void uvm_init() { vaddr_t kvm_start, kvm_end; /* * step 0: ensure that the hardware set the page size */ if (uvmexp.pagesize == 0) { panic("uvm_init: page size not set"); } /* * step 1: zero the uvm structure */ memset(&uvm, 0, sizeof(uvm)); #ifndef OSKIT averunnable.fscale = FSCALE; #endif /* * step 2: init the page sub-system. this includes allocating the * vm_page structures, and setting up all the page queues (and * locks). available memory will be put in the "free" queue. * kvm_start and kvm_end will be set to the area of kernel virtual * memory which is available for general use. */ uvm_page_init(&kvm_start, &kvm_end); /* * step 3: init the map sub-system. allocates the static pool of * vm_map_entry structures that are used for "special" kernel maps * (e.g. kernel_map, kmem_map, etc...). */ uvm_map_init(); /* * step 4: setup the kernel's virtual memory data structures. this * includes setting up the kernel_map/kernel_object and the kmem_map/ * kmem_object. */ uvm_km_init(kvm_start, kvm_end); /* * step 5: init the pmap module. the pmap module is free to allocate * memory for its private use (e.g. pvlists). */ pmap_init(); /* * step 6: init the kernel memory allocator. after this call the * kernel memory allocator (malloc) can be used. */ kmeminit(); /* * step 7: init all pagers and the pager_map. */ uvm_pager_init(); /* * step 8: init anonymous memory systems (both amap and anons) */ amap_init(); /* init amap module */ uvm_anon_init(); /* allocate initial anons */ /* * the VM system is now up! now that malloc is up we can resize the * <obj,off> => <page> hash table for general use and enable paging * of kernel objects. */ uvm_page_rehash(); uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNSWAP); /* * done! */ return; }
void uvm_init() { vaddr_t kvm_start, kvm_end; /* * step 0: ensure that the hardware set the page size */ if (uvmexp.pagesize == 0) { panic("uvm_init: page size not set"); } /* * step 1: zero the uvm structure */ memset(&uvm, 0, sizeof(uvm)); averunnable.fscale = FSCALE; /* * step 2: init the page sub-system. this includes allocating the * vm_page structures, and setting up all the page queues (and * locks). available memory will be put in the "free" queue. * kvm_start and kvm_end will be set to the area of kernel virtual * memory which is available for general use. */ uvm_page_init(&kvm_start, &kvm_end); /* * step 3: init the map sub-system. allocates the static pool of * vm_map_entry structures that are used for "special" kernel maps * (e.g. kernel_map, kmem_map, etc...). */ uvm_map_init(); /* * step 4: setup the kernel's virtual memory data structures. this * includes setting up the kernel_map/kernel_object and the kmem_map/ * kmem_object. */ uvm_km_init(kvm_start, kvm_end); /* * step 5: init the pmap module. the pmap module is free to allocate * memory for its private use (e.g. pvlists). */ pmap_init(); /* * step 6: init the kernel memory allocator. after this call the * kernel memory allocator (malloc) can be used. */ uvm_km_page_init(); kmeminit(); #if !defined(__HAVE_PMAP_DIRECT) kthread_create_deferred(uvm_km_createthread, NULL); #endif /* * step 7: init all pagers and the pager_map. */ uvm_pager_init(); /* * step 8: init anonymous memory system */ amap_init(); /* init amap module */ /* * the VM system is now up! now that malloc is up we can resize the * <obj,off> => <page> hash table for general use and enable paging * of kernel objects. */ uvm_page_rehash(); uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNSWAP); /* * reserve some unmapped space for malloc/pool use after free usage */ #ifdef DEADBEEF0 kvm_start = trunc_page(DEADBEEF0) - PAGE_SIZE; if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE, NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED))) panic("uvm_init: cannot reserve dead beef @0x%x\n", DEADBEEF0); #endif #ifdef DEADBEEF1 kvm_start = trunc_page(DEADBEEF1) - PAGE_SIZE; if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE, NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED))) panic("uvm_init: cannot reserve dead beef @0x%x\n", DEADBEEF1); #endif /* * init anonymous memory systems */ uvm_anon_init(); }
void uvm_init(void) { vaddr_t kvm_start, kvm_end; /* * step 0: ensure that the hardware set the page size */ if (uvmexp.pagesize == 0) { panic("uvm_init: page size not set"); } /* * step 1: set up stats. */ averunnable.fscale = FSCALE; /* * step 2: init the page sub-system. this includes allocating the * vm_page structures, and setting up all the page queues (and * locks). available memory will be put in the "free" queue. * kvm_start and kvm_end will be set to the area of kernel virtual * memory which is available for general use. */ uvm_page_init(&kvm_start, &kvm_end); /* * step 3: init the map sub-system. allocates the static pool of * vm_map_entry structures that are used for "special" kernel maps * (e.g. kernel_map, kmem_map, etc...). */ uvm_map_init(); /* * step 4: setup the kernel's virtual memory data structures. this * includes setting up the kernel_map/kernel_object and the kmem_map/ * kmem_object. */ uvm_km_init(kvm_start, kvm_end); /* * step 5: init the pmap module. the pmap module is free to allocate * memory for its private use (e.g. pvlists). */ pmap_init(); /* * step 6: init the kernel memory allocator. after this call the * kernel memory allocator (malloc) can be used. */ kmeminit(); /* * step 6.5: init the dma allocator, which is backed by pools. */ dma_alloc_init(); /* * step 7: init all pagers and the pager_map. */ uvm_pager_init(); /* * step 8: init anonymous memory system */ amap_init(); /* init amap module */ /* * step 9: init uvm_km_page allocator memory. */ uvm_km_page_init(); /* * the VM system is now up! now that malloc is up we can * enable paging of kernel objects. */ uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNSWAP); /* * reserve some unmapped space for malloc/pool use after free usage */ #ifdef DEADBEEF0 kvm_start = trunc_page(DEADBEEF0) - PAGE_SIZE; if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE, NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED))) panic("uvm_init: cannot reserve dead beef @0x%x", DEADBEEF0); #endif #ifdef DEADBEEF1 kvm_start = trunc_page(DEADBEEF1) - PAGE_SIZE; if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE, NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED))) panic("uvm_init: cannot reserve dead beef @0x%x", DEADBEEF1); #endif /* * init anonymous memory systems */ uvm_anon_init(); #ifndef SMALL_KERNEL /* * Switch kernel and kmem_map over to a best-fit allocator, * instead of walking the tree. */ uvm_map_set_uaddr(kernel_map, &kernel_map->uaddr_any[3], uaddr_bestfit_create(vm_map_min(kernel_map), vm_map_max(kernel_map))); uvm_map_set_uaddr(kmem_map, &kmem_map->uaddr_any[3], uaddr_bestfit_create(vm_map_min(kmem_map), vm_map_max(kmem_map))); #endif /* !SMALL_KERNEL */ }
void uvm_init(void) { vaddr_t kvm_start, kvm_end; /* * step 0: ensure that the hardware set the page size */ if (uvmexp.pagesize == 0) { panic("uvm_init: page size not set"); } /* * step 1: zero the uvm structure */ memset(&uvm, 0, sizeof(uvm)); averunnable.fscale = FSCALE; uvm_amap_init(); /* * step 2: init the page sub-system. this includes allocating the * vm_page structures, and setting up all the page queues (and * locks). available memory will be put in the "free" queue. * kvm_start and kvm_end will be set to the area of kernel virtual * memory which is available for general use. */ uvm_page_init(&kvm_start, &kvm_end); /* * step 3: init the map sub-system. allocates the static pool of * vm_map_entry structures that are used for "special" kernel maps * (e.g. kernel_map, kmem_map, etc...). */ uvm_map_init(); /* * step 4: setup the kernel's virtual memory data structures. this * includes setting up the kernel_map/kernel_object. */ uvm_km_init(kvm_start, kvm_end); /* * step 5: init the pmap module. the pmap module is free to allocate * memory for its private use (e.g. pvlists). */ pmap_init(); /* * step 6: init the kernel memory allocator. after this call the * kernel memory allocator (malloc) can be used. this includes * setting up the kmem_map. */ kmeminit(); #ifdef DEBUG debug_init(); #endif /* * step 7: init all pagers and the pager_map. */ uvm_pager_init(); /* * step 8: init the uvm_loan() facility. */ uvm_loan_init(); /* * Initialize pools. This must be done before anyone manipulates * any vm_maps because we use a pool for some map entry structures. */ pool_subsystem_init(); /* * init slab memory allocator kmem(9). */ kmem_init(); /* * the VM system is now up! now that kmem is up we can resize the * <obj,off> => <page> hash table for general use and enable paging * of kernel objects. */ uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNSWAP); uvmpdpol_reinit(); /* * init anonymous memory systems */ uvm_anon_init(); uvm_uarea_init(); /* * init readahead module */ uvm_ra_init(); }
void uvm_init(void) { vaddr_t kvm_start, kvm_end; /* * Ensure that the hardware set the page size, zero the UVM structure. */ if (uvmexp.pagesize == 0) { panic("uvm_init: page size not set"); } memset(&uvm, 0, sizeof(uvm)); averunnable.fscale = FSCALE; /* * Init the page sub-system. This includes allocating the vm_page * structures, and setting up all the page queues (and locks). * Available memory will be put in the "free" queue, kvm_start and * kvm_end will be set to the area of kernel virtual memory which * is available for general use. */ uvm_page_init(&kvm_start, &kvm_end); /* * Init the map sub-system. */ uvm_map_init(); /* * Setup the kernel's virtual memory data structures. This includes * setting up the kernel_map/kernel_object. * Bootstrap all kernel memory allocators. */ uao_init(); uvm_km_bootstrap(kvm_start, kvm_end); /* * Setup uvm_map caches and init the amap. */ uvm_map_init_caches(); uvm_amap_init(); /* * Init the pmap module. The pmap module is free to allocate * memory for its private use (e.g. pvlists). */ pmap_init(); /* * Make kernel memory allocators ready for use. * After this call the pool/kmem memory allocators can be used. */ uvm_km_init(); #ifdef DEBUG debug_init(); #endif /* * Init all pagers and the pager_map. */ uvm_pager_init(); /* * Initialize the uvm_loan() facility. */ uvm_loan_init(); /* * Init emap subsystem. */ uvm_emap_sysinit(); /* * The VM system is now up! Now that kmem is up we can resize the * <obj,off> => <page> hash table for general use and enable paging * of kernel objects. */ uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNSWAP); uvmpdpol_reinit(); /* * Init anonymous memory systems. */ uvm_anon_init(); uvm_uarea_init(); /* * Init readahead mechanism. */ uvm_ra_init(); }