static bool handle_completion(AutoCompleteState& autoComplete, TextBuffer& text){
  // Find the preceeding backslash or character halting auto-completion
  const size_t bs = text.prev_any_of(utf8_string(chars::backslash) +
    utf8_string(chars::space) +
    utf8_string(chars::comma) +
    utf8_string(chars::eol));

  if (bs == utf8_string::npos || text.at(bs) != chars::backslash){
    return false;
  }

  auto completion = autoComplete.Empty() ?
    autoComplete.Complete(text.get().substr(bs, text.caret() - bs)) :
    autoComplete.Next();
  text.select(CaretRange(bs, text.caret()));
  text.insert(completion);
  return true;
}
// Split the filename into root and extension, which if concatenated
// are equal to the filename.
std::pair<utf8_string, utf8_string> split_extension(const FileName& f){
  const utf8_string s = f.Str();
  auto pos = s.rfind(chars::full_stop);
  if (pos == utf8_string::npos){
    return {s, utf8_string()};
  }
  else{
    return {slice_up_to(s, pos), slice_from(s, pos)};
  }
}
Exemple #3
0
char *copy_utf8_string(const char *str, uint32_t length)
{
    tls_copy_t *tls = copy_get_tls();

    tls->active = 1;
    if(setjmp(tls->jb) == 0) {
        char *ret = utf8_string(str, length);
        tls->active = 0;
        return ret;
    }
    tls->active = 0;
    return NULL;
}
Exemple #4
0
static void log_string(const char *str, int length)
{
    if (str == NULL) {
        bson_append_string_n( g_bson, g_istr, "", 0 );
        return;
    }
    int ret;
    char * utf8s = utf8_string(str, length);
    int utf8len = * (int *) utf8s;
    ret = bson_append_binary( g_bson, g_istr, BSON_BIN_BINARY, utf8s+4, utf8len );
    if (ret == BSON_ERROR) {
        char tmp[64];
        snprintf(tmp, 64, "dbg bson err string %x utf8len %d", g_bson->err, utf8len);
        debug_message(tmp);
    }
    free(utf8s);
}
Exemple #5
0
int main()
{
    pipe_init("\\\\.\\PIPE\\cuckoo", 0);

    hook_init(GetModuleHandle(NULL));
    mem_init();
    assert(native_init() == 0);

    uint8_t buf[16]; uint16_t val[2];

    assert(utf8_encode(0x00000001, buf) == 1 && memcmp(buf, "\x01", 1) == 0);
    assert(utf8_encode(0x0000007f, buf) == 1 && memcmp(buf, "\x7f", 1) == 0);
    assert(utf8_encode(0x00000080, buf) == 2 && memcmp(buf, "\xc2\x80", 2) == 0);
    assert(utf8_encode(0x000007ff, buf) == 2 && memcmp(buf, "\xdf\xbf", 2) == 0);
    assert(utf8_encode(0x00000800, buf) == 3 && memcmp(buf, "\xe0\xa0\x80", 3) == 0);
    assert(utf8_encode(0x0000ffff, buf) == 3 && memcmp(buf, "\xef\xbf\xbf", 3) == 0);
    assert(utf8_encode(0x00010000, buf) == 4 && memcmp(buf, "\xf0\x90\x80\x80", 4) == 0);
    assert(utf8_encode(0x001fffff, buf) == 4 && memcmp(buf, "\xf7\xbf\xbf\xbf", 4) == 0);
    assert(utf8_encode(0x00200000, buf) == 5 && memcmp(buf, "\xf8\x88\x80\x80\x80", 5) == 0);
    assert(utf8_encode(0x03ffffff, buf) == 5 && memcmp(buf, "\xfb\xbf\xbf\xbf\xbf", 5) == 0);
    assert(utf8_encode(0x04000000, buf) == 6 && memcmp(buf, "\xfc\x84\x80\x80\x80\x80", 6) == 0);
    assert(utf8_encode(0x7fffffff, buf) == 6 && memcmp(buf, "\xfd\xbf\xbf\xbf\xbf\xbf", 6) == 0);

    // It's kind of a hassle to get utf8_wstring() to work here, so we'll just
    // do similar work with the byte count, which calculates the required
    // amount of bytes for a sequence. The following sequences represent the
    // various utf8 boundaries, i.e., their maximum values before needing an
    // extra byte etc.
    assert(utf8_bytecnt_unicode((val[0] = 0xd800, val[1] = 0xdc00, val), 2) == 1);
    assert(utf8_bytecnt_unicode((val[0] = 0xd801, val[1] = 0xdc00, val), 2) == 2);
    assert(utf8_bytecnt_unicode((val[0] = 0xd802, val[1] = 0xdc00, val), 2) == 3);
    assert(utf8_bytecnt_unicode((val[0] = 0xd840, val[1] = 0xdc00, val), 2) == 4);

    // We used to have some issues with signed chars and the MSB being set as
    // we wouldn't cast these as unsigned characters. This would result in
    // utf8_length(0xffffff81) returning -1, rather than utf8_length(0x81)
    // returning 2. Similarly to incorrect return values of utf8_length() we'd
    // also experience out-of-bounds writes as our buffer would be indexed by
    // -1, resulting in undefined behavior.
    assert(utf8_bytecnt_ascii("\x81", 1) == 2);
    assert(utf8_bytecnt_unicode(L"\u8081", 1) == 3);
    assert(memcmp(utf8_string("\x81", 1), "\x02\x00\x00\x00\xc2\x81", 6) == 0);
    assert(memcmp(utf8_wstring(L"\u8081", 1), "\x03\x00\x00\x00\xe8\x82\x81", 7) == 0);
}
Exemple #6
0
static void log_string(bson *b, const char *idx, const char *str, int length)
{
    if(str == NULL) {
        bson_append_string_n(b, idx, "", 0);
        return;
    }

    int ret, utf8len;

    if(range_is_readable(str, length) != 0) {
        char *utf8s = utf8_string(str, length);
        utf8len = *(int *) utf8s;
        ret = bson_append_binary(b, idx, BSON_BIN_BINARY, utf8s+4, utf8len);
        if(ret == BSON_ERROR) {
            pipe("CRITICAL:Error creating bson string, error, %x utf8len %d.",
                 b->err, utf8len);
        }
        mem_free(utf8s);
    }
    else {
        bson_append_binary(b, idx, BSON_BIN_BINARY, "<INVALID POINTER>", 17);
    }
}
SaveResult write_bmp(const FilePath& filePath,
  const Bitmap& bmp,
  BitmapQuality quality)
{
  BinaryWriter out(filePath);
  if (!out.good()){
    return SaveResult::SaveFailed(error_open_file_write(filePath));
  }

  const auto bitsPerPixel = bits_per_pixel(quality);
  const IntSize size(bmp.GetSize());
  const int rowStride = bmp_row_stride(bitsPerPixel, size.w);

  switch(quality){
    // Note: No default, to ensure warning if unhandled enum value
  case BitmapQuality::COLOR_8BIT:
    {
      const auto pixelData = quantized(bmp, Dithering::ON);
      PaletteColors paletteColors(pixelData.palette.size());

      write_struct(out,
        create_bitmap_file_header(paletteColors, rowStride, size.h));
      write_struct(out,
        create_bitmap_info_header_8bipp(bmp.GetSize(),
          default_DPI(),
          PaletteColors(pixelData.palette.size()),
          false));
      write_8bipp_BI_RGB(out, pixelData);
      return SaveResult::SaveSuccessful();
    }

  case BitmapQuality::GRAY_8BIT:
    {
      MappedColors pixelData(desaturate_AlphaMap(bmp), grayscale_color_table());
      PaletteColors paletteColors(pixelData.palette.size());
      write_struct(out,
        create_bitmap_file_header(paletteColors, rowStride, size.h));
      write_struct(out,
        create_bitmap_info_header_8bipp(bmp.GetSize(),
          default_DPI(),
          PaletteColors(pixelData.palette.size()),
          false));
      write_8bipp_BI_RGB(out, pixelData);
      return SaveResult::SaveSuccessful();
    }

  case BitmapQuality::COLOR_24BIT:
    {
      write_struct(out,
        create_bitmap_file_header(PaletteColors(0), rowStride, size.h));
      write_struct(out,
        create_bitmap_info_header_24bipp(bmp.GetSize(),
          default_DPI(),
          false));
      write_24bipp_BI_RGB(out, bmp);
      return SaveResult::SaveSuccessful();
    }
  }

  assert(false);
  return SaveResult::SaveFailed(utf8_string("Internal error in save_bitmap"));
}
SaveResult SaveResult::SaveSuccessful(){
  return SaveResult(true, utf8_string(""));
}
static PyObject* as_repr(activeSettingsObject*){
  return build_unicode(utf8_string(ACTIVE_SETTINGS_NAME));
}
FileExtension::FileExtension(const char* s)
  : m_impl(new ExtensionImpl(utf8_string(s)))
{}
Exemple #11
0
static int dm5_dive(void *param, int columns, char **data, char **column)
{
	UNUSED(columns);
	UNUSED(column);
	int i;
	int tempformat = 0;
	int interval, retval = 0, block_size;
	struct parser_state *state = (struct parser_state *)param;
	sqlite3 *handle = state->sql_handle;
	unsigned const char *sampleBlob;
	char *err = NULL;
	char get_events_template[] = "select * from Mark where DiveId = %d";
	char get_tags_template[] = "select Text from DiveTag where DiveId = %d";
	char get_cylinders_template[] = "select * from DiveMixture where DiveId = %d";
	char get_gaschange_template[] = "select GasChangeTime,Oxygen,Helium from DiveGasChange join DiveMixture on DiveGasChange.DiveMixtureId=DiveMixture.DiveMixtureId where DiveId = %d";
	char get_events[512];

	dive_start(state);
	state->cur_dive->number = atoi(data[0]);

	state->cur_dive->when = (time_t)(atol(data[1]));
	if (data[2])
		utf8_string(data[2], &state->cur_dive->notes);

	if (data[3])
		state->cur_dive->duration.seconds = atoi(data[3]);
	if (data[15])
		state->cur_dive->dc.duration.seconds = atoi(data[15]);

	/*
	 * TODO: the deviceid hash should be calculated here.
	 */
	settings_start(state);
	dc_settings_start(state);
	if (data[4]) {
		utf8_string(data[4], &state->cur_settings.dc.serial_nr);
		state->cur_settings.dc.deviceid = atoi(data[4]);
	}
	if (data[5])
		utf8_string(data[5], &state->cur_settings.dc.model);

	dc_settings_end(state);
	settings_end(state);

	if (data[6])
		state->cur_dive->dc.maxdepth.mm = lrint(strtod_flags(data[6], NULL, 0) * 1000);
	if (data[8])
		state->cur_dive->dc.airtemp.mkelvin = C_to_mkelvin(atoi(data[8]));
	if (data[9])
		state->cur_dive->dc.watertemp.mkelvin = C_to_mkelvin(atoi(data[9]));

	if (data[4]) {
		state->cur_dive->dc.deviceid = atoi(data[4]);
	}
	if (data[5])
		utf8_string(data[5], &state->cur_dive->dc.model);

	snprintf(get_events, sizeof(get_events) - 1, get_cylinders_template, state->cur_dive->number);
	retval = sqlite3_exec(handle, get_events, &dm5_cylinders, state, &err);
	if (retval != SQLITE_OK) {
		fprintf(stderr, "%s", "Database query dm5_cylinders failed.\n");
		return 1;
	}

	if (data[14])
		state->cur_dive->dc.surface_pressure.mbar = (atoi(data[14]) / 100);

	interval = data[16] ? atoi(data[16]) : 0;

	/*
	 * sampleBlob[0]	version number, indicates the size of one sample
	 *
	 * Following ones describe single sample, bugs in interpretation of the binary blob are likely:
	 *
	 * sampleBlob[3]	depth
	 * sampleBlob[7-9]	pressure
	 * sampleBlob[11]	temperature - either full Celsius or float, might be different field for some version of DM
	 */

	sampleBlob = (unsigned const char *)data[24];

	if (sampleBlob) {
		switch (sampleBlob[0]) {
			case 1:
				// Log is converted from DM4 to DM5
				block_size = 16;
				break;
			case 2:
				block_size = 19;
				break;
			case 3:
				block_size = 23;
				break;
			case 4:
				// Temperature is stored in float
				tempformat = 1;
				block_size = 26;
				break;
			case 5:
				// Temperature is stored in float
				tempformat = 1;
				block_size = 30;
				break;
			default:
				block_size = 16;
				break;
		}
	}

	for (i = 0; interval && sampleBlob && i * interval < state->cur_dive->duration.seconds; i++) {
		float *depth = (float *)&sampleBlob[i * block_size + 3];
		int32_t pressure = (sampleBlob[i * block_size + 9] << 16) + (sampleBlob[i * block_size + 8] << 8) + sampleBlob[i * block_size + 7];

		sample_start(state);
		state->cur_sample->time.seconds = i * interval;
		state->cur_sample->depth.mm = lrintf(depth[0] * 1000.0f);

		if (tempformat == 1) {
			float *temp = (float *)&(sampleBlob[i * block_size + 11]);
			state->cur_sample->temperature.mkelvin = C_to_mkelvin(*temp);
		} else {
			if ((sampleBlob[i * block_size + 11]) != 0x7F) {
				state->cur_sample->temperature.mkelvin = C_to_mkelvin(sampleBlob[i * block_size + 11]);
			}
		}

		/*
		 * Limit cylinder pressures to somewhat sensible values
		 */
		if (pressure >= 0 && pressure < 350000)
			state->cur_sample->pressure[0].mbar = pressure;
		sample_end(state);
	}

	/*
	 * Log was converted from DM4, thus we need to parse the profile
	 * from DM4 format
	 */

	if (i == 0) {
		float *profileBlob;
		unsigned char *tempBlob;
		int *pressureBlob;

		profileBlob = (float *)data[17];
		tempBlob = (unsigned char *)data[18];
		pressureBlob = (int *)data[19];
		for (i = 0; interval && i * interval < state->cur_dive->duration.seconds; i++) {
			sample_start(state);
			state->cur_sample->time.seconds = i * interval;
			if (profileBlob)
				state->cur_sample->depth.mm = lrintf(profileBlob[i] * 1000.0f);
			else
				state->cur_sample->depth.mm = state->cur_dive->dc.maxdepth.mm;

			if (data[18] && data[18][0])
				state->cur_sample->temperature.mkelvin = C_to_mkelvin(tempBlob[i]);
			if (data[19] && data[19][0])
				state->cur_sample->pressure[0].mbar = pressureBlob[i];
			sample_end(state);
		}
	}

	snprintf(get_events, sizeof(get_events) - 1, get_gaschange_template, state->cur_dive->number);
	retval = sqlite3_exec(handle, get_events, &dm5_gaschange, state, &err);
	if (retval != SQLITE_OK) {
		fprintf(stderr, "%s", "Database query dm5_gaschange failed.\n");
		return 1;
	}

	snprintf(get_events, sizeof(get_events) - 1, get_events_template, state->cur_dive->number);
	retval = sqlite3_exec(handle, get_events, &dm4_events, state, &err);
	if (retval != SQLITE_OK) {
		fprintf(stderr, "%s", "Database query dm4_events failed.\n");
		return 1;
	}

	snprintf(get_events, sizeof(get_events) - 1, get_tags_template, state->cur_dive->number);
	retval = sqlite3_exec(handle, get_events, &dm4_tags, state, &err);
	if (retval != SQLITE_OK) {
		fprintf(stderr, "%s", "Database query dm4_tags failed.\n");
		return 1;
	}

	dive_end(state);

	return SQLITE_OK;
}
Exemple #12
0
static int dm4_dive(void *param, int columns, char **data, char **column)
{
	UNUSED(columns);
	UNUSED(column);
	int i;
	int interval, retval = 0;
	struct parser_state *state = (struct parser_state *)param;
	sqlite3 *handle = state->sql_handle;
	float *profileBlob;
	unsigned char *tempBlob;
	int *pressureBlob;
	char *err = NULL;
	char get_events_template[] = "select * from Mark where DiveId = %d";
	char get_tags_template[] = "select Text from DiveTag where DiveId = %d";
	char get_events[64];

	dive_start(state);
	state->cur_dive->number = atoi(data[0]);

	state->cur_dive->when = (time_t)(atol(data[1]));
	if (data[2])
		utf8_string(data[2], &state->cur_dive->notes);

	/*
	 * DM4 stores Duration and DiveTime. It looks like DiveTime is
	 * 10 to 60 seconds shorter than Duration. However, I have no
	 * idea what is the difference and which one should be used.
	 * Duration = data[3]
	 * DiveTime = data[15]
	 */
	if (data[3])
		state->cur_dive->duration.seconds = atoi(data[3]);
	if (data[15])
		state->cur_dive->dc.duration.seconds = atoi(data[15]);

	/*
	 * TODO: the deviceid hash should be calculated here.
	 */
	settings_start(state);
	dc_settings_start(state);
	if (data[4])
		utf8_string(data[4], &state->cur_settings.dc.serial_nr);
	if (data[5])
		utf8_string(data[5], &state->cur_settings.dc.model);

	state->cur_settings.dc.deviceid = 0xffffffff;
	dc_settings_end(state);
	settings_end(state);

	if (data[6])
		state->cur_dive->dc.maxdepth.mm = lrint(strtod_flags(data[6], NULL, 0) * 1000);
	if (data[8])
		state->cur_dive->dc.airtemp.mkelvin = C_to_mkelvin(atoi(data[8]));
	if (data[9])
		state->cur_dive->dc.watertemp.mkelvin = C_to_mkelvin(atoi(data[9]));

	/*
	 * TODO: handle multiple cylinders
	 */
	cylinder_start(state);
	if (data[22] && atoi(data[22]) > 0)
		state->cur_dive->cylinder[state->cur_cylinder_index].start.mbar = atoi(data[22]);
	else if (data[10] && atoi(data[10]) > 0)
		state->cur_dive->cylinder[state->cur_cylinder_index].start.mbar = atoi(data[10]);
	if (data[23] && atoi(data[23]) > 0)
		state->cur_dive->cylinder[state->cur_cylinder_index].end.mbar = (atoi(data[23]));
	if (data[11] && atoi(data[11]) > 0)
		state->cur_dive->cylinder[state->cur_cylinder_index].end.mbar = (atoi(data[11]));
	if (data[12])
		state->cur_dive->cylinder[state->cur_cylinder_index].type.size.mliter = lrint((strtod_flags(data[12], NULL, 0)) * 1000);
	if (data[13])
		state->cur_dive->cylinder[state->cur_cylinder_index].type.workingpressure.mbar = (atoi(data[13]));
	if (data[20])
		state->cur_dive->cylinder[state->cur_cylinder_index].gasmix.o2.permille = atoi(data[20]) * 10;
	if (data[21])
		state->cur_dive->cylinder[state->cur_cylinder_index].gasmix.he.permille = atoi(data[21]) * 10;
	cylinder_end(state);

	if (data[14])
		state->cur_dive->dc.surface_pressure.mbar = (atoi(data[14]) * 1000);

	interval = data[16] ? atoi(data[16]) : 0;
	profileBlob = (float *)data[17];
	tempBlob = (unsigned char *)data[18];
	pressureBlob = (int *)data[19];
	for (i = 0; interval && i * interval < state->cur_dive->duration.seconds; i++) {
		sample_start(state);
		state->cur_sample->time.seconds = i * interval;
		if (profileBlob)
			state->cur_sample->depth.mm = lrintf(profileBlob[i] * 1000.0f);
		else
			state->cur_sample->depth.mm = state->cur_dive->dc.maxdepth.mm;

		if (data[18] && data[18][0])
			state->cur_sample->temperature.mkelvin = C_to_mkelvin(tempBlob[i]);
		if (data[19] && data[19][0])
			state->cur_sample->pressure[0].mbar = pressureBlob[i];
		sample_end(state);
	}

	snprintf(get_events, sizeof(get_events) - 1, get_events_template, state->cur_dive->number);
	retval = sqlite3_exec(handle, get_events, &dm4_events, state, &err);
	if (retval != SQLITE_OK) {
		fprintf(stderr, "%s", "Database query dm4_events failed.\n");
		return 1;
	}

	snprintf(get_events, sizeof(get_events) - 1, get_tags_template, state->cur_dive->number);
	retval = sqlite3_exec(handle, get_events, &dm4_tags, state, &err);
	if (retval != SQLITE_OK) {
		fprintf(stderr, "%s", "Database query dm4_tags failed.\n");
		return 1;
	}

	dive_end(state);

	/*
	for (i=0; i<columns;++i) {
		fprintf(stderr, "%s\t", column[i]);
	}
	fprintf(stderr, "\n");
	for (i=0; i<columns;++i) {
		fprintf(stderr, "%s\t", data[i]);
	}
	fprintf(stderr, "\n");
	//exit(0);
	*/
	return SQLITE_OK;
}