/// Generic implementation of 'ORSA':
/// A Probabilistic Criterion to Detect Rigid Point Matches
///    Between Two Images and Estimate the Fundamental Matrix.
/// Bibtex :
/// @article{DBLP:journals/ijcv/MoisanS04,
///  author    = {Lionel Moisan and B{\'e}renger Stival},
///  title     = {A Probabilistic Criterion to Detect Rigid Point Matches
///    Between Two Images and Estimate the Fundamental Matrix},
///  journal   = {International Journal of Computer Vision},
///  volume    = {57},
///  number    = {3},
///  year      = {2004},
///  pages     = {201-218},
///  ee        = {http://dx.doi.org/10.1023/B:VISI.0000013094.38752.54},
///  bibsource = {DBLP, http://dblp.uni-trier.de}
///}
/// 
/// ORSA is based on an a contrario criterion of
/// inlier/outlier discrimination, is parameter free and relies on an optimized
/// random sampling procedure. It returns the log of NFA and optionally
/// the best estimated model.
///
/// \param vec_inliers Output vector of inlier indices.
/// \param nIter The number of iterations.
/// \param precision (input/output) threshold for inlier discrimination.
/// \param model The best computed model.
/// \param bVerbose Display optimization statistics.
double OrsaModel::orsa(std::vector<int> & vec_inliers,
                       size_t nIter,
                       double *precision,
                       Model *model,
                       bool bVerbose) const {
  vec_inliers.clear();

  const int sizeSample = SizeSample();
  const int nData = x1_.ncol();
  if(nData <= sizeSample)
    return std::numeric_limits<double>::infinity();

  const double maxThreshold = (precision && *precision>0)?
    *precision * *precision *N2_(0,0)*N2_(0,0): // Square max error
    std::numeric_limits<double>::infinity();

  std::vector<ErrorIndex> vec_residuals(nData); // [residual,index]
  std::vector<int> vec_sample(sizeSample); // Sample indices

  // Possible sampling indices (could change in the optimization phase)
  std::vector<int> vec_index(nData);
  for (int i = 0; i < nData; ++i)
    vec_index[i] = i;

  // Precompute log combi
  double loge0 = log10((double)NbModels() * (nData-sizeSample));
  std::vector<float> vec_logc_n, vec_logc_k;
  makelogcombi_n(nData, vec_logc_n);
  makelogcombi_k(sizeSample,nData, vec_logc_k);

  // Reserve 10% of iterations for focused sampling
  size_t nIterReserve=nIter/10;
  nIter -= nIterReserve;

  // Output parameters
  double minNFA = std::numeric_limits<double>::infinity();
  double errorMax = 0;
  int side=0;

  // Main estimation loop.
  for (size_t iter=0; iter < nIter; iter++) {
    UniformSample(sizeSample, vec_index, &vec_sample); // Get random sample

    std::vector<Model> vec_models; // Up to max_models solutions
    Fit(vec_sample, &vec_models);

    // Evaluate models
    bool better=false;
    for (size_t k = 0; k < vec_models.size(); ++k)
    {
      // Residuals computation and ordering
      for (int i = 0; i < nData; ++i)
      {
        int s;
        double error = Error(vec_models[k], i, &s);
        vec_residuals[i] = ErrorIndex(error, i, s);
      }
      std::sort(vec_residuals.begin(), vec_residuals.end());

      // Most meaningful discrimination inliers/outliers
      ErrorIndex best = bestNFA(vec_residuals, loge0, maxThreshold,
                                vec_logc_n, vec_logc_k);
      if(best.error < minNFA) // A better model was found
      {
        better = true;
        minNFA = best.error;
        side = best.side;
        vec_inliers.resize(best.index);
        for (int i=0; i<best.index; ++i)
          vec_inliers[i] = vec_residuals[i].index;
        errorMax = vec_residuals[best.index-1].error; // Error threshold
        if(best.error<0 && model) *model = vec_models[k];
        if(bVerbose)
        {
          std::cout << "  nfa=" << minNFA
                    << " inliers=" << vec_inliers.size()
                    << " precision=" << denormalizeError(errorMax, side)
                    << " im" << side+1
                    << " (iter=" << iter;
          if(best.error<0) {
            std::cout << ",sample=" << vec_sample.front();
            std::vector<int>::const_iterator it=vec_sample.begin();
            for(++it; it != vec_sample.end(); ++it)
              std::cout << ',' << *it;
          }
          std::cout << ")" <<std::endl;
        }
      }
    }
    // ORSA optimization: draw samples among best set of inliers so far
    if((better && minNFA<0) || (iter+1==nIter && nIterReserve)) {
        if(vec_inliers.empty()) { // No model found at all so far
            nIter++; // Continue to look for any model, even not meaningful
            nIterReserve--;
        } else {
            vec_index = vec_inliers;
            if(nIterReserve) {
                nIter = iter+1+nIterReserve;
                nIterReserve=0;
            }
        }
    }
  }

  if(minNFA >= 0)
    vec_inliers.clear();

  if(bConvergence)
    refineUntilConvergence(vec_logc_n, vec_logc_k, loge0,
                           maxThreshold, minNFA, model, bVerbose, vec_inliers,
                           errorMax, side);

  if(precision)
    *precision = denormalizeError(errorMax, side);
  if(model && !vec_inliers.empty())
    Unnormalize(model);
  return minNFA;
}
/// Refine the model on all the inliers with the "a contrario" model
/// The model is refined while the NFA threshold is not stable.
void OrsaModel::refineUntilConvergence(const std::vector<float> & vec_logc_n,
                                       const std::vector<float> & vec_logc_k,
                                       double loge0,
                                       double maxThreshold,
                                       double minNFA,
                                       Model *model,
                                       bool bVerbose,
                                       std::vector<int> & vec_inliers,
                                       double & errorMax,
                                       int & side) const
{
  std::cout << "\n\n OrsaModel::refineUntilConvergence(...)\n" << std::endl;
  const int nData = x1_.ncol();
  std::vector<ErrorIndex> vec_residuals(nData); // [residual,index]

  bool bContinue = true;
  int iter = 0;
  do{
    std::vector<Model> vec_models; // Up to max_models solutions
    Fit(vec_inliers, &vec_models);

    // Evaluate models
    for (size_t k = 0; k < vec_models.size(); ++k)
    {
      // Residuals computation and ordering
      for (int i = 0; i < nData; ++i)
      {
        double error = Error(vec_models[k], i);
        vec_residuals[i] = ErrorIndex(error, i);
      }
      std::sort(vec_residuals.begin(), vec_residuals.end());

      // Most meaningful discrimination inliers/outliers
      ErrorIndex best = bestNFA(vec_residuals, loge0, maxThreshold,
                                vec_logc_n, vec_logc_k);

      if(best.error < 0 && best.error < minNFA) // A better model was found
      {
        minNFA = best.error;
        side = best.side;
        vec_inliers.resize(best.index);
        for (int i=0; i<best.index; ++i)
          vec_inliers[i] = vec_residuals[i].index;
        errorMax = vec_residuals[best.index-1].error; // Error threshold
        if(model) *model = vec_models[k];

        if(bVerbose)
        {
          std::cout << "  nfa=" << minNFA
            << " inliers=" << vec_inliers.size()
            << " precision=" << denormalizeError(errorMax, side)
            << " (iter=" << iter << ")\n";
        }
      }
      else
        bContinue = false;
    }
    if (vec_models.empty())
    {
      bContinue = false;
    }
    ++iter;
  }
  while( bContinue );
}
std::pair<double, double> ACRANSAC(const Kernel &kernel,
  std::vector<size_t> & vec_inliers,
  size_t nIter = 1024,
  typename Kernel::Model * model = NULL,
  double precision = std::numeric_limits<double>::infinity(),
  bool bVerbose = false)
{
  vec_inliers.clear();

  const size_t sizeSample = Kernel::MINIMUM_SAMPLES;
  const size_t nData = kernel.NumSamples();
  if(nData <= (size_t)sizeSample)
    return std::make_pair(0.0,0.0);

  const double maxThreshold = (precision==std::numeric_limits<double>::infinity()) ?
    std::numeric_limits<double>::infinity() :
    precision * kernel.normalizer2()(0,0) * kernel.normalizer2()(0,0);

  std::vector<ErrorIndex> vec_residuals(nData); // [residual,index]
  std::vector<double> vec_residuals_(nData);
  std::vector<size_t> vec_sample(sizeSample); // Sample indices

  // Possible sampling indices (could change in the optimization phase)
  std::vector<size_t> vec_index(nData);
  for (size_t i = 0; i < nData; ++i)
    vec_index[i] = i;

  // Precompute log combi
  double loge0 = log10((double)Kernel::MAX_MODELS * (nData-sizeSample));
  std::vector<float> vec_logc_n, vec_logc_k;
  makelogcombi_n(nData, vec_logc_n);
  makelogcombi_k(sizeSample, nData, vec_logc_k);

  // Output parameters
  double minNFA = std::numeric_limits<double>::infinity();
  double errorMax = std::numeric_limits<double>::infinity();

  // Reserve 10% of iterations for focused sampling
  size_t nIterReserve = nIter/10;
  nIter -= nIterReserve;

  // Main estimation loop.
  for (size_t iter=0; iter < nIter; ++iter) {
    UniformSample(sizeSample, vec_index, &vec_sample); // Get random sample

    std::vector<typename Kernel::Model> vec_models; // Up to max_models solutions
    kernel.Fit(vec_sample, &vec_models);

    // Evaluate models
    bool better = false;
    for (size_t k = 0; k < vec_models.size(); ++k)  {
      // Residuals computation and ordering
      kernel.Errors(vec_models[k], vec_residuals_);
      for (size_t i = 0; i < nData; ++i)  {
        const double error = vec_residuals_[i];
        vec_residuals[i] = ErrorIndex(error, i);
      }
      std::sort(vec_residuals.begin(), vec_residuals.end());

      // Most meaningful discrimination inliers/outliers
      const ErrorIndex best = bestNFA(
        sizeSample,
        kernel.logalpha0(),
        vec_residuals,
        loge0,
        maxThreshold,
        vec_logc_n,
        vec_logc_k,
        kernel.multError());

      if (best.first < minNFA /*&& vec_residuals[best.second-1].first < errorMax*/)  {
        // A better model was found
        better = true;
        minNFA = best.first;
        vec_inliers.resize(best.second);
        for (size_t i=0; i<best.second; ++i)
          vec_inliers[i] = vec_residuals[i].second;
        errorMax = vec_residuals[best.second-1].first; // Error threshold
        if(model) *model = vec_models[k];

        if(bVerbose)  {
          std::cout << "  nfa=" << minNFA
            << " inliers=" << best.second
            << " precisionNormalized=" << errorMax
            << " precision=" << kernel.unormalizeError(errorMax)
            << " (iter=" << iter;
          std::cout << ",sample=";
          std::copy(vec_sample.begin(), vec_sample.end(),
            std::ostream_iterator<size_t>(std::cout, ","));
          std::cout << ")" <<std::endl;
        }
      }
    }

    // ACRANSAC optimization: draw samples among best set of inliers so far
    if((better && minNFA<0) || (iter+1==nIter && nIterReserve)) {
      if(vec_inliers.empty()) { // No model found at all so far
        nIter++; // Continue to look for any model, even not meaningful
        nIterReserve--;
      } else {
        // ACRANSAC optimization: draw samples among best set of inliers so far
        vec_index = vec_inliers;
        if(nIterReserve) {
            nIter = iter+1+nIterReserve;
            nIterReserve=0;
        }
      }
    }
  }

  if(minNFA >= 0)
    vec_inliers.clear();

  if (!vec_inliers.empty())
  {
    if (model)
      kernel.Unnormalize(model);
    errorMax = kernel.unormalizeError(errorMax);
  }

  return std::make_pair(errorMax, minNFA);
}