /* check node points to something above him */
      if ((node != 0) & (node != 1) & (node < i)) {
        snprintf(buf, sizeof(buf),
                 "Backward link PARENTS[%d] = %u < %d", i, node, i) ;
        mexErrMsgTxt (buf) ;
      }
      if (node == 0) ++ nnull ;      
    }

    /* now
     *
     * min_node = first node which is not a leaf
     * max_node = root node
     * nnull    = number of leaves pointing to the null node
     */
    
    last_leaf = min_node - 1 ;
    root = max_node ;
    
    /* process data */
    for (i = 0 ; i < N ; ++i) {
      int w = 1 ;
      int x = (int) data [i] ;

      if (histmode) {
        w = x ;
        x = i ;
      }
      
      if ((x < 1) | (x > last_leaf)) {
        if (histmode) {
          snprintf(buf, sizeof(buf), 
                   "DATA length exceeds number of AIB leaves") ;
        } else {
          snprintf(buf, sizeof(buf),
                   "DATA [%d] = %d is not a leaf", i, x) ;
        }
        mexErrMsgTxt (buf) ;        
      }
      
      while (true) {
        int x_ = (int) parents [x -1] ;
        /*     mexPrintf("%d : x_=%d, x=%d\n", i, x_, x) ; */
        ++ tree [x - 1] ;        
        if ((x_ == x) | (x_ == 0) | (x_ == 1)) break ;
        x = x_ ;
      }
    }
  }
}