Exemple #1
0
void Cube::ComputeArea()
{
    //Extra credit to implement this
    glm::vec4 vertices[]{
        { -.5f, -.5f, .5f, 1.f, },
        { .5f, -.5f, .5f, 1.f, },
        { -.5f, .5f, .5f, 1.f, },
        { -.5f, -.5f, .5f, 1.f, },
    };

    glm::vec4 vertices_world[ 4 ];

    for( int i = 0; i < 4; ++i ){
        vertices_world[ i ] = transform.T() * vertices[ i ];
    }

    glm::vec3 v01( vertices_world[ 1 ] - vertices_world[ 0 ] );
    glm::vec3 v03( vertices_world[ 2 ] - vertices_world[ 0 ] );
    glm::vec3 v04( vertices_world[ 3 ] - vertices_world[ 0 ] );

    area = 0.f;
    area += glm::length( glm::cross( v01, v03 ) );
    area += glm::length( glm::cross( v03, v04 ) );
    area += glm::length( glm::cross( v04, v01 ) );
    area *= 2.f;
}
void DragRect::TrackPoints03(const DPoint& pt0, const DPoint& pt3) {
    // width constant, height variable, theta variable
    Vec2d v03(pt0, pt3);
    DPoint pt1 = v03.flip270().unit().scale(v01_.mag()).add(pt0);
    pt0_ = pt0;
    v01_ = Vec2d(pt0, pt1);
    v02_ = Vec2d(pt0, v03.add(pt1));
}
Exemple #3
0
Real Pyramid5::volume () const
{
  // The pyramid with a bilinear base has volume given by the
  // formula in: "Calculation of the Volume of a General Hexahedron
  // for Flow Predictions", AIAA Journal v.23, no.6, 1984, p.954-
  Node * node0 = this->get_node(0);
  Node * node1 = this->get_node(1);
  Node * node2 = this->get_node(2);
  Node * node3 = this->get_node(3);
  Node * node4 = this->get_node(4);

  // Construct Various edge and diagonal vectors
  Point v40 ( *node0 - *node4 );
  Point v13 ( *node3 - *node1 );
  Point v02 ( *node2 - *node0 );
  Point v03 ( *node3 - *node0 );
  Point v01 ( *node1 - *node0 );

  // Finally, ready to return the volume!
  return (1./6.)*(v40*(v13.cross(v02))) + (1./12.)*(v02*(v01.cross(v03)));
}