void processRx(void) { int i; uint32_t auxState = 0; calculateRxChannelsAndUpdateFailsafe(currentTime); // in 3D mode, we need to be able to disarm by switch at any time if (feature(FEATURE_3D)) { if (!rcOptions[BOXARM]) mwDisarm(); } updateRSSI(currentTime); if (feature(FEATURE_FAILSAFE)) { if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafe->vTable->isEnabled()) { failsafe->vTable->enable(); } failsafe->vTable->updateState(); } throttleStatus_e throttleStatus = calculateThrottleStatus(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); if (throttleStatus == THROTTLE_LOW) { resetErrorAngle(); resetErrorGyro(); } processRcStickPositions(&masterConfig.rxConfig, throttleStatus, currentProfile.activate, masterConfig.retarded_arm); if (feature(FEATURE_INFLIGHT_ACC_CAL)) { updateInflightCalibrationState(); } // Check AUX switches // auxState is a bitmask, 3 bits per channel. aux1 is first. // lower 16 bits contain aux 1 to 4, upper 16 bits contain aux 5 to 8 // // the three bits are as follows: // bit 1 is SET when the stick is less than 1300 // bit 2 is SET when the stick is between 1300 and 1700 // bit 3 is SET when the stick is above 1700 // if the value is 1300 or 1700 NONE of the three bits are set. for (i = 0; i < 4; i++) { auxState |= (rcData[AUX1 + i] < 1300) << (3 * i) | (1300 < rcData[AUX1 + i] && rcData[AUX1 + i] < 1700) << (3 * i + 1) | (rcData[AUX1 + i] > 1700) << (3 * i + 2); auxState |= ((rcData[AUX5 + i] < 1300) << (3 * i) | (1300 < rcData[AUX5 + i] && rcData[AUX5 + i] < 1700) << (3 * i + 1) | (rcData[AUX5 + i] > 1700) << (3 * i + 2)) << 16; } for (i = 0; i < CHECKBOX_ITEM_COUNT; i++) rcOptions[i] = (auxState & currentProfile.activate[i]) > 0; if ((rcOptions[BOXANGLE] || (feature(FEATURE_FAILSAFE) && failsafe->vTable->hasTimerElapsed())) && (sensors(SENSOR_ACC))) { // bumpless transfer to Level mode if (!f.ANGLE_MODE) { resetErrorAngle(); f.ANGLE_MODE = 1; } } else { f.ANGLE_MODE = 0; // failsafe support } if (rcOptions[BOXHORIZON]) { f.ANGLE_MODE = 0; if (!f.HORIZON_MODE) { resetErrorAngle(); f.HORIZON_MODE = 1; } } else { f.HORIZON_MODE = 0; } if (f.ANGLE_MODE || f.HORIZON_MODE) { LED1_ON; } else { LED1_OFF; } #ifdef MAG if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) { if (rcOptions[BOXMAG]) { if (!f.MAG_MODE) { f.MAG_MODE = 1; magHold = heading; } } else { f.MAG_MODE = 0; } if (rcOptions[BOXHEADFREE]) { if (!f.HEADFREE_MODE) { f.HEADFREE_MODE = 1; } } else { f.HEADFREE_MODE = 0; } if (rcOptions[BOXHEADADJ]) { headFreeModeHold = heading; // acquire new heading } } #endif #ifdef GPS if (sensors(SENSOR_GPS)) { updateGpsWaypointsAndMode(); } #endif if (rcOptions[BOXPASSTHRU]) { f.PASSTHRU_MODE = 1; } else { f.PASSTHRU_MODE = 0; } if (masterConfig.mixerConfiguration == MULTITYPE_FLYING_WING || masterConfig.mixerConfiguration == MULTITYPE_AIRPLANE) { f.HEADFREE_MODE = 0; } }
void executePeriodicTasks(void) { static int periodicTaskIndex = 0; switch (periodicTaskIndex++) { #ifdef MAG case UPDATE_COMPASS_TASK: if (sensors(SENSOR_MAG)) { updateCompass(&masterConfig.magZero); } break; #endif #ifdef BARO case UPDATE_BARO_TASK: if (sensors(SENSOR_BARO)) { baroUpdate(currentTime); } break; #endif #if defined(BARO) || defined(SONAR) case CALCULATE_ALTITUDE_TASK: #if defined(BARO) && !defined(SONAR) if (sensors(SENSOR_BARO) && isBaroReady()) { #endif #if defined(BARO) && defined(SONAR) if ((sensors(SENSOR_BARO) && isBaroReady()) || sensors(SENSOR_SONAR)) { #endif #if !defined(BARO) && defined(SONAR) if (sensors(SENSOR_SONAR)) { #endif calculateEstimatedAltitude(currentTime); } break; #endif #ifdef SONAR case UPDATE_SONAR_TASK: if (sensors(SENSOR_SONAR)) { sonarUpdate(); } break; #endif #ifdef DISPLAY case UPDATE_DISPLAY_TASK: if (feature(FEATURE_DISPLAY)) { updateDisplay(); } break; #endif } if (periodicTaskIndex >= PERIODIC_TASK_COUNT) { periodicTaskIndex = 0; } } void processRx(void) { calculateRxChannelsAndUpdateFailsafe(currentTime); // in 3D mode, we need to be able to disarm by switch at any time if (feature(FEATURE_3D)) { if (!IS_RC_MODE_ACTIVE(BOXARM)) mwDisarm(); } updateRSSI(currentTime); if (feature(FEATURE_FAILSAFE)) { if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsEnabled()) { failsafeEnable(); } failsafeUpdateState(); } throttleStatus_e throttleStatus = calculateThrottleStatus(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); if (throttleStatus == THROTTLE_LOW) { pidResetErrorAngle(); pidResetErrorGyro(); } // When armed and motors aren't spinning, disarm board after delay so users without buzzer won't lose fingers. // mixTable constrains motor commands, so checking throttleStatus is enough if (ARMING_FLAG(ARMED) && feature(FEATURE_MOTOR_STOP) && !STATE(FIXED_WING) && masterConfig.auto_disarm_delay != 0 && isUsingSticksForArming()) { if (throttleStatus == THROTTLE_LOW) { if ((int32_t)(disarmAt - millis()) < 0) // delay is over mwDisarm(); } else { disarmAt = millis() + masterConfig.auto_disarm_delay * 1000; // extend delay } } processRcStickPositions(&masterConfig.rxConfig, throttleStatus, masterConfig.retarded_arm, masterConfig.disarm_kill_switch); if (feature(FEATURE_INFLIGHT_ACC_CAL)) { updateInflightCalibrationState(); } updateActivatedModes(currentProfile->modeActivationConditions); if (!cliMode) { updateAdjustmentStates(currentProfile->adjustmentRanges); processRcAdjustments(currentControlRateProfile, &masterConfig.rxConfig); } bool canUseHorizonMode = true; if ((IS_RC_MODE_ACTIVE(BOXANGLE) || (feature(FEATURE_FAILSAFE) && failsafeHasTimerElapsed())) && (sensors(SENSOR_ACC))) { // bumpless transfer to Level mode canUseHorizonMode = false; if (!FLIGHT_MODE(ANGLE_MODE)) { pidResetErrorAngle(); ENABLE_FLIGHT_MODE(ANGLE_MODE); } } else { DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support } if (IS_RC_MODE_ACTIVE(BOXHORIZON) && canUseHorizonMode) { DISABLE_FLIGHT_MODE(ANGLE_MODE); if (!FLIGHT_MODE(HORIZON_MODE)) { pidResetErrorAngle(); ENABLE_FLIGHT_MODE(HORIZON_MODE); } } else { DISABLE_FLIGHT_MODE(HORIZON_MODE); } if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { LED1_ON; } else { LED1_OFF; } #ifdef MAG if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) { if (IS_RC_MODE_ACTIVE(BOXMAG)) { if (!FLIGHT_MODE(MAG_MODE)) { ENABLE_FLIGHT_MODE(MAG_MODE); magHold = heading; } } else { DISABLE_FLIGHT_MODE(MAG_MODE); } if (IS_RC_MODE_ACTIVE(BOXHEADFREE)) { if (!FLIGHT_MODE(HEADFREE_MODE)) { ENABLE_FLIGHT_MODE(HEADFREE_MODE); } } else { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } if (IS_RC_MODE_ACTIVE(BOXHEADADJ)) { headFreeModeHold = heading; // acquire new heading } } #endif #ifdef GPS if (sensors(SENSOR_GPS)) { updateGpsWaypointsAndMode(); } #endif if (IS_RC_MODE_ACTIVE(BOXPASSTHRU)) { ENABLE_FLIGHT_MODE(PASSTHRU_MODE); } else { DISABLE_FLIGHT_MODE(PASSTHRU_MODE); } if (masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_AIRPLANE) { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } } void loop(void) { static uint32_t loopTime; #if defined(BARO) || defined(SONAR) static bool haveProcessedAnnexCodeOnce = false; #endif updateRx(); if (shouldProcessRx(currentTime)) { processRx(); #ifdef BARO // the 'annexCode' initialses rcCommand, updateAltHoldState depends on valid rcCommand data. if (haveProcessedAnnexCodeOnce) { if (sensors(SENSOR_BARO)) { updateAltHoldState(); } } #endif #ifdef SONAR // the 'annexCode' initialses rcCommand, updateAltHoldState depends on valid rcCommand data. if (haveProcessedAnnexCodeOnce) { if (sensors(SENSOR_SONAR)) { updateSonarAltHoldState(); } } #endif } else { // not processing rx this iteration executePeriodicTasks(); // if GPS feature is enabled, gpsThread() will be called at some intervals to check for stuck // hardware, wrong baud rates, init GPS if needed, etc. Don't use SENSOR_GPS here as gpsThread() can and will // change this based on available hardware #ifdef GPS if (feature(FEATURE_GPS)) { gpsThread(); } #endif } currentTime = micros(); if (masterConfig.looptime == 0 || (int32_t)(currentTime - loopTime) >= 0) { loopTime = currentTime + masterConfig.looptime; imuUpdate(¤tProfile->accelerometerTrims, masterConfig.mixerMode); // Measure loop rate just after reading the sensors currentTime = micros(); cycleTime = (int32_t)(currentTime - previousTime); previousTime = currentTime; annexCode(); #if defined(BARO) || defined(SONAR) haveProcessedAnnexCodeOnce = true; #endif #ifdef AUTOTUNE updateAutotuneState(); #endif #ifdef MAG if (sensors(SENSOR_MAG)) { updateMagHold(); } #endif #if defined(BARO) || defined(SONAR) if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) { if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) { applyAltHold(&masterConfig.airplaneConfig); } } #endif // If we're armed, at minimum throttle, and we do arming via the // sticks, do not process yaw input from the rx. We do this so the // motors do not spin up while we are trying to arm or disarm. if (isUsingSticksForArming() && rcData[THROTTLE] <= masterConfig.rxConfig.mincheck) { rcCommand[YAW] = 0; } if (currentProfile->throttle_correction_value && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) { rcCommand[THROTTLE] += calculateThrottleAngleCorrection(currentProfile->throttle_correction_value); } #ifdef GPS if (sensors(SENSOR_GPS)) { if ((FLIGHT_MODE(GPS_HOME_MODE) || FLIGHT_MODE(GPS_HOLD_MODE)) && STATE(GPS_FIX_HOME)) { updateGpsStateForHomeAndHoldMode(); } } #endif // PID - note this is function pointer set by setPIDController() pid_controller( ¤tProfile->pidProfile, currentControlRateProfile, masterConfig.max_angle_inclination, ¤tProfile->accelerometerTrims, &masterConfig.rxConfig ); mixTable(); #ifdef USE_SERVOS filterServos(); writeServos(); #endif writeMotors(); #ifdef BLACKBOX if (!cliMode && feature(FEATURE_BLACKBOX)) { handleBlackbox(); } #endif } #ifdef TELEMETRY if (!cliMode && feature(FEATURE_TELEMETRY)) { handleTelemetry(); } #endif #ifdef LED_STRIP if (feature(FEATURE_LED_STRIP)) { updateLedStrip(); } #endif }
void processRx(void) { static bool armedBeeperOn = false; calculateRxChannelsAndUpdateFailsafe(currentTime); // in 3D mode, we need to be able to disarm by switch at any time if (feature(FEATURE_3D)) { if (!IS_RC_MODE_ACTIVE(BOXARM)) mwDisarm(); } updateRSSI(currentTime); if (feature(FEATURE_FAILSAFE)) { if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsMonitoring()) { failsafeStartMonitoring(); } failsafeUpdateState(); } throttleStatus_e throttleStatus = calculateThrottleStatus(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); if (throttleStatus == THROTTLE_LOW) { pidResetErrorAngle(); pidResetErrorGyro(); } // When armed and motors aren't spinning, do beeps and then disarm // board after delay so users without buzzer won't lose fingers. // mixTable constrains motor commands, so checking throttleStatus is enough if (ARMING_FLAG(ARMED) && feature(FEATURE_MOTOR_STOP) && !STATE(FIXED_WING) ) { if (isUsingSticksForArming()) { if (throttleStatus == THROTTLE_LOW) { if (masterConfig.auto_disarm_delay != 0 && (int32_t)(disarmAt - millis()) < 0 ) { // auto-disarm configured and delay is over mwDisarm(); armedBeeperOn = false; } else { // still armed; do warning beeps while armed beeper(BEEPER_ARMED); armedBeeperOn = true; } } else { // throttle is not low if (masterConfig.auto_disarm_delay != 0) { // extend disarm time disarmAt = millis() + masterConfig.auto_disarm_delay * 1000; } if (armedBeeperOn) { beeperSilence(); armedBeeperOn = false; } } } else { // arming is via AUX switch; beep while throttle low if (throttleStatus == THROTTLE_LOW) { beeper(BEEPER_ARMED); armedBeeperOn = true; } else if (armedBeeperOn) { beeperSilence(); armedBeeperOn = false; } } } processRcStickPositions(&masterConfig.rxConfig, throttleStatus, masterConfig.retarded_arm, masterConfig.disarm_kill_switch); if (feature(FEATURE_INFLIGHT_ACC_CAL)) { updateInflightCalibrationState(); } updateActivatedModes(currentProfile->modeActivationConditions); if (!cliMode) { updateAdjustmentStates(currentProfile->adjustmentRanges); processRcAdjustments(currentControlRateProfile, &masterConfig.rxConfig); } bool canUseHorizonMode = true; if ((IS_RC_MODE_ACTIVE(BOXANGLE) || (feature(FEATURE_FAILSAFE) && failsafeIsActive())) && (sensors(SENSOR_ACC))) { // bumpless transfer to Level mode canUseHorizonMode = false; if (!FLIGHT_MODE(ANGLE_MODE)) { pidResetErrorAngle(); ENABLE_FLIGHT_MODE(ANGLE_MODE); } } else { DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support } if (IS_RC_MODE_ACTIVE(BOXHORIZON) && canUseHorizonMode) { DISABLE_FLIGHT_MODE(ANGLE_MODE); if (!FLIGHT_MODE(HORIZON_MODE)) { pidResetErrorAngle(); ENABLE_FLIGHT_MODE(HORIZON_MODE); } } else { DISABLE_FLIGHT_MODE(HORIZON_MODE); } if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { LED1_ON; } else { LED1_OFF; } #ifdef MAG if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) { if (IS_RC_MODE_ACTIVE(BOXMAG)) { if (!FLIGHT_MODE(MAG_MODE)) { ENABLE_FLIGHT_MODE(MAG_MODE); magHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw); } } else { DISABLE_FLIGHT_MODE(MAG_MODE); } if (IS_RC_MODE_ACTIVE(BOXHEADFREE)) { if (!FLIGHT_MODE(HEADFREE_MODE)) { ENABLE_FLIGHT_MODE(HEADFREE_MODE); } } else { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } if (IS_RC_MODE_ACTIVE(BOXHEADADJ)) { headFreeModeHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw); // acquire new heading } } #endif #ifdef GPS if (sensors(SENSOR_GPS)) { updateGpsWaypointsAndMode(); } #endif if (IS_RC_MODE_ACTIVE(BOXPASSTHRU)) { ENABLE_FLIGHT_MODE(PASSTHRU_MODE); } else { DISABLE_FLIGHT_MODE(PASSTHRU_MODE); } if (masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_AIRPLANE) { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) { if ((!masterConfig.telemetryConfig.telemetry_switch && ARMING_FLAG(ARMED)) || (masterConfig.telemetryConfig.telemetry_switch && IS_RC_MODE_ACTIVE(BOXTELEMETRY))) { releaseSharedTelemetryPorts(); } else { // the telemetry state must be checked immediately so that shared serial ports are released. telemetryCheckState(); mspAllocateSerialPorts(&masterConfig.serialConfig); } } #endif }
void executePeriodicTasks(void) { static int periodicTaskIndex = 0; switch (periodicTaskIndex++) { #ifdef MAG case UPDATE_COMPASS_TASK: if (sensors(SENSOR_MAG)) { updateCompass(&masterConfig.magZero); } break; #endif #ifdef BARO case UPDATE_BARO_TASK: if (sensors(SENSOR_BARO)) { baroUpdate(currentTime); } break; #endif #if defined(BARO) || defined(SONAR) case CALCULATE_ALTITUDE_TASK: #if defined(BARO) && !defined(SONAR) if (sensors(SENSOR_BARO) && isBaroReady()) { #endif #if defined(BARO) && defined(SONAR) if ((sensors(SENSOR_BARO) && isBaroReady()) || sensors(SENSOR_SONAR)) { #endif #if !defined(BARO) && defined(SONAR) if (sensors(SENSOR_SONAR)) { #endif calculateEstimatedAltitude(currentTime); } break; #endif #ifdef SONAR case UPDATE_SONAR_TASK: if (sensors(SENSOR_SONAR)) { sonarUpdate(); } break; #endif #ifdef DISPLAY case UPDATE_DISPLAY_TASK: if (feature(FEATURE_DISPLAY)) { updateDisplay(); } break; #endif } if (periodicTaskIndex >= PERIODIC_TASK_COUNT) { periodicTaskIndex = 0; } } void processRx(void) { static bool armedBeeperOn = false; calculateRxChannelsAndUpdateFailsafe(currentTime); // in 3D mode, we need to be able to disarm by switch at any time if (feature(FEATURE_3D)) { if (!IS_RC_MODE_ACTIVE(BOXARM)) mwDisarm(); } updateRSSI(currentTime); if (feature(FEATURE_FAILSAFE)) { if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsMonitoring()) { failsafeStartMonitoring(); } failsafeUpdateState(); } throttleStatus_e throttleStatus = calculateThrottleStatus(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); if (throttleStatus == THROTTLE_LOW) { pidResetErrorAngle(); pidResetErrorGyro(); } // When armed and motors aren't spinning, do beeps and then disarm // board after delay so users without buzzer won't lose fingers. // mixTable constrains motor commands, so checking throttleStatus is enough if (ARMING_FLAG(ARMED) && feature(FEATURE_MOTOR_STOP) && !STATE(FIXED_WING) ) { if (isUsingSticksForArming()) { if (throttleStatus == THROTTLE_LOW) { if (masterConfig.auto_disarm_delay != 0 && (int32_t)(disarmAt - millis()) < 0 ) { // auto-disarm configured and delay is over mwDisarm(); armedBeeperOn = false; } else { // still armed; do warning beeps while armed beeper(BEEPER_ARMED); armedBeeperOn = true; } } else { // throttle is not low if (masterConfig.auto_disarm_delay != 0) { // extend disarm time disarmAt = millis() + masterConfig.auto_disarm_delay * 1000; } if (armedBeeperOn) { beeperSilence(); armedBeeperOn = false; } } } else { // arming is via AUX switch; beep while throttle low if (throttleStatus == THROTTLE_LOW) { beeper(BEEPER_ARMED); armedBeeperOn = true; } else if (armedBeeperOn) { beeperSilence(); armedBeeperOn = false; } } } processRcStickPositions(&masterConfig.rxConfig, throttleStatus, masterConfig.retarded_arm, masterConfig.disarm_kill_switch); if (feature(FEATURE_INFLIGHT_ACC_CAL)) { updateInflightCalibrationState(); } updateActivatedModes(currentProfile->modeActivationConditions); if (!cliMode) { updateAdjustmentStates(currentProfile->adjustmentRanges); processRcAdjustments(currentControlRateProfile, &masterConfig.rxConfig); } bool canUseHorizonMode = true; if ((IS_RC_MODE_ACTIVE(BOXANGLE) || (feature(FEATURE_FAILSAFE) && failsafeIsActive())) && (sensors(SENSOR_ACC))) { // bumpless transfer to Level mode canUseHorizonMode = false; if (!FLIGHT_MODE(ANGLE_MODE)) { pidResetErrorAngle(); ENABLE_FLIGHT_MODE(ANGLE_MODE); } } else { DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support } if (IS_RC_MODE_ACTIVE(BOXHORIZON) && canUseHorizonMode) { DISABLE_FLIGHT_MODE(ANGLE_MODE); if (!FLIGHT_MODE(HORIZON_MODE)) { pidResetErrorAngle(); ENABLE_FLIGHT_MODE(HORIZON_MODE); } } else { DISABLE_FLIGHT_MODE(HORIZON_MODE); } if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { LED1_ON; } else { LED1_OFF; } #ifdef MAG if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) { if (IS_RC_MODE_ACTIVE(BOXMAG)) { if (!FLIGHT_MODE(MAG_MODE)) { ENABLE_FLIGHT_MODE(MAG_MODE); magHold = heading; } } else { DISABLE_FLIGHT_MODE(MAG_MODE); } if (IS_RC_MODE_ACTIVE(BOXHEADFREE)) { if (!FLIGHT_MODE(HEADFREE_MODE)) { ENABLE_FLIGHT_MODE(HEADFREE_MODE); } } else { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } if (IS_RC_MODE_ACTIVE(BOXHEADADJ)) { headFreeModeHold = heading; // acquire new heading } } #endif #ifdef GPS if (sensors(SENSOR_GPS)) { updateGpsWaypointsAndMode(); } #endif if (IS_RC_MODE_ACTIVE(BOXPASSTHRU)) { ENABLE_FLIGHT_MODE(PASSTHRU_MODE); } else { DISABLE_FLIGHT_MODE(PASSTHRU_MODE); } if (masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_AIRPLANE) { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) { if ((!masterConfig.telemetryConfig.telemetry_switch && ARMING_FLAG(ARMED)) || (masterConfig.telemetryConfig.telemetry_switch && IS_RC_MODE_ACTIVE(BOXTELEMETRY))) { releaseSharedTelemetryPorts(); } else { // the telemetry state must be checked immediately so that shared serial ports are released. telemetryCheckState(); mspAllocateSerialPorts(&masterConfig.serialConfig); } } #endif } void filterRc(void){ static int16_t lastCommand[4] = { 0, 0, 0, 0 }; static int16_t deltaRC[4] = { 0, 0, 0, 0 }; static int16_t factor, rcInterpolationFactor; static filterStatePt1_t filteredCycleTimeState; uint16_t rxRefreshRate, filteredCycleTime; // Set RC refresh rate for sampling and channels to filter initRxRefreshRate(&rxRefreshRate); filteredCycleTime = filterApplyPt1(cycleTime, &filteredCycleTimeState, 1); rcInterpolationFactor = rxRefreshRate / filteredCycleTime + 1; if (isRXDataNew) { for (int channel=0; channel < 4; channel++) { deltaRC[channel] = rcData[channel] - (lastCommand[channel] - deltaRC[channel] * factor / rcInterpolationFactor); lastCommand[channel] = rcData[channel]; } isRXDataNew = false; factor = rcInterpolationFactor - 1; } else { factor--; } // Interpolate steps of rcData if (factor > 0) { for (int channel=0; channel < 4; channel++) { rcData[channel] = lastCommand[channel] - deltaRC[channel] * factor/rcInterpolationFactor; } } else { factor = 0; } } void loop(void) { static uint32_t loopTime; #if defined(BARO) || defined(SONAR) static bool haveProcessedAnnexCodeOnce = false; #endif updateRx(currentTime); if (shouldProcessRx(currentTime)) { processRx(); isRXDataNew = true; #ifdef BARO // the 'annexCode' initialses rcCommand, updateAltHoldState depends on valid rcCommand data. if (haveProcessedAnnexCodeOnce) { if (sensors(SENSOR_BARO)) { updateAltHoldState(); } } #endif #ifdef SONAR // the 'annexCode' initialses rcCommand, updateAltHoldState depends on valid rcCommand data. if (haveProcessedAnnexCodeOnce) { if (sensors(SENSOR_SONAR)) { updateSonarAltHoldState(); } } #endif } else { // not processing rx this iteration executePeriodicTasks(); // if GPS feature is enabled, gpsThread() will be called at some intervals to check for stuck // hardware, wrong baud rates, init GPS if needed, etc. Don't use SENSOR_GPS here as gpsThread() can and will // change this based on available hardware #ifdef GPS if (feature(FEATURE_GPS)) { gpsThread(); } #endif } currentTime = micros(); if (masterConfig.looptime == 0 || (int32_t)(currentTime - loopTime) >= 0) { loopTime = currentTime + masterConfig.looptime; imuUpdate(¤tProfile->accelerometerTrims); // Measure loop rate just after reading the sensors currentTime = micros(); cycleTime = (int32_t)(currentTime - previousTime); previousTime = currentTime; // Gyro Low Pass if (currentProfile->pidProfile.gyro_cut_hz) { int axis; static filterStatePt1_t gyroADCState[XYZ_AXIS_COUNT]; for (axis = 0; axis < XYZ_AXIS_COUNT; axis++) { gyroADC[axis] = filterApplyPt1(gyroADC[axis], &gyroADCState[axis], currentProfile->pidProfile.gyro_cut_hz); } } if (masterConfig.rxConfig.rcSmoothing) { filterRc(); } annexCode(); #if defined(BARO) || defined(SONAR) haveProcessedAnnexCodeOnce = true; #endif #ifdef MAG if (sensors(SENSOR_MAG)) { updateMagHold(); } #endif #ifdef GTUNE updateGtuneState(); #endif #if defined(BARO) || defined(SONAR) if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) { if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) { applyAltHold(&masterConfig.airplaneConfig); } } #endif // If we're armed, at minimum throttle, and we do arming via the // sticks, do not process yaw input from the rx. We do this so the // motors do not spin up while we are trying to arm or disarm. // Allow yaw control for tricopters if the user wants the servo to move even when unarmed. if (isUsingSticksForArming() && rcData[THROTTLE] <= masterConfig.rxConfig.mincheck #ifndef USE_QUAD_MIXER_ONLY && !((masterConfig.mixerMode == MIXER_TRI || masterConfig.mixerMode == MIXER_CUSTOM_TRI) && masterConfig.mixerConfig.tri_unarmed_servo) && masterConfig.mixerMode != MIXER_AIRPLANE && masterConfig.mixerMode != MIXER_FLYING_WING #endif ) { rcCommand[YAW] = 0; } if (currentProfile->throttle_correction_value && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) { rcCommand[THROTTLE] += calculateThrottleAngleCorrection(currentProfile->throttle_correction_value); } #ifdef GPS if (sensors(SENSOR_GPS)) { if ((FLIGHT_MODE(GPS_HOME_MODE) || FLIGHT_MODE(GPS_HOLD_MODE)) && STATE(GPS_FIX_HOME)) { updateGpsStateForHomeAndHoldMode(); } } #endif // PID - note this is function pointer set by setPIDController() pid_controller( ¤tProfile->pidProfile, currentControlRateProfile, masterConfig.max_angle_inclination, ¤tProfile->accelerometerTrims, &masterConfig.rxConfig ); mixTable(); #ifdef USE_SERVOS filterServos(); writeServos(); #endif if (motorControlEnable) { writeMotors(); } #ifdef BLACKBOX if (!cliMode && feature(FEATURE_BLACKBOX)) { handleBlackbox(); } #endif } #ifdef TELEMETRY if (!cliMode && feature(FEATURE_TELEMETRY)) { telemetryProcess(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); } #endif #ifdef LED_STRIP if (feature(FEATURE_LED_STRIP)) { updateLedStrip(); } #endif }
void processRx(timeUs_t currentTimeUs) { static bool armedBeeperOn = false; static bool airmodeIsActivated; calculateRxChannelsAndUpdateFailsafe(currentTimeUs); // in 3D mode, we need to be able to disarm by switch at any time if (feature(FEATURE_3D)) { if (!IS_RC_MODE_ACTIVE(BOXARM)) mwDisarm(); } updateRSSI(currentTimeUs); if (feature(FEATURE_FAILSAFE)) { if (currentTimeUs > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsMonitoring()) { failsafeStartMonitoring(); } failsafeUpdateState(); } const throttleStatus_e throttleStatus = calculateThrottleStatus(); if (isAirmodeActive() && ARMING_FLAG(ARMED)) { if (rcCommand[THROTTLE] >= rxConfig()->airModeActivateThreshold) airmodeIsActivated = true; // Prevent Iterm from being reset } else { airmodeIsActivated = false; } /* In airmode Iterm should be prevented to grow when Low thottle and Roll + Pitch Centered. This is needed to prevent Iterm winding on the ground, but keep full stabilisation on 0 throttle while in air */ if (throttleStatus == THROTTLE_LOW && !airmodeIsActivated) { pidResetErrorGyroState(); if (currentPidProfile->pidAtMinThrottle) pidStabilisationState(PID_STABILISATION_ON); else pidStabilisationState(PID_STABILISATION_OFF); } else { pidStabilisationState(PID_STABILISATION_ON); } // When armed and motors aren't spinning, do beeps and then disarm // board after delay so users without buzzer won't lose fingers. // mixTable constrains motor commands, so checking throttleStatus is enough if (ARMING_FLAG(ARMED) && feature(FEATURE_MOTOR_STOP) && !STATE(FIXED_WING) && !feature(FEATURE_3D) && !isAirmodeActive() ) { if (isUsingSticksForArming()) { if (throttleStatus == THROTTLE_LOW) { if (armingConfig()->auto_disarm_delay != 0 && (int32_t)(disarmAt - millis()) < 0 ) { // auto-disarm configured and delay is over mwDisarm(); armedBeeperOn = false; } else { // still armed; do warning beeps while armed beeper(BEEPER_ARMED); armedBeeperOn = true; } } else { // throttle is not low if (armingConfig()->auto_disarm_delay != 0) { // extend disarm time disarmAt = millis() + armingConfig()->auto_disarm_delay * 1000; } if (armedBeeperOn) { beeperSilence(); armedBeeperOn = false; } } } else { // arming is via AUX switch; beep while throttle low if (throttleStatus == THROTTLE_LOW) { beeper(BEEPER_ARMED); armedBeeperOn = true; } else if (armedBeeperOn) { beeperSilence(); armedBeeperOn = false; } } } processRcStickPositions(throttleStatus); if (feature(FEATURE_INFLIGHT_ACC_CAL)) { updateInflightCalibrationState(); } updateActivatedModes(); if (!cliMode) { updateAdjustmentStates(); processRcAdjustments(currentControlRateProfile); } bool canUseHorizonMode = true; if ((IS_RC_MODE_ACTIVE(BOXANGLE) || (feature(FEATURE_FAILSAFE) && failsafeIsActive())) && (sensors(SENSOR_ACC))) { // bumpless transfer to Level mode canUseHorizonMode = false; if (!FLIGHT_MODE(ANGLE_MODE)) { ENABLE_FLIGHT_MODE(ANGLE_MODE); } } else { DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support } if (IS_RC_MODE_ACTIVE(BOXHORIZON) && canUseHorizonMode) { DISABLE_FLIGHT_MODE(ANGLE_MODE); if (!FLIGHT_MODE(HORIZON_MODE)) { ENABLE_FLIGHT_MODE(HORIZON_MODE); } } else { DISABLE_FLIGHT_MODE(HORIZON_MODE); } if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { LED1_ON; } else { LED1_OFF; } #if defined(ACC) || defined(MAG) if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) { #if defined(GPS) || defined(MAG) if (IS_RC_MODE_ACTIVE(BOXMAG)) { if (!FLIGHT_MODE(MAG_MODE)) { ENABLE_FLIGHT_MODE(MAG_MODE); magHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw); } } else { DISABLE_FLIGHT_MODE(MAG_MODE); } #endif if (IS_RC_MODE_ACTIVE(BOXHEADFREE)) { if (!FLIGHT_MODE(HEADFREE_MODE)) { ENABLE_FLIGHT_MODE(HEADFREE_MODE); } } else { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } if (IS_RC_MODE_ACTIVE(BOXHEADADJ)) { headFreeModeHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw); // acquire new heading } } #endif #ifdef GPS if (sensors(SENSOR_GPS)) { updateGpsWaypointsAndMode(); } #endif if (IS_RC_MODE_ACTIVE(BOXPASSTHRU)) { ENABLE_FLIGHT_MODE(PASSTHRU_MODE); } else { DISABLE_FLIGHT_MODE(PASSTHRU_MODE); } if (mixerConfig()->mixerMode == MIXER_FLYING_WING || mixerConfig()->mixerMode == MIXER_AIRPLANE) { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) { if ((!telemetryConfig()->telemetry_switch && ARMING_FLAG(ARMED)) || (telemetryConfig()->telemetry_switch && IS_RC_MODE_ACTIVE(BOXTELEMETRY))) { releaseSharedTelemetryPorts(); } else { // the telemetry state must be checked immediately so that shared serial ports are released. telemetryCheckState(); mspSerialAllocatePorts(); } } #endif #ifdef VTX vtxUpdateActivatedChannel(); #endif }
void processRx(void) { static bool armedBeeperOn = false; calculateRxChannelsAndUpdateFailsafe(currentTime); // in 3D mode, we need to be able to disarm by switch at any time if (feature(FEATURE_3D)) { if (!rcModeIsActive(BOXARM)) mwDisarm(); } updateRSSI(currentTime); if (feature(FEATURE_FAILSAFE)) { if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsMonitoring()) { failsafeStartMonitoring(); } failsafeUpdateState(); } throttleStatus_e throttleStatus = calculateThrottleStatus(rxConfig(), rcControlsConfig()->deadband3d_throttle); rollPitchStatus_e rollPitchStatus = calculateRollPitchCenterStatus(rxConfig()); /* In airmode Iterm should be prevented to grow when Low thottle and Roll + Pitch Centered. This is needed to prevent Iterm winding on the ground, but keep full stabilisation on 0 throttle while in air Low Throttle + roll and Pitch centered is assuming the copter is on the ground. Done to prevent complex air/ground detections */ if (throttleStatus == THROTTLE_LOW) { if (rcModeIsActive(BOXAIRMODE) && !failsafeIsActive() && ARMING_FLAG(ARMED)) { if (rollPitchStatus == CENTERED) { ENABLE_STATE(ANTI_WINDUP); } else { DISABLE_STATE(ANTI_WINDUP); } } else { pidResetITerm(); } } else { DISABLE_STATE(ANTI_WINDUP); } // When armed and motors aren't spinning, do beeps and then disarm // board after delay so users without buzzer won't lose fingers. // mixTable constrains motor commands, so checking throttleStatus is enough if (ARMING_FLAG(ARMED) && feature(FEATURE_MOTOR_STOP) && !STATE(FIXED_WING) ) { if (isUsingSticksForArming()) { if (throttleStatus == THROTTLE_LOW) { if (armingConfig()->auto_disarm_delay != 0 && (int32_t)(disarmAt - millis()) < 0 ) { // auto-disarm configured and delay is over mwDisarm(); armedBeeperOn = false; } else { // still armed; do warning beeps while armed beeper(BEEPER_ARMED); armedBeeperOn = true; } } else { // throttle is not low if (armingConfig()->auto_disarm_delay != 0) { // extend disarm time disarmAt = millis() + armingConfig()->auto_disarm_delay * 1000; } if (armedBeeperOn) { beeperSilence(); armedBeeperOn = false; } } } else { // arming is via AUX switch; beep while throttle low if (throttleStatus == THROTTLE_LOW) { beeper(BEEPER_ARMED); armedBeeperOn = true; } else if (armedBeeperOn) { beeperSilence(); armedBeeperOn = false; } } } processRcStickPositions(rxConfig(), throttleStatus, armingConfig()->retarded_arm, armingConfig()->disarm_kill_switch); if (feature(FEATURE_INFLIGHT_ACC_CAL)) { updateInflightCalibrationState(); } rcModeUpdateActivated(modeActivationProfile()->modeActivationConditions); if (!cliMode) { updateAdjustmentStates(adjustmentProfile()->adjustmentRanges); processRcAdjustments(currentControlRateProfile, rxConfig()); } bool canUseHorizonMode = true; if ((rcModeIsActive(BOXANGLE) || (feature(FEATURE_FAILSAFE) && failsafeIsActive())) && (sensors(SENSOR_ACC))) { // bumpless transfer to Level mode canUseHorizonMode = false; if (!FLIGHT_MODE(ANGLE_MODE)) { ENABLE_FLIGHT_MODE(ANGLE_MODE); } } else { DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support } if (rcModeIsActive(BOXHORIZON) && canUseHorizonMode) { DISABLE_FLIGHT_MODE(ANGLE_MODE); if (!FLIGHT_MODE(HORIZON_MODE)) { ENABLE_FLIGHT_MODE(HORIZON_MODE); } } else { DISABLE_FLIGHT_MODE(HORIZON_MODE); } if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { LED1_ON; } else { LED1_OFF; } #ifdef MAG if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) { if (rcModeIsActive(BOXMAG)) { if (!FLIGHT_MODE(MAG_MODE)) { ENABLE_FLIGHT_MODE(MAG_MODE); magHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw); } } else { DISABLE_FLIGHT_MODE(MAG_MODE); } if (rcModeIsActive(BOXHEADFREE)) { if (!FLIGHT_MODE(HEADFREE_MODE)) { ENABLE_FLIGHT_MODE(HEADFREE_MODE); } } else { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } if (rcModeIsActive(BOXHEADADJ)) { headFreeModeHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw); // acquire new heading } } #endif #ifdef GPS if (sensors(SENSOR_GPS)) { updateGpsWaypointsAndMode(); } #endif if (rcModeIsActive(BOXPASSTHRU)) { ENABLE_FLIGHT_MODE(PASSTHRU_MODE); } else { DISABLE_FLIGHT_MODE(PASSTHRU_MODE); } if (mixerConfig()->mixerMode == MIXER_FLYING_WING || mixerConfig()->mixerMode == MIXER_AIRPLANE) { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) { if ((!telemetryConfig()->telemetry_switch && ARMING_FLAG(ARMED)) || (telemetryConfig()->telemetry_switch && rcModeIsActive(BOXTELEMETRY))) { releaseSharedTelemetryPorts(); } else { // the telemetry state must be checked immediately so that shared serial ports are released. bool telemetryStateChanged = telemetryCheckState(); if (telemetryStateChanged) { mspSerialAllocatePorts(); } } } #endif #ifdef VTX if (canUpdateVTX()) { updateVTXState(); } #endif }
void processRx(void) { calculateRxChannelsAndUpdateFailsafe(currentTime); // in 3D mode, we need to be able to disarm by switch at any time if (feature(FEATURE_3D)) { if (!rcOptions[BOXARM]) mwDisarm(); } updateRSSI(currentTime); if (feature(FEATURE_FAILSAFE)) { if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafe->vTable->isEnabled()) { failsafe->vTable->enable(); } failsafe->vTable->updateState(); } throttleStatus_e throttleStatus = calculateThrottleStatus(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); if (throttleStatus == THROTTLE_LOW) { resetErrorAngle(); resetErrorGyro(); } processRcStickPositions(&masterConfig.rxConfig, throttleStatus, currentProfile->activate, masterConfig.retarded_arm, masterConfig.disarm_kill_switch); if (feature(FEATURE_INFLIGHT_ACC_CAL)) { updateInflightCalibrationState(); } updateRcOptions(currentProfile->activate); bool canUseHorizonMode = true; if ((rcOptions[BOXANGLE] || (feature(FEATURE_FAILSAFE) && failsafe->vTable->hasTimerElapsed())) && (sensors(SENSOR_ACC))) { // bumpless transfer to Level mode canUseHorizonMode = false; if (!FLIGHT_MODE(ANGLE_MODE)) { resetErrorAngle(); ENABLE_FLIGHT_MODE(ANGLE_MODE); } } else { DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support } if (rcOptions[BOXHORIZON] && canUseHorizonMode) { DISABLE_FLIGHT_MODE(ANGLE_MODE); if (!FLIGHT_MODE(HORIZON_MODE)) { resetErrorAngle(); ENABLE_FLIGHT_MODE(HORIZON_MODE); } } else { DISABLE_FLIGHT_MODE(HORIZON_MODE); } if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { LED1_ON; } else { LED1_OFF; } #ifdef MAG if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) { if (rcOptions[BOXMAG]) { if (!FLIGHT_MODE(MAG_MODE)) { ENABLE_FLIGHT_MODE(MAG_MODE); magHold = heading; } } else { DISABLE_FLIGHT_MODE(MAG_MODE); } if (rcOptions[BOXHEADFREE]) { if (!FLIGHT_MODE(HEADFREE_MODE)) { ENABLE_FLIGHT_MODE(HEADFREE_MODE); } } else { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } if (rcOptions[BOXHEADADJ]) { headFreeModeHold = heading; // acquire new heading } } #endif #ifdef GPS if (sensors(SENSOR_GPS)) { updateGpsWaypointsAndMode(); } #endif if (rcOptions[BOXPASSTHRU]) { ENABLE_FLIGHT_MODE(PASSTHRU_MODE); } else { DISABLE_FLIGHT_MODE(PASSTHRU_MODE); } if (masterConfig.mixerConfiguration == MULTITYPE_FLYING_WING || masterConfig.mixerConfiguration == MULTITYPE_AIRPLANE) { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } }
/* * processRx called from taskUpdateRxMain */ bool processRx(timeUs_t currentTimeUs) { static bool armedBeeperOn = false; if (!calculateRxChannelsAndUpdateFailsafe(currentTimeUs)) { return false; } // in 3D mode, we need to be able to disarm by switch at any time if (feature(FEATURE_3D)) { if (!IS_RC_MODE_ACTIVE(BOXARM)) disarm(); } updateRSSI(currentTimeUs); if (currentTimeUs > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsMonitoring()) { failsafeStartMonitoring(); } failsafeUpdateState(); const throttleStatus_e throttleStatus = calculateThrottleStatus(); const uint8_t throttlePercent = calculateThrottlePercent(); if (isAirmodeActive() && ARMING_FLAG(ARMED)) { if (throttlePercent >= rxConfig()->airModeActivateThreshold) { airmodeIsActivated = true; // Prevent Iterm from being reset } } else { airmodeIsActivated = false; } /* In airmode Iterm should be prevented to grow when Low thottle and Roll + Pitch Centered. This is needed to prevent Iterm winding on the ground, but keep full stabilisation on 0 throttle while in air */ if (throttleStatus == THROTTLE_LOW && !airmodeIsActivated) { pidResetITerm(); if (currentPidProfile->pidAtMinThrottle) pidStabilisationState(PID_STABILISATION_ON); else pidStabilisationState(PID_STABILISATION_OFF); } else { pidStabilisationState(PID_STABILISATION_ON); } #ifdef USE_RUNAWAY_TAKEOFF // If runaway_takeoff_prevention is enabled, accumulate the amount of time that throttle // is above runaway_takeoff_deactivate_throttle with the any of the R/P/Y sticks deflected // to at least runaway_takeoff_stick_percent percent while the pidSum on all axis is kept low. // Once the amount of accumulated time exceeds runaway_takeoff_deactivate_delay then disable // prevention for the remainder of the battery. if (ARMING_FLAG(ARMED) && pidConfig()->runaway_takeoff_prevention && !runawayTakeoffCheckDisabled && !flipOverAfterCrashMode && !runawayTakeoffTemporarilyDisabled && !STATE(FIXED_WING)) { // Determine if we're in "flight" // - motors running // - throttle over runaway_takeoff_deactivate_throttle_percent // - sticks are active and have deflection greater than runaway_takeoff_deactivate_stick_percent // - pidSum on all axis is less then runaway_takeoff_deactivate_pidlimit bool inStableFlight = false; if (!feature(FEATURE_MOTOR_STOP) || isAirmodeActive() || (throttleStatus != THROTTLE_LOW)) { // are motors running? const uint8_t lowThrottleLimit = pidConfig()->runaway_takeoff_deactivate_throttle; const uint8_t midThrottleLimit = constrain(lowThrottleLimit * 2, lowThrottleLimit * 2, RUNAWAY_TAKEOFF_HIGH_THROTTLE_PERCENT); if ((((throttlePercent >= lowThrottleLimit) && areSticksActive(RUNAWAY_TAKEOFF_DEACTIVATE_STICK_PERCENT)) || (throttlePercent >= midThrottleLimit)) && (fabsf(pidData[FD_PITCH].Sum) < RUNAWAY_TAKEOFF_DEACTIVATE_PIDSUM_LIMIT) && (fabsf(pidData[FD_ROLL].Sum) < RUNAWAY_TAKEOFF_DEACTIVATE_PIDSUM_LIMIT) && (fabsf(pidData[FD_YAW].Sum) < RUNAWAY_TAKEOFF_DEACTIVATE_PIDSUM_LIMIT)) { inStableFlight = true; if (runawayTakeoffDeactivateUs == 0) { runawayTakeoffDeactivateUs = currentTimeUs; } } } // If we're in flight, then accumulate the time and deactivate once it exceeds runaway_takeoff_deactivate_delay milliseconds if (inStableFlight) { if (runawayTakeoffDeactivateUs == 0) { runawayTakeoffDeactivateUs = currentTimeUs; } uint16_t deactivateDelay = pidConfig()->runaway_takeoff_deactivate_delay; // at high throttle levels reduce deactivation delay by 50% if (throttlePercent >= RUNAWAY_TAKEOFF_HIGH_THROTTLE_PERCENT) { deactivateDelay = deactivateDelay / 2; } if ((cmpTimeUs(currentTimeUs, runawayTakeoffDeactivateUs) + runawayTakeoffAccumulatedUs) > deactivateDelay * 1000) { runawayTakeoffCheckDisabled = true; } } else { if (runawayTakeoffDeactivateUs != 0) { runawayTakeoffAccumulatedUs += cmpTimeUs(currentTimeUs, runawayTakeoffDeactivateUs); } runawayTakeoffDeactivateUs = 0; } if (runawayTakeoffDeactivateUs == 0) { DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_DELAY, DEBUG_RUNAWAY_TAKEOFF_FALSE); DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_TIME, runawayTakeoffAccumulatedUs / 1000); } else { DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_DELAY, DEBUG_RUNAWAY_TAKEOFF_TRUE); DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_TIME, (cmpTimeUs(currentTimeUs, runawayTakeoffDeactivateUs) + runawayTakeoffAccumulatedUs) / 1000); } } else { DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_DELAY, DEBUG_RUNAWAY_TAKEOFF_FALSE); DEBUG_SET(DEBUG_RUNAWAY_TAKEOFF, DEBUG_RUNAWAY_TAKEOFF_DEACTIVATING_TIME, DEBUG_RUNAWAY_TAKEOFF_FALSE); } #endif // When armed and motors aren't spinning, do beeps and then disarm // board after delay so users without buzzer won't lose fingers. // mixTable constrains motor commands, so checking throttleStatus is enough if (ARMING_FLAG(ARMED) && feature(FEATURE_MOTOR_STOP) && !STATE(FIXED_WING) && !feature(FEATURE_3D) && !isAirmodeActive() ) { if (isUsingSticksForArming()) { if (throttleStatus == THROTTLE_LOW) { if (armingConfig()->auto_disarm_delay != 0 && (int32_t)(disarmAt - millis()) < 0 ) { // auto-disarm configured and delay is over disarm(); armedBeeperOn = false; } else { // still armed; do warning beeps while armed beeper(BEEPER_ARMED); armedBeeperOn = true; } } else { // throttle is not low if (armingConfig()->auto_disarm_delay != 0) { // extend disarm time disarmAt = millis() + armingConfig()->auto_disarm_delay * 1000; } if (armedBeeperOn) { beeperSilence(); armedBeeperOn = false; } } } else { // arming is via AUX switch; beep while throttle low if (throttleStatus == THROTTLE_LOW) { beeper(BEEPER_ARMED); armedBeeperOn = true; } else if (armedBeeperOn) { beeperSilence(); armedBeeperOn = false; } } } processRcStickPositions(); if (feature(FEATURE_INFLIGHT_ACC_CAL)) { updateInflightCalibrationState(); } updateActivatedModes(); #ifdef USE_DSHOT /* Enable beep warning when the crash flip mode is active */ if (isMotorProtocolDshot() && isModeActivationConditionPresent(BOXFLIPOVERAFTERCRASH) && IS_RC_MODE_ACTIVE(BOXFLIPOVERAFTERCRASH)) { beeper(BEEPER_CRASH_FLIP_MODE); } #endif if (!cliMode) { updateAdjustmentStates(); processRcAdjustments(currentControlRateProfile); } bool canUseHorizonMode = true; if ((IS_RC_MODE_ACTIVE(BOXANGLE) || failsafeIsActive()) && (sensors(SENSOR_ACC))) { // bumpless transfer to Level mode canUseHorizonMode = false; if (!FLIGHT_MODE(ANGLE_MODE)) { ENABLE_FLIGHT_MODE(ANGLE_MODE); } } else { DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support } if (IS_RC_MODE_ACTIVE(BOXHORIZON) && canUseHorizonMode) { DISABLE_FLIGHT_MODE(ANGLE_MODE); if (!FLIGHT_MODE(HORIZON_MODE)) { ENABLE_FLIGHT_MODE(HORIZON_MODE); } } else { DISABLE_FLIGHT_MODE(HORIZON_MODE); } #ifdef USE_GPS_RESCUE if (IS_RC_MODE_ACTIVE(BOXGPSRESCUE) || (failsafeIsActive() && failsafeConfig()->failsafe_procedure == FAILSAFE_PROCEDURE_GPS_RESCUE)) { if (!FLIGHT_MODE(GPS_RESCUE_MODE)) { ENABLE_FLIGHT_MODE(GPS_RESCUE_MODE); } } else { DISABLE_FLIGHT_MODE(GPS_RESCUE_MODE); } #endif if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { LED1_ON; // increase frequency of attitude task to reduce drift when in angle or horizon mode rescheduleTask(TASK_ATTITUDE, TASK_PERIOD_HZ(500)); } else { LED1_OFF; rescheduleTask(TASK_ATTITUDE, TASK_PERIOD_HZ(100)); } if (!IS_RC_MODE_ACTIVE(BOXPREARM) && ARMING_FLAG(WAS_ARMED_WITH_PREARM)) { DISABLE_ARMING_FLAG(WAS_ARMED_WITH_PREARM); } #if defined(USE_ACC) || defined(USE_MAG) if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) { #if defined(USE_GPS) || defined(USE_MAG) if (IS_RC_MODE_ACTIVE(BOXMAG)) { if (!FLIGHT_MODE(MAG_MODE)) { ENABLE_FLIGHT_MODE(MAG_MODE); magHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw); } } else { DISABLE_FLIGHT_MODE(MAG_MODE); } #endif if (IS_RC_MODE_ACTIVE(BOXHEADFREE)) { if (!FLIGHT_MODE(HEADFREE_MODE)) { ENABLE_FLIGHT_MODE(HEADFREE_MODE); } } else { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } if (IS_RC_MODE_ACTIVE(BOXHEADADJ)) { if (imuQuaternionHeadfreeOffsetSet()){ beeper(BEEPER_RX_SET); } } } #endif if (IS_RC_MODE_ACTIVE(BOXPASSTHRU)) { ENABLE_FLIGHT_MODE(PASSTHRU_MODE); } else { DISABLE_FLIGHT_MODE(PASSTHRU_MODE); } if (mixerConfig()->mixerMode == MIXER_FLYING_WING || mixerConfig()->mixerMode == MIXER_AIRPLANE) { DISABLE_FLIGHT_MODE(HEADFREE_MODE); } #ifdef USE_TELEMETRY static bool sharedPortTelemetryEnabled = false; if (feature(FEATURE_TELEMETRY)) { bool enableSharedPortTelemetry = (!isModeActivationConditionPresent(BOXTELEMETRY) && ARMING_FLAG(ARMED)) || (isModeActivationConditionPresent(BOXTELEMETRY) && IS_RC_MODE_ACTIVE(BOXTELEMETRY)); if (enableSharedPortTelemetry && !sharedPortTelemetryEnabled) { mspSerialReleaseSharedTelemetryPorts(); telemetryCheckState(); sharedPortTelemetryEnabled = true; } else if (!enableSharedPortTelemetry && sharedPortTelemetryEnabled) { // the telemetry state must be checked immediately so that shared serial ports are released. telemetryCheckState(); mspSerialAllocatePorts(); sharedPortTelemetryEnabled = false; } } #endif #ifdef USE_VTX_CONTROL vtxUpdateActivatedChannel(); if (canUpdateVTX()) { handleVTXControlButton(); } #endif #ifdef USE_ACRO_TRAINER pidSetAcroTrainerState(IS_RC_MODE_ACTIVE(BOXACROTRAINER) && sensors(SENSOR_ACC)); #endif // USE_ACRO_TRAINER #ifdef USE_RC_SMOOTHING_FILTER if (ARMING_FLAG(ARMED) && !rcSmoothingInitializationComplete()) { beeper(BEEPER_RC_SMOOTHING_INIT_FAIL); } #endif pidSetAntiGravityState(IS_RC_MODE_ACTIVE(BOXANTIGRAVITY) || feature(FEATURE_ANTI_GRAVITY)); return true; }