static int
hammer_setup_device(struct vnode **devvpp, const char *dev_path, int ronly)
{
	int error;
	struct nlookupdata nd;

	/*
	 * Get the device vnode
	 */
	if (*devvpp == NULL) {
		error = nlookup_init(&nd, dev_path, UIO_SYSSPACE, NLC_FOLLOW);
		if (error == 0)
			error = nlookup(&nd);
		if (error == 0)
			error = cache_vref(&nd.nl_nch, nd.nl_cred, devvpp);
		nlookup_done(&nd);
	} else {
		error = 0;
	}

	if (error == 0) {
		if (vn_isdisk(*devvpp, &error)) {
			error = vfs_mountedon(*devvpp);
		}
	}
	if (error == 0 && vcount(*devvpp) > 0)
		error = EBUSY;
	if (error == 0) {
		vn_lock(*devvpp, LK_EXCLUSIVE | LK_RETRY);
		error = vinvalbuf(*devvpp, V_SAVE, 0, 0);
		if (error == 0) {
			error = VOP_OPEN(*devvpp,
					 (ronly ? FREAD : FREAD|FWRITE),
					 FSCRED, NULL);
		}
		vn_unlock(*devvpp);
	}
	if (error && *devvpp) {
		vrele(*devvpp);
		*devvpp = NULL;
	}
	return (error);
}
Exemple #2
0
static int
vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
    uint64_t *ashift)
{
	spa_t *spa = vd->vdev_spa;
	vdev_disk_t *dvd = vd->vdev_tsd;
	vnode_t *devvp = NULLVP;
	vfs_context_t context = NULL;
	uint64_t blkcnt;
	uint32_t blksize;
	int fmode = 0;
	int error = 0;
	int isssd;

	/*
	 * We must have a pathname, and it must be absolute.
	 */
	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') {
		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
		return (SET_ERROR(EINVAL));
	}

	/*
	 * Reopen the device if it's not currently open. Otherwise,
	 * just update the physical size of the device.
	 */
	if (dvd != NULL) {
	  if (dvd->vd_offline) {
	    /*
	     * If we are opening a device in its offline notify
	     * context, the LDI handle was just closed. Clean
	     * up the LDI event callbacks and free vd->vdev_tsd.
	     */
	    vdev_disk_free(vd);
	  } else {
	    ASSERT(vd->vdev_reopening);
		devvp = dvd->vd_devvp;
	    goto skip_open;
	  }
	}

	/*
	 * Create vd->vdev_tsd.
	 */
	vdev_disk_alloc(vd);
	dvd = vd->vdev_tsd;

	/*
	 * When opening a disk device, we want to preserve the user's original
	 * intent.  We always want to open the device by the path the user gave
	 * us, even if it is one of multiple paths to the same device.  But we
	 * also want to be able to survive disks being removed/recabled.
	 * Therefore the sequence of opening devices is:
	 *
	 * 1. Try opening the device by path.  For legacy pools without the
	 *    'whole_disk' property, attempt to fix the path by appending 's0'.
	 *
	 * 2. If the devid of the device matches the stored value, return
	 *    success.
	 *
	 * 3. Otherwise, the device may have moved.  Try opening the device
	 *    by the devid instead.
	 */
	/* ### APPLE TODO ### */
#ifdef illumos
	if (vd->vdev_devid != NULL) {
		if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid,
		    &dvd->vd_minor) != 0) {
			vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
			return (SET_ERROR(EINVAL));
		}
	}
#endif

	error = EINVAL;		/* presume failure */

	if (vd->vdev_path != NULL) {

		context = vfs_context_create( spl_vfs_context_kernel() );

		/* Obtain an opened/referenced vnode for the device. */
		if ((error = vnode_open(vd->vdev_path, spa_mode(spa), 0, 0,
								&devvp, context))) {
			goto out;
		}
		if (!vnode_isblk(devvp)) {
			error = ENOTBLK;
			goto out;
		}
		/*
		 * ### APPLE TODO ###
		 * vnode_authorize devvp for KAUTH_VNODE_READ_DATA and
		 * KAUTH_VNODE_WRITE_DATA
		 */

		/*
		 * Disallow opening of a device that is currently in use.
		 * Flush out any old buffers remaining from a previous use.
		 */
		if ((error = vfs_mountedon(devvp))) {
			goto out;
		}
		if (VNOP_FSYNC(devvp, MNT_WAIT, context) != 0) {
			error = ENOTBLK;
			goto out;
		}
		if ((error = buf_invalidateblks(devvp, BUF_WRITE_DATA, 0, 0))) {
			goto out;
		}

	} else {
		goto out;
	}


	int len = MAXPATHLEN;
	if (vn_getpath(devvp, dvd->vd_readlinkname, &len) == 0) {
		dprintf("ZFS: '%s' resolved name is '%s'\n",
			   vd->vdev_path, dvd->vd_readlinkname);
	} else {
		dvd->vd_readlinkname[0] = 0;
	}



skip_open:
	/*
	 * Determine the actual size of the device.
	 */
	if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)&blksize, 0,
	    context) != 0 ||
	    VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0,
	    context) != 0) {
		error = EINVAL;
		goto out;
	}

	*psize = blkcnt * (uint64_t)blksize;
	*max_psize = *psize;

	dvd->vd_ashift = highbit(blksize) - 1;
	dprintf("vdev_disk: Device %p ashift set to %d\n", devvp,
	    dvd->vd_ashift);


	*ashift = highbit(MAX(blksize, SPA_MINBLOCKSIZE)) - 1;

	/*
	 *  ### APPLE TODO ###
	 */
#ifdef illumos
	if (vd->vdev_wholedisk == 1) {
		int wce = 1;
		if (error == 0) {
			/*
			 * If we have the capability to expand, we'd have
			 * found out via success from DKIOCGMEDIAINFO{,EXT}.
			 * Adjust max_psize upward accordingly since we know
			 * we own the whole disk now.
			 */
			*max_psize = capacity * blksz;
		}

		/*
		 * Since we own the whole disk, try to enable disk write
		 * caching.  We ignore errors because it's OK if we can't do it.
		 */
		(void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce,
		    FKIOCTL, kcred, NULL);
	}
#endif

	/*
	 * Clear the nowritecache bit, so that on a vdev_reopen() we will
	 * try again.
	 */
	vd->vdev_nowritecache = B_FALSE;

	/* Inform the ZIO pipeline that we are non-rotational */
	vd->vdev_nonrot = B_FALSE;
	if (VNOP_IOCTL(devvp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0,
				   context) == 0) {
		if (isssd)
			vd->vdev_nonrot = B_TRUE;
	}
	dprintf("ZFS: vdev_disk(%s) isSSD %d\n", vd->vdev_path ? vd->vdev_path : "",
			isssd);

	dvd->vd_devvp = devvp;
out:
	if (error) {
	  if (devvp) {
			vnode_close(devvp, fmode, context);
			dvd->vd_devvp = NULL;
	  }
		vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
	}
	if (context)
		(void) vfs_context_rele(context);

	if (error) printf("ZFS: vdev_disk_open('%s') failed error %d\n",
					  vd->vdev_path ? vd->vdev_path : "", error);
	return (error);
}
Exemple #3
0
int
msdosfs_mountfs(struct vnode *devvp, struct mount *mp, struct proc *p,
    struct msdosfs_args *argp)
{
	struct msdosfsmount *pmp;
	struct buf *bp;
	dev_t dev = devvp->v_rdev;
	union bootsector *bsp;
	struct byte_bpb33 *b33;
	struct byte_bpb50 *b50;
	struct byte_bpb710 *b710;
	extern struct vnode *rootvp;
	u_int8_t SecPerClust;
	int	ronly, error, bmapsiz;
	uint32_t fat_max_clusters;

	/*
	 * Disallow multiple mounts of the same device.
	 * Disallow mounting of a device that is currently in use
	 * (except for root, which might share swap device for miniroot).
	 * Flush out any old buffers remaining from a previous use.
	 */
	if ((error = vfs_mountedon(devvp)) != 0)
		return (error);
	if (vcount(devvp) > 1 && devvp != rootvp)
		return (EBUSY);
	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p);
	error = vinvalbuf(devvp, V_SAVE, p->p_ucred, p, 0, 0);
	VOP_UNLOCK(devvp, 0, p);
	if (error)
		return (error);

	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
	error = VOP_OPEN(devvp, ronly ? FREAD : FREAD|FWRITE, FSCRED, p);
	if (error)
		return (error);

	bp  = NULL; /* both used in error_exit */
	pmp = NULL;

	/*
	 * Read the boot sector of the filesystem, and then check the
	 * boot signature.  If not a dos boot sector then error out.
	 */
	if ((error = bread(devvp, 0, 4096, NOCRED, &bp)) != 0)
		goto error_exit;
	bp->b_flags |= B_AGE;
	bsp = (union bootsector *)bp->b_data;
	b33 = (struct byte_bpb33 *)bsp->bs33.bsBPB;
	b50 = (struct byte_bpb50 *)bsp->bs50.bsBPB;
	b710 = (struct byte_bpb710 *)bsp->bs710.bsPBP;

	pmp = malloc(sizeof *pmp, M_MSDOSFSMNT, M_WAITOK | M_ZERO);
	pmp->pm_mountp = mp;

	/*
	 * Compute several useful quantities from the bpb in the
	 * bootsector.  Copy in the dos 5 variant of the bpb then fix up
	 * the fields that are different between dos 5 and dos 3.3.
	 */
	SecPerClust = b50->bpbSecPerClust;
	pmp->pm_BytesPerSec = getushort(b50->bpbBytesPerSec);
	pmp->pm_ResSectors = getushort(b50->bpbResSectors);
	pmp->pm_FATs = b50->bpbFATs;
	pmp->pm_RootDirEnts = getushort(b50->bpbRootDirEnts);
	pmp->pm_Sectors = getushort(b50->bpbSectors);
	pmp->pm_FATsecs = getushort(b50->bpbFATsecs);
	pmp->pm_SecPerTrack = getushort(b50->bpbSecPerTrack);
	pmp->pm_Heads = getushort(b50->bpbHeads);
	pmp->pm_Media = b50->bpbMedia;

	/* Determine the number of DEV_BSIZE blocks in a MSDOSFS sector */
	pmp->pm_BlkPerSec = pmp->pm_BytesPerSec / DEV_BSIZE;

    	if (!pmp->pm_BytesPerSec || !SecPerClust || pmp->pm_SecPerTrack > 64) {
		error = EFTYPE;
		goto error_exit;
	}

	if (pmp->pm_Sectors == 0) {
		pmp->pm_HiddenSects = getulong(b50->bpbHiddenSecs);
		pmp->pm_HugeSectors = getulong(b50->bpbHugeSectors);
	} else {
		pmp->pm_HiddenSects = getushort(b33->bpbHiddenSecs);
		pmp->pm_HugeSectors = pmp->pm_Sectors;
	}

	if (pmp->pm_RootDirEnts == 0) {
		if (pmp->pm_Sectors || pmp->pm_FATsecs ||
		    getushort(b710->bpbFSVers)) {
		        error = EINVAL;
			goto error_exit;
		}
		pmp->pm_fatmask = FAT32_MASK;
		pmp->pm_fatmult = 4;
		pmp->pm_fatdiv = 1;
		pmp->pm_FATsecs = getulong(b710->bpbBigFATsecs);
		if (getushort(b710->bpbExtFlags) & FATMIRROR)
		        pmp->pm_curfat = getushort(b710->bpbExtFlags) & FATNUM;
		else
		        pmp->pm_flags |= MSDOSFS_FATMIRROR;
	} else
	        pmp->pm_flags |= MSDOSFS_FATMIRROR;

	/*
	 * More sanity checks:
	 *	MSDOSFS sectors per cluster: >0 && power of 2
	 *	MSDOSFS sector size: >= DEV_BSIZE && power of 2
	 *	HUGE sector count: >0
	 * 	FAT sectors: >0
	 */
	if ((SecPerClust == 0) || (SecPerClust & (SecPerClust - 1)) ||
	    (pmp->pm_BytesPerSec < DEV_BSIZE) ||
	    (pmp->pm_BytesPerSec & (pmp->pm_BytesPerSec - 1)) ||
	    (pmp->pm_HugeSectors == 0) || (pmp->pm_FATsecs == 0)) {
		error = EINVAL;
		goto error_exit;
	}		
	
	pmp->pm_HugeSectors *= pmp->pm_BlkPerSec;
	pmp->pm_HiddenSects *= pmp->pm_BlkPerSec;
	pmp->pm_FATsecs *= pmp->pm_BlkPerSec;
	pmp->pm_fatblk = pmp->pm_ResSectors * pmp->pm_BlkPerSec;
	SecPerClust *= pmp->pm_BlkPerSec;

	if (FAT32(pmp)) {
	        pmp->pm_rootdirblk = getulong(b710->bpbRootClust);
		pmp->pm_firstcluster = pmp->pm_fatblk
		        + (pmp->pm_FATs * pmp->pm_FATsecs);
		pmp->pm_fsinfo = getushort(b710->bpbFSInfo) * pmp->pm_BlkPerSec;
	} else {
	        pmp->pm_rootdirblk = pmp->pm_fatblk +
		        (pmp->pm_FATs * pmp->pm_FATsecs);
		pmp->pm_rootdirsize = (pmp->pm_RootDirEnts * sizeof(struct direntry)
				       + DEV_BSIZE - 1) / DEV_BSIZE;
		pmp->pm_firstcluster = pmp->pm_rootdirblk + pmp->pm_rootdirsize;
	}

	pmp->pm_nmbrofclusters = (pmp->pm_HugeSectors - pmp->pm_firstcluster) /
	    SecPerClust;
	pmp->pm_maxcluster = pmp->pm_nmbrofclusters + 1;
	pmp->pm_fatsize = pmp->pm_FATsecs * DEV_BSIZE;

	if (pmp->pm_fatmask == 0) {
		if (pmp->pm_maxcluster
		    <= ((CLUST_RSRVD - CLUST_FIRST) & FAT12_MASK)) {
			/*
			 * This will usually be a floppy disk. This size makes
			 * sure that one fat entry will not be split across
			 * multiple blocks.
			 */
			pmp->pm_fatmask = FAT12_MASK;
			pmp->pm_fatmult = 3;
			pmp->pm_fatdiv = 2;
		} else {
			pmp->pm_fatmask = FAT16_MASK;
			pmp->pm_fatmult = 2;
			pmp->pm_fatdiv = 1;
		}
	}
	if (FAT12(pmp))
		pmp->pm_fatblocksize = 3 * pmp->pm_BytesPerSec;
	else
		pmp->pm_fatblocksize = MAXBSIZE;

	/*
	 * We now have the number of sectors in each FAT, so can work
	 * out how many clusters can be represented in a FAT.  Let's
	 * make sure the file system doesn't claim to have more clusters
	 * than this.
	 *
	 * We perform the calculation like we do to avoid integer overflow.
	 *
	 * This will give us a count of clusters.  They are numbered
	 * from 0, so the max cluster value is one less than the value
	 * we end up with.
	 */
	fat_max_clusters = pmp->pm_fatsize / pmp->pm_fatmult;
	fat_max_clusters *= pmp->pm_fatdiv;
	if (pmp->pm_maxcluster >= fat_max_clusters) {
#ifndef SMALL_KERNEL
		printf("msdosfs: reducing max cluster to %d from %d "
		    "due to FAT size\n", fat_max_clusters - 1,
		    pmp->pm_maxcluster);
#endif
		pmp->pm_maxcluster = fat_max_clusters - 1;
	}

	pmp->pm_fatblocksec = pmp->pm_fatblocksize / DEV_BSIZE;
	pmp->pm_bnshift = ffs(DEV_BSIZE) - 1;

	/*
	 * Compute mask and shift value for isolating cluster relative byte
	 * offsets and cluster numbers from a file offset.
	 */
	pmp->pm_bpcluster = SecPerClust * DEV_BSIZE;
	pmp->pm_crbomask = pmp->pm_bpcluster - 1;
	pmp->pm_cnshift = ffs(pmp->pm_bpcluster) - 1;

	/*
	 * Check for valid cluster size
	 * must be a power of 2
	 */
	if (pmp->pm_bpcluster ^ (1 << pmp->pm_cnshift)) {
		error = EFTYPE;
		goto error_exit;
	}

	/*
	 * Release the bootsector buffer.
	 */
	brelse(bp);
	bp = NULL;

	/*
	 * Check FSInfo
	 */
	if (pmp->pm_fsinfo) {
	        struct fsinfo *fp;

		if ((error = bread(devvp, pmp->pm_fsinfo, fsi_size(pmp),
		    NOCRED, &bp)) != 0)
		        goto error_exit;
		fp = (struct fsinfo *)bp->b_data;
		if (!bcmp(fp->fsisig1, "RRaA", 4)
		    && !bcmp(fp->fsisig2, "rrAa", 4)
		    && !bcmp(fp->fsisig3, "\0\0\125\252", 4)
		    && !bcmp(fp->fsisig4, "\0\0\125\252", 4))
		        /* Valid FSInfo. */
			;
		else
		        pmp->pm_fsinfo = 0;
		/* XXX make sure this tiny buf doesn't come back in fillinusemap! */
		SET(bp->b_flags, B_INVAL);
		brelse(bp);
		bp = NULL;
	}

	/*
	 * Check and validate (or perhaps invalidate?) the fsinfo structure? XXX
	 */

	/*
	 * Allocate memory for the bitmap of allocated clusters, and then
	 * fill it in.
	 */
	bmapsiz = (pmp->pm_maxcluster + N_INUSEBITS - 1) / N_INUSEBITS;
	if (bmapsiz == 0 || SIZE_MAX / bmapsiz < sizeof(*pmp->pm_inusemap)) {
		/* detect multiplicative integer overflow */
		error = EINVAL;
		goto error_exit;
	}
	pmp->pm_inusemap = malloc(bmapsiz * sizeof(*pmp->pm_inusemap),
	    M_MSDOSFSFAT, M_WAITOK | M_CANFAIL);
	if (pmp->pm_inusemap == NULL) {
		error = EINVAL;
		goto error_exit;
	}

	/*
	 * fillinusemap() needs pm_devvp.
	 */
	pmp->pm_dev = dev;
	pmp->pm_devvp = devvp;

	/*
	 * Have the inuse map filled in.
	 */
	if ((error = fillinusemap(pmp)) != 0)
		goto error_exit;

	/*
	 * If they want fat updates to be synchronous then let them suffer
	 * the performance degradation in exchange for the on disk copy of
	 * the fat being correct just about all the time.  I suppose this
	 * would be a good thing to turn on if the kernel is still flakey.
	 */
	if (mp->mnt_flag & MNT_SYNCHRONOUS)
		pmp->pm_flags |= MSDOSFSMNT_WAITONFAT;

	/*
	 * Finish up.
	 */
	if (ronly)
		pmp->pm_flags |= MSDOSFSMNT_RONLY;
	else
		pmp->pm_fmod = 1;
	mp->mnt_data = (qaddr_t)pmp;
        mp->mnt_stat.f_fsid.val[0] = (long)dev;
        mp->mnt_stat.f_fsid.val[1] = mp->mnt_vfc->vfc_typenum;
#ifdef QUOTA
	/*
	 * If we ever do quotas for DOS filesystems this would be a place
	 * to fill in the info in the msdosfsmount structure. You dolt,
	 * quotas on dos filesystems make no sense because files have no
	 * owners on dos filesystems. of course there is some empty space
	 * in the directory entry where we could put uid's and gid's.
	 */
#endif
	devvp->v_specmountpoint = mp;

	return (0);

error_exit:
	devvp->v_specmountpoint = NULL;
	if (bp)
		brelse(bp);

	vn_lock(devvp, LK_EXCLUSIVE|LK_RETRY, p);
	(void) VOP_CLOSE(devvp, ronly ? FREAD : FREAD|FWRITE, NOCRED, p);
	VOP_UNLOCK(devvp, 0, p);

	if (pmp) {
		if (pmp->pm_inusemap)
			free(pmp->pm_inusemap, M_MSDOSFSFAT);
		free(pmp, M_MSDOSFSMNT);
		mp->mnt_data = (qaddr_t)0;
	}
	return (error);
}
/*
 * Open a special file.
 */
int
spec_open(void *v)
{
	struct vop_open_args *ap = v;
	struct proc *p = ap->a_p;
	struct vnode *vp = ap->a_vp;
	struct vnode *bvp;
	dev_t bdev;
	dev_t dev = (dev_t)vp->v_rdev;
	int maj = major(dev);
	int error;

	/*
	 * Don't allow open if fs is mounted -nodev.
	 */
	if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_NODEV))
		return (ENXIO);

	switch (vp->v_type) {

	case VCHR:
		if ((u_int)maj >= nchrdev)
			return (ENXIO);
		if (ap->a_cred != FSCRED && (ap->a_mode & FWRITE)) {
			/*
			 * When running in very secure mode, do not allow
			 * opens for writing of any disk character devices.
			 */
			if (securelevel >= 2 && cdevsw[maj].d_type == D_DISK)
				return (EPERM);
			/*
			 * When running in secure mode, do not allow opens
			 * for writing of /dev/mem, /dev/kmem, or character
			 * devices whose corresponding block devices are
			 * currently mounted.
			 */
			if (securelevel >= 1) {
				if ((bdev = chrtoblk(dev)) != NODEV &&
				    vfinddev(bdev, VBLK, &bvp) &&
				    bvp->v_usecount > 0 &&
				    (error = vfs_mountedon(bvp)))
					return (error);
				if (iskmemdev(dev))
					return (EPERM);
			}
		}
		if (cdevsw[maj].d_type == D_TTY)
			vp->v_flag |= VISTTY;
		if (cdevsw[maj].d_flags & D_CLONE)
			return (spec_open_clone(ap));
		VOP_UNLOCK(vp, 0, p);
		error = (*cdevsw[maj].d_open)(dev, ap->a_mode, S_IFCHR, p);
		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
		return (error);

	case VBLK:
		if ((u_int)maj >= nblkdev)
			return (ENXIO);
		/*
		 * When running in very secure mode, do not allow
		 * opens for writing of any disk block devices.
		 */
		if (securelevel >= 2 && ap->a_cred != FSCRED &&
		    (ap->a_mode & FWRITE) && bdevsw[maj].d_type == D_DISK)
			return (EPERM);
		/*
		 * Do not allow opens of block devices that are
		 * currently mounted.
		 */
		if ((error = vfs_mountedon(vp)) != 0)
			return (error);
		return ((*bdevsw[maj].d_open)(dev, ap->a_mode, S_IFBLK, p));
	case VNON:
	case VLNK:
	case VDIR:
	case VREG:
	case VBAD:
	case VFIFO:
	case VSOCK:
		break;
	}
	return (0);
}
Exemple #5
0
static int
vdev_disk_open(vdev_t *vd, uint64_t *size, uint64_t *max_size, uint64_t *ashift)
{
	vdev_disk_t *dvd = NULL;
	vnode_t *devvp = NULLVP;
	vfs_context_t context = NULL;
	uint64_t blkcnt;
	uint32_t blksize;
	int fmode = 0;
	int error = 0;

	/*
	 * We must have a pathname, and it must be absolute.
	 */
	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') {
		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
		return (EINVAL);
	}

	dvd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
    if (dvd == NULL)
        return ENOMEM;

	/*
	 * When opening a disk device, we want to preserve the user's original
	 * intent.  We always want to open the device by the path the user gave
	 * us, even if it is one of multiple paths to the save device.  But we
	 * also want to be able to survive disks being removed/recabled.
	 * Therefore the sequence of opening devices is:
	 *
	 * 1. Try opening the device by path.  For legacy pools without the
	 *    'whole_disk' property, attempt to fix the path by appending 's0'.
	 *
	 * 2. If the devid of the device matches the stored value, return
	 *    success.
	 *
	 * 3. Otherwise, the device may have moved.  Try opening the device
	 *    by the devid instead.
	 *
	 */

	/* ### APPLE TODO ### */
	/* ddi_devid_str_decode */

	context = vfs_context_create((vfs_context_t)0);

	/* Obtain an opened/referenced vnode for the device. */
	error = vnode_open(vd->vdev_path, spa_mode(vd->vdev_spa), 0, 0, &devvp, context);
	if (error) {
		goto out;
	}

	if (!vnode_isblk(devvp)) {
		error = ENOTBLK;
		goto out;
	}

	/* ### APPLE TODO ### */
	/* vnode_authorize devvp for KAUTH_VNODE_READ_DATA and
	 * KAUTH_VNODE_WRITE_DATA
	 */

	/*
	 * Disallow opening of a device that is currently in use.
	 * Flush out any old buffers remaining from a previous use.
	 */
	if ((error = vfs_mountedon(devvp))) {
		goto out;
	}
	if (VNOP_FSYNC(devvp, MNT_WAIT, context) != 0) {
		error = ENOTBLK;
		goto out;
	}
	if ((error = buf_invalidateblks(devvp, BUF_WRITE_DATA, 0, 0))) {
		goto out;
	}

	/*
	 * Determine the actual size of the device.
	 */
	if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)&blksize, 0, context)
	       	!= 0 || VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt,
		0, context) != 0) {

		error = EINVAL;
		goto out;
	}
	*size = blkcnt * (uint64_t)blksize;

	/*
	 *  ### APPLE TODO ###
	 * If we own the whole disk, try to enable disk write caching.
	 */

	/*
	 * Take the device's minimum transfer size into account.
	 */
	*ashift = highbit(MAX(blksize, SPA_MINBLOCKSIZE)) - 1;

    /*
     * Setting the vdev_ashift did in fact break the pool for import
     * on ZEVO. This puts the logic into question. It appears that vdev_top
     * will also then change. It then panics in space_map from metaslab_alloc
     */
    //vd->vdev_ashift = *ashift;
    dvd->vd_ashift = *ashift;


	/*
	 * Clear the nowritecache bit, so that on a vdev_reopen() we will
	 * try again.
	 */
	vd->vdev_nowritecache = B_FALSE;
	vd->vdev_tsd = dvd;
	dvd->vd_devvp = devvp;
out:
	if (error) {
		if (devvp)
			vnode_close(devvp, fmode, context);
		if (dvd)
			kmem_free(dvd, sizeof (vdev_disk_t));

		/*
		 * Since the open has failed, vd->vdev_tsd should
		 * be NULL when we get here, signaling to the
		 * rest of the spa not to try and reopen or close this device
		 */
		vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
	}
	if (context) {
		(void) vfs_context_rele(context);
	}
	return (error);
}
int
udf_mountfs(struct vnode *devvp, struct mount *mp, uint32_t lb, struct proc *p)
{
	struct buf *bp = NULL;
	struct anchor_vdp avdp;
	struct umount *ump = NULL;
	struct part_desc *pd;
	struct logvol_desc *lvd;
	struct fileset_desc *fsd;
	struct extfile_entry *xfentry;
	struct file_entry *fentry;
	uint32_t sector, size, mvds_start, mvds_end;
	uint32_t fsd_offset = 0;
	uint16_t part_num = 0, fsd_part = 0;
	int error = EINVAL;
	int logvol_found = 0, part_found = 0, fsd_found = 0;
	int bsize;

	/*
	 * Disallow multiple mounts of the same device.
	 * Disallow mounting of a device that is currently in use
	 * (except for root, which might share swap device for miniroot).
	 * Flush out any old buffers remaining from a previous use.
	 */
	if ((error = vfs_mountedon(devvp)))
		return (error);
	if (vcount(devvp) > 1 && devvp != rootvp)
		return (EBUSY);
	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p);
	error = vinvalbuf(devvp, V_SAVE, p->p_ucred, p, 0, 0);
	VOP_UNLOCK(devvp, 0, p);
	if (error)
		return (error);

	error = VOP_OPEN(devvp, FREAD, FSCRED, p);
	if (error)
		return (error);

	ump = malloc(sizeof(*ump), M_UDFMOUNT, M_WAITOK | M_ZERO);

	mp->mnt_data = (qaddr_t) ump;
	mp->mnt_stat.f_fsid.val[0] = devvp->v_rdev;
	mp->mnt_stat.f_fsid.val[1] = makefstype(MOUNT_UDF);
	mp->mnt_flag |= MNT_LOCAL;

	ump->um_mountp = mp;
	ump->um_dev = devvp->v_rdev;
	ump->um_devvp = devvp;

	bsize = 2048;	/* Should probe the media for its size. */

	/* 
	 * Get the Anchor Volume Descriptor Pointer from sector 256.
	 * Should also check sector n - 256, n, and 512.
	 */
	sector = 256;
	if ((error = bread(devvp, sector * btodb(bsize), bsize, NOCRED,
			   &bp)) != 0)
		goto bail;
	if ((error = udf_checktag((struct desc_tag *)bp->b_data, TAGID_ANCHOR)))
		goto bail;

	bcopy(bp->b_data, &avdp, sizeof(struct anchor_vdp));
	brelse(bp);
	bp = NULL;

	/*
	 * Extract the Partition Descriptor and Logical Volume Descriptor
	 * from the Volume Descriptor Sequence.
	 * Should we care about the partition type right now?
	 * What about multiple partitions?
	 */
	mvds_start = letoh32(avdp.main_vds_ex.loc);
	mvds_end = mvds_start + (letoh32(avdp.main_vds_ex.len) - 1) / bsize;
	for (sector = mvds_start; sector < mvds_end; sector++) {
		if ((error = bread(devvp, sector * btodb(bsize), bsize, 
				   NOCRED, &bp)) != 0) {
			printf("Can't read sector %d of VDS\n", sector);
			goto bail;
		}
		lvd = (struct logvol_desc *)bp->b_data;
		if (!udf_checktag(&lvd->tag, TAGID_LOGVOL)) {
			ump->um_bsize = letoh32(lvd->lb_size);
			ump->um_bmask = ump->um_bsize - 1;
			ump->um_bshift = ffs(ump->um_bsize) - 1;
			fsd_part = letoh16(lvd->_lvd_use.fsd_loc.loc.part_num);
			fsd_offset = letoh32(lvd->_lvd_use.fsd_loc.loc.lb_num);
			if (udf_find_partmaps(ump, lvd))
				break;
			logvol_found = 1;
		}
		pd = (struct part_desc *)bp->b_data;
		if (!udf_checktag(&pd->tag, TAGID_PARTITION)) {
			part_found = 1;
			part_num = letoh16(pd->part_num);
			ump->um_len = ump->um_reallen = letoh32(pd->part_len);
			ump->um_start = ump->um_realstart = letoh32(pd->start_loc);
		}

		brelse(bp); 
		bp = NULL;
		if ((part_found) && (logvol_found))
			break;
	}

	if (!part_found || !logvol_found) {
		error = EINVAL;
		goto bail;
	}

	if (ISSET(ump->um_flags, UDF_MNT_USES_META)) {
		/* Read Metadata File 'File Entry' to find Metadata file. */
		struct long_ad *la;
		sector = ump->um_start + ump->um_meta_start; /* Set in udf_get_mpartmap() */
		if ((error = RDSECTOR(devvp, sector, ump->um_bsize, &bp)) != 0) {
			printf("Cannot read sector %d for Metadata File Entry\n", sector);
			error = EINVAL;
			goto bail;
		}
		xfentry = (struct extfile_entry *)bp->b_data;
		fentry = (struct file_entry *)bp->b_data;
		if (udf_checktag(&xfentry->tag, TAGID_EXTFENTRY) == 0)
			la = (struct long_ad *)&xfentry->data[letoh32(xfentry->l_ea)];
		else if (udf_checktag(&fentry->tag, TAGID_FENTRY) == 0)
			la = (struct long_ad *)&fentry->data[letoh32(fentry->l_ea)];
		else {
			printf("Invalid Metadata File FE @ sector %d! (tag.id %d)\n",
			    sector, fentry->tag.id);
			error = EINVAL;
			goto bail;
		}
		ump->um_meta_start = letoh32(la->loc.lb_num);
		ump->um_meta_len = letoh32(la->len);
		if (bp != NULL) {
			brelse(bp);
			bp = NULL;
		}
	} else if (fsd_part != part_num) {
		printf("FSD does not lie within the partition!\n");
		error = EINVAL;
		goto bail;
	}

	mtx_init(&ump->um_hashmtx, IPL_NONE);
	ump->um_hashtbl = hashinit(UDF_HASHTBLSIZE, M_UDFMOUNT, M_WAITOK,
	    &ump->um_hashsz);

	/* Get the VAT, if needed */
	if (ump->um_flags & UDF_MNT_FIND_VAT) {
		error = udf_vat_get(ump, lb);
		if (error)
			goto bail;
	}

	/*
	 * Grab the Fileset Descriptor
	 * Thanks to Chuck McCrobie <*****@*****.**> for pointing
	 * me in the right direction here.
	 */

	if (ISSET(ump->um_flags, UDF_MNT_USES_META))
		sector = ump->um_meta_start; 
	else
		sector = fsd_offset;
	udf_vat_map(ump, &sector);
	if ((error = RDSECTOR(devvp, sector, ump->um_bsize, &bp)) != 0) {
		printf("Cannot read sector %d of FSD\n", sector);
		goto bail;
	}
	fsd = (struct fileset_desc *)bp->b_data;
	if (!udf_checktag(&fsd->tag, TAGID_FSD)) {
		fsd_found = 1;
		bcopy(&fsd->rootdir_icb, &ump->um_root_icb,
		    sizeof(struct long_ad));
		if (ISSET(ump->um_flags, UDF_MNT_USES_META)) {
			ump->um_root_icb.loc.lb_num += ump->um_meta_start; 
			ump->um_root_icb.loc.part_num = part_num;
		}
	}

	brelse(bp);
	bp = NULL;

	if (!fsd_found) {
		printf("Couldn't find the fsd\n");
		error = EINVAL;
		goto bail;
	}

	/*
	 * Find the file entry for the root directory.
	 */
	sector = letoh32(ump->um_root_icb.loc.lb_num);
	size = letoh32(ump->um_root_icb.len);
	udf_vat_map(ump, &sector);
	if ((error = udf_readlblks(ump, sector, size, &bp)) != 0) {
		printf("Cannot read sector %d\n", sector);
		goto bail;
	}

	xfentry = (struct extfile_entry *)bp->b_data;
	fentry = (struct file_entry *)bp->b_data;
	error = udf_checktag(&xfentry->tag, TAGID_EXTFENTRY);
	if (error) {
	    	error = udf_checktag(&fentry->tag, TAGID_FENTRY);
		if (error) {
			printf("Invalid root file entry!\n");
			goto bail;
		}
	}

	brelse(bp);
	bp = NULL;

	devvp->v_specmountpoint = mp;

	return (0);

bail:
	if (ump->um_hashtbl != NULL)
		free(ump->um_hashtbl, M_UDFMOUNT);

	if (ump != NULL) {
		free(ump, M_UDFMOUNT);
		mp->mnt_data = NULL;
		mp->mnt_flag &= ~MNT_LOCAL;
	}
	if (bp != NULL)
		brelse(bp);

	vn_lock(devvp, LK_EXCLUSIVE|LK_RETRY, p);
	VOP_CLOSE(devvp, FREAD, FSCRED, p);
	VOP_UNLOCK(devvp, 0, p);

	return (error);
}
Exemple #7
0
/*
 * Common code for mount and mountroot
 */
int
ffs_mountfs(struct vnode *devvp, struct mount *mp, struct proc *p)
{
	struct ufsmount *ump;
	struct buf *bp;
	struct fs *fs;
	dev_t dev;
	struct partinfo dpart;
	caddr_t space;
	ufs2_daddr_t sbloc;
	int error, i, blks, size, ronly;
	int32_t *lp;
	size_t strsize;
	struct ucred *cred;
	u_int64_t maxfilesize;					/* XXX */

	dev = devvp->v_rdev;
	cred = p ? p->p_ucred : NOCRED;
	/*
	 * Disallow multiple mounts of the same device.
	 * Disallow mounting of a device that is currently in use
	 * (except for root, which might share swap device for miniroot).
	 * Flush out any old buffers remaining from a previous use.
	 */
	if ((error = vfs_mountedon(devvp)) != 0)
		return (error);
	if (vcount(devvp) > 1 && devvp != rootvp)
		return (EBUSY);
	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p);
	error = vinvalbuf(devvp, V_SAVE, cred, p, 0, 0);
	VOP_UNLOCK(devvp, 0, p);
	if (error)
		return (error);

	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
	error = VOP_OPEN(devvp, ronly ? FREAD : FREAD|FWRITE, FSCRED, p);
	if (error)
		return (error);
	if (VOP_IOCTL(devvp, DIOCGPART, (caddr_t)&dpart, FREAD, cred, p) != 0)
		size = DEV_BSIZE;
	else
		size = dpart.disklab->d_secsize;

	bp = NULL;
	ump = NULL;

	/*
	 * Try reading the super-block in each of its possible locations.
	 */
	for (i = 0; sbtry[i] != -1; i++) {
		if (bp != NULL) {
			bp->b_flags |= B_NOCACHE;
			brelse(bp);
			bp = NULL;
		}

		error = bread(devvp, sbtry[i] / size, SBSIZE, cred, &bp);
		if (error)
			goto out;

		fs = (struct fs *) bp->b_data;
		sbloc = sbtry[i];

#if 0
		if (fs->fs_magic == FS_UFS2_MAGIC) {
			printf("ffs_mountfs(): Sorry, no UFS2 support (yet)\n");
			error = EFTYPE;
			goto out;
		}
#endif

		/*
		 * Do not look for an FFS1 file system at SBLOCK_UFS2. Doing so
		 * will find the wrong super-block for file systems with 64k
		 * block size.
		 */
		if (fs->fs_magic == FS_UFS1_MAGIC && sbloc == SBLOCK_UFS2)
			continue;

		if (ffs_validate(fs))
			break; /* Super block validated */
	}

	if (sbtry[i] == -1) {
		error = EINVAL;
		goto out;
	}

	fs->fs_fmod = 0;
	fs->fs_flags &= ~FS_UNCLEAN;
	if (fs->fs_clean == 0) {
		fs->fs_flags |= FS_UNCLEAN;
#if 0
		/*
		 * It is safe mount unclean file system
		 * if it was previously mounted with softdep
		 * but we may loss space and must
		 * sometimes run fsck manually.
		 */
		if (fs->fs_flags & FS_DOSOFTDEP)
			printf(
"WARNING: %s was not properly unmounted\n",
			    fs->fs_fsmnt);
		else
#endif
		if (ronly || (mp->mnt_flag & MNT_FORCE)) {
			printf(
"WARNING: %s was not properly unmounted\n",
			    fs->fs_fsmnt);
		} else {
			printf(
"WARNING: R/W mount of %s denied.  Filesystem is not clean - run fsck\n",
			    fs->fs_fsmnt);
			error = EROFS;
			goto out;
		}
	}

	if (fs->fs_postblformat == FS_42POSTBLFMT && !ronly) {
#ifndef SMALL_KERNEL
		printf("ffs_mountfs(): obsolete rotational table format, "
		    "please use fsck_ffs(8) -c 1\n");
#endif
		error = EFTYPE;
		goto out;
	}

	ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK);
	bzero(ump, sizeof *ump);
	ump->um_fs = malloc((u_long)fs->fs_sbsize, M_UFSMNT,
	    M_WAITOK);

	if (fs->fs_magic == FS_UFS1_MAGIC)
		ump->um_fstype = UM_UFS1;
#ifdef FFS2
	else
		ump->um_fstype = UM_UFS2;
#endif

	bcopy(bp->b_data, ump->um_fs, (u_int)fs->fs_sbsize);
	if (fs->fs_sbsize < SBSIZE)
		bp->b_flags |= B_INVAL;
	brelse(bp);
	bp = NULL;
	fs = ump->um_fs;

	ffs1_compat_read(fs, ump, sbloc);

	fs->fs_ronly = ronly;
	size = fs->fs_cssize;
	blks = howmany(size, fs->fs_fsize);
	if (fs->fs_contigsumsize > 0)
		size += fs->fs_ncg * sizeof(int32_t);
	space = malloc((u_long)size, M_UFSMNT, M_WAITOK);
	fs->fs_csp = (struct csum *)space;
	for (i = 0; i < blks; i += fs->fs_frag) {
		size = fs->fs_bsize;
		if (i + fs->fs_frag > blks)
			size = (blks - i) * fs->fs_fsize;
		error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size,
			      cred, &bp);
		if (error) {
			free(fs->fs_csp, M_UFSMNT);
			goto out;
		}
		bcopy(bp->b_data, space, (u_int)size);
		space += size;
		brelse(bp);
		bp = NULL;
	}
	if (fs->fs_contigsumsize > 0) {
		fs->fs_maxcluster = lp = (int32_t *)space;
		for (i = 0; i < fs->fs_ncg; i++)
			*lp++ = fs->fs_contigsumsize;
	}
	mp->mnt_data = (qaddr_t)ump;
	mp->mnt_stat.f_fsid.val[0] = (long)dev;
	/* Use on-disk fsid if it exists, else fake it */
	if (fs->fs_id[0] != 0 && fs->fs_id[1] != 0)
		mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1];
	else
		mp->mnt_stat.f_fsid.val[1] = mp->mnt_vfc->vfc_typenum;
	mp->mnt_maxsymlinklen = fs->fs_maxsymlinklen;
	mp->mnt_flag |= MNT_LOCAL;
	ump->um_mountp = mp;
	ump->um_dev = dev;
	ump->um_devvp = devvp;
	ump->um_nindir = fs->fs_nindir;
	ump->um_bptrtodb = fs->fs_fsbtodb;
	ump->um_seqinc = fs->fs_frag;
	for (i = 0; i < MAXQUOTAS; i++)
		ump->um_quotas[i] = NULLVP;

	devvp->v_specmountpoint = mp;
	ffs_oldfscompat(fs);

	if (ronly)
		fs->fs_contigdirs = NULL;
	else {
		fs->fs_contigdirs = (u_int8_t*)malloc((u_long)fs->fs_ncg,
						      M_UFSMNT, M_WAITOK);
		bzero(fs->fs_contigdirs, fs->fs_ncg);
	}

	/*
	 * Set FS local "last mounted on" information (NULL pad)
	 */
	copystr(mp->mnt_stat.f_mntonname,	/* mount point*/
		fs->fs_fsmnt,			/* copy area*/
		sizeof(fs->fs_fsmnt) - 1,	/* max size*/
		&strsize);			/* real size*/
	bzero(fs->fs_fsmnt + strsize, sizeof(fs->fs_fsmnt) - strsize);

#if 0
	if( mp->mnt_flag & MNT_ROOTFS) {
		/*
		 * Root mount; update timestamp in mount structure.
		 * this will be used by the common root mount code
		 * to update the system clock.
		 */
		mp->mnt_time = fs->fs_time;
	}
#endif

	/*
	 * XXX
	 * Limit max file size.  Even though ffs can handle files up to 16TB,
	 * we do limit the max file to 2^31 pages to prevent overflow of
	 * a 32-bit unsigned int.  The buffer cache has its own checks but
	 * a little added paranoia never hurts.
	 */
	ump->um_savedmaxfilesize = fs->fs_maxfilesize;		/* XXX */
	maxfilesize = (u_int64_t)0x80000000 * MIN(PAGE_SIZE, fs->fs_bsize) - 1;
	if (fs->fs_maxfilesize > maxfilesize)			/* XXX */
		fs->fs_maxfilesize = maxfilesize;		/* XXX */
	if (ronly == 0) {
		if ((fs->fs_flags & FS_DOSOFTDEP) &&
		    (error = softdep_mount(devvp, mp, fs, cred)) != 0) {
			free(fs->fs_csp, M_UFSMNT);
			free(fs->fs_contigdirs, M_UFSMNT);
			goto out;
		}
		fs->fs_fmod = 1;
		fs->fs_clean = 0;
		if (mp->mnt_flag & MNT_SOFTDEP)
			fs->fs_flags |= FS_DOSOFTDEP;
		else
			fs->fs_flags &= ~FS_DOSOFTDEP;
		(void) ffs_sbupdate(ump, MNT_WAIT);
	}
	return (0);
out:
	devvp->v_specmountpoint = NULL;
	if (bp)
		brelse(bp);
	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p);
	(void)VOP_CLOSE(devvp, ronly ? FREAD : FREAD|FWRITE, cred, p);
	VOP_UNLOCK(devvp, 0, p);
	if (ump) {
		free(ump->um_fs, M_UFSMNT);
		free(ump, M_UFSMNT);
		mp->mnt_data = (qaddr_t)0;
	}
	return (error);
}
Exemple #8
0
/*
 * Common code for mount and mountroot
 */
int
ext2fs_mountfs(struct vnode *devvp, struct mount *mp, struct proc *p)
{
	struct ufsmount *ump;
	struct buf *bp;
	struct ext2fs *fs;
	struct m_ext2fs *m_fs;
	dev_t dev;
	int error, i, ronly;
	struct ucred *cred;

	dev = devvp->v_rdev;
	cred = p ? p->p_ucred : NOCRED;
	/*
	 * Disallow multiple mounts of the same device.
	 * Disallow mounting of a device that is currently in use
	 * (except for root, which might share swap device for miniroot).
	 * Flush out any old buffers remaining from a previous use.
	 */
	if ((error = vfs_mountedon(devvp)) != 0)
		return (error);
	if (vcount(devvp) > 1 && devvp != rootvp)
		return (EBUSY);
	if ((error = vinvalbuf(devvp, V_SAVE, cred, p, 0, 0)) != 0)
		return (error);

	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
	error = VOP_OPEN(devvp, ronly ? FREAD : FREAD|FWRITE, FSCRED);
	if (error)
		return (error);

	bp = NULL;
	ump = NULL;

#ifdef DEBUG_EXT2
	printf("ext2 sb size: %d\n", sizeof(struct ext2fs));
#endif
	error = bread(devvp, (daddr_t)(SBOFF / DEV_BSIZE), SBSIZE, &bp);
	if (error)
		goto out;
	fs = (struct ext2fs *)bp->b_data;
	error = ext2fs_checksb(fs, ronly);
	if (error)
		goto out;
	ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
	ump->um_e2fs = malloc(sizeof(struct m_ext2fs), M_UFSMNT,
	    M_WAITOK | M_ZERO);
	e2fs_sbload((struct ext2fs*)bp->b_data, &ump->um_e2fs->e2fs);
	brelse(bp);
	bp = NULL;
	m_fs = ump->um_e2fs;
	m_fs->e2fs_ronly = ronly;
	ump->um_fstype = UM_EXT2FS;
	       
#ifdef DEBUG_EXT2
	printf("ext2 ino size %d\n", EXT2_DINODE_SIZE(m_fs));
#endif
	if (ronly == 0) {
		if (m_fs->e2fs.e2fs_state == E2FS_ISCLEAN)
			m_fs->e2fs.e2fs_state = 0;
		else
			m_fs->e2fs.e2fs_state = E2FS_ERRORS;
		m_fs->e2fs_fmod = 1;
	}

	/* compute dynamic sb infos */
	m_fs->e2fs_ncg =
		howmany(m_fs->e2fs.e2fs_bcount - m_fs->e2fs.e2fs_first_dblock,
		m_fs->e2fs.e2fs_bpg);
	/* XXX assume hw bsize = 512 */
	m_fs->e2fs_fsbtodb = m_fs->e2fs.e2fs_log_bsize + 1;
	m_fs->e2fs_bsize = 1024 << m_fs->e2fs.e2fs_log_bsize;
	m_fs->e2fs_bshift = LOG_MINBSIZE + m_fs->e2fs.e2fs_log_bsize;
	m_fs->e2fs_qbmask = m_fs->e2fs_bsize - 1;
	m_fs->e2fs_bmask = ~m_fs->e2fs_qbmask;
	m_fs->e2fs_ngdb = howmany(m_fs->e2fs_ncg,
		m_fs->e2fs_bsize / sizeof(struct ext2_gd));
	m_fs->e2fs_ipb = m_fs->e2fs_bsize / EXT2_DINODE_SIZE(m_fs);
	m_fs->e2fs_itpg = m_fs->e2fs.e2fs_ipg/m_fs->e2fs_ipb;

	m_fs->e2fs_gd = malloc(m_fs->e2fs_ngdb * m_fs->e2fs_bsize,
	    M_UFSMNT, M_WAITOK);
	for (i=0; i < m_fs->e2fs_ngdb; i++) {
		error = bread(devvp ,
		    fsbtodb(m_fs, ((m_fs->e2fs_bsize>1024)? 0 : 1) + i + 1),
		    m_fs->e2fs_bsize, &bp);
		if (error) {
			free(m_fs->e2fs_gd, M_UFSMNT);
			goto out;
		}
		e2fs_cgload((struct ext2_gd*)bp->b_data,
		    &m_fs->e2fs_gd[i * m_fs->e2fs_bsize
		    / sizeof(struct ext2_gd)],
		    m_fs->e2fs_bsize);
		brelse(bp);
		bp = NULL;
	}

	mp->mnt_data = (qaddr_t)ump;
	mp->mnt_stat.f_fsid.val[0] = (long)dev;
	mp->mnt_stat.f_fsid.val[1] = mp->mnt_vfc->vfc_typenum;
	mp->mnt_maxsymlinklen = EXT2_MAXSYMLINKLEN;
	mp->mnt_flag |= MNT_LOCAL;
	ump->um_mountp = mp;
	ump->um_dev = dev;
	ump->um_devvp = devvp;
	ump->um_nindir = NINDIR(m_fs);
	ump->um_bptrtodb = m_fs->e2fs_fsbtodb;
	ump->um_seqinc = 1; /* no frags */
	devvp->v_specmountpoint = mp;
	return (0);
out:
	if (bp)
		brelse(bp);
	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p);
	(void)VOP_CLOSE(devvp, ronly ? FREAD : FREAD|FWRITE, cred);
	VOP_UNLOCK(devvp, 0);
	if (ump) {
		free(ump->um_e2fs, M_UFSMNT);
		free(ump, M_UFSMNT);
		mp->mnt_data = (qaddr_t)0;
	}
	return (error);
}
Exemple #9
0
/*
 * Open a special file.
 */
int
spec_open(struct vnop_open_args *ap)
{
	struct proc *p = vfs_context_proc(ap->a_context);
	kauth_cred_t cred = vfs_context_ucred(ap->a_context);
	struct vnode *vp = ap->a_vp;
	dev_t bdev, dev = (dev_t)vp->v_rdev;
	int maj = major(dev);
	int error;

	/*
	 * Don't allow open if fs is mounted -nodev.
	 */
	if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_NODEV))
		return (ENXIO);

	switch (vp->v_type) {

	case VCHR:
		if ((u_int)maj >= (u_int)nchrdev)
			return (ENXIO);
		if (cred != FSCRED && (ap->a_mode & FWRITE)) {
			/*
			 * When running in very secure mode, do not allow
			 * opens for writing of any disk character devices.
			 */
			if (securelevel >= 2 && isdisk(dev, VCHR))
				return (EPERM);
			/*
			 * When running in secure mode, do not allow opens
			 * for writing of /dev/mem, /dev/kmem, or character
			 * devices whose corresponding block devices are
			 * currently mounted.
			 */
			if (securelevel >= 1) {
				if ((bdev = chrtoblk(dev)) != NODEV && check_mountedon(bdev, VBLK, &error))
					return (error);
				if (iskmemdev(dev))
					return (EPERM);
			}
		}
		if (cdevsw[maj].d_type == D_TTY) {
			vnode_lock(vp);
			vp->v_flag |= VISTTY;
			vnode_unlock(vp);
		}
		error = (*cdevsw[maj].d_open)(dev, ap->a_mode, S_IFCHR, p);
		return (error);

	case VBLK:
		if ((u_int)maj >= (u_int)nblkdev)
			return (ENXIO);
		/*
		 * When running in very secure mode, do not allow
		 * opens for writing of any disk block devices.
		 */
		if (securelevel >= 2 && cred != FSCRED &&
		    (ap->a_mode & FWRITE) && bdevsw[maj].d_type == D_DISK)
			return (EPERM);
		/*
		 * Do not allow opens of block devices that are
		 * currently mounted.
		 */
		if ( (error = vfs_mountedon(vp)) )
			return (error);
		error = (*bdevsw[maj].d_open)(dev, ap->a_mode, S_IFBLK, p);
		if (!error) {
		    u_int64_t blkcnt;
		    u_int32_t blksize;
			int setsize = 0;
			u_int32_t size512 = 512;


		    if (!VNOP_IOCTL(vp, DKIOCGETBLOCKSIZE, (caddr_t)&blksize, 0, ap->a_context)) {
				/* Switch to 512 byte sectors (temporarily) */

				if (!VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&size512, FWRITE, ap->a_context)) {
			    	/* Get the number of 512 byte physical blocks. */
			    	if (!VNOP_IOCTL(vp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, ap->a_context)) {
						setsize = 1;
			    	}
				}
				/* If it doesn't set back, we can't recover */
				if (VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, ap->a_context))
			    	error = ENXIO;
		    }


			vnode_lock(vp);
		    set_blocksize(vp, dev);

		    /*
		     * Cache the size in bytes of the block device for later
		     * use by spec_write().
		     */
			if (setsize)
				vp->v_specdevsize = blkcnt * (u_int64_t)size512;
			else
		    	vp->v_specdevsize = (u_int64_t)0;	/* Default: Can't get */
			
			vnode_unlock(vp);

		}
		return(error);
	default:
	        panic("spec_open type");
	}
	return (0);
}
/*
 * Common code for mount and mountroot
 */
int
ntfs_mountfs(struct vnode *devvp, struct mount *mp, struct ntfs_args *argsp,
	     struct ucred *cred)
{
	struct buf *bp;
	struct ntfsmount *ntmp;
	cdev_t dev;
	int error, ronly, ncount, i;
	struct vnode *vp;
	char cs_local[ICONV_CSNMAXLEN];
	char cs_ntfs[ICONV_CSNMAXLEN];

	/*
	 * Disallow multiple mounts of the same device.
	 * Disallow mounting of a device that is currently in use
	 * (except for root, which might share swap device for miniroot).
	 * Flush out any old buffers remaining from a previous use.
	 */
	error = vfs_mountedon(devvp);
	if (error)
		return (error);
	ncount = vcount(devvp);

	if (devvp->v_object)
		ncount -= 1;

	if (ncount > 1)
		return (EBUSY);

	VN_LOCK(devvp, LK_EXCLUSIVE | LK_RETRY);
	error = vinvalbuf(devvp, V_SAVE, 0, 0);
	VOP__UNLOCK(devvp, 0);
	if (error)
		return (error);

	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
	VN_LOCK(devvp, LK_EXCLUSIVE | LK_RETRY);
	error = VOP_OPEN(devvp, ronly ? FREAD : FREAD|FWRITE, FSCRED, NULL);
	VOP__UNLOCK(devvp, 0);
	if (error)
		return (error);
	dev = devvp->v_rdev;

	bp = NULL;

	error = bread(devvp, BBLOCK, BBSIZE, &bp);
	if (error)
		goto out;
	ntmp = kmalloc(sizeof *ntmp, M_NTFSMNT, M_WAITOK | M_ZERO);
	bcopy( bp->b_data, &ntmp->ntm_bootfile, sizeof(struct bootfile) );
	/*
	 * We must not cache the boot block if its size is not exactly
	 * one cluster in order to avoid confusing the buffer cache when
	 * the boot file is read later by ntfs_readntvattr_plain(), which
	 * reads a cluster at a time.
	 */
	if (ntfs_cntob(1) != BBSIZE)
		bp->b_flags |= B_NOCACHE;
	brelse( bp );
	bp = NULL;

	if (strncmp(ntmp->ntm_bootfile.bf_sysid, NTFS_BBID, NTFS_BBIDLEN)) {
		error = EINVAL;
		dprintf(("ntfs_mountfs: invalid boot block\n"));
		goto out;
	}

	{
		int8_t cpr = ntmp->ntm_mftrecsz;
		if( cpr > 0 )
			ntmp->ntm_bpmftrec = ntmp->ntm_spc * cpr;
		else
			ntmp->ntm_bpmftrec = (1 << (-cpr)) / ntmp->ntm_bps;
	}
	dprintf(("ntfs_mountfs(): bps: %d, spc: %d, media: %x, mftrecsz: %d (%d sects)\n",
		ntmp->ntm_bps,ntmp->ntm_spc,ntmp->ntm_bootfile.bf_media,
		ntmp->ntm_mftrecsz,ntmp->ntm_bpmftrec));
	dprintf(("ntfs_mountfs(): mftcn: 0x%x|0x%x\n",
		(u_int32_t)ntmp->ntm_mftcn,(u_int32_t)ntmp->ntm_mftmirrcn));

	ntmp->ntm_mountp = mp;
	ntmp->ntm_dev = dev;
	ntmp->ntm_devvp = devvp;
	ntmp->ntm_uid = argsp->uid;
	ntmp->ntm_gid = argsp->gid;
	ntmp->ntm_mode = argsp->mode;
	ntmp->ntm_flag = argsp->flag;

	if (argsp->flag & NTFS_MFLAG_KICONV && ntfs_iconv) {
		bcopy(argsp->cs_local, cs_local, sizeof(cs_local));
		bcopy(argsp->cs_ntfs, cs_ntfs, sizeof(cs_ntfs));
		ntfs_82u_init(ntmp, cs_local, cs_ntfs);
		ntfs_u28_init(ntmp, NULL, cs_local, cs_ntfs);
	} else {
		ntfs_82u_init(ntmp, NULL, NULL);
		ntfs_u28_init(ntmp, ntmp->ntm_82u, NULL, NULL);
	}

	mp->mnt_data = (qaddr_t)ntmp;

	dprintf(("ntfs_mountfs(): case-%s,%s uid: %d, gid: %d, mode: %o\n",
		(ntmp->ntm_flag & NTFS_MFLAG_CASEINS)?"insens.":"sens.",
		(ntmp->ntm_flag & NTFS_MFLAG_ALLNAMES)?" allnames,":"",
		ntmp->ntm_uid, ntmp->ntm_gid, ntmp->ntm_mode));

	vfs_add_vnodeops(mp, &ntfs_vnode_vops, &mp->mnt_vn_norm_ops);

	/*
	 * We read in some system nodes to do not allow
	 * reclaim them and to have everytime access to them.
	 */
	{
		int pi[3] = { NTFS_MFTINO, NTFS_ROOTINO, NTFS_BITMAPINO };
		for (i=0; i<3; i++) {
			error = VFS_VGET(mp, NULL,
					 pi[i], &(ntmp->ntm_sysvn[pi[i]]));
			if(error)
				goto out1;
			vsetflags(ntmp->ntm_sysvn[pi[i]], VSYSTEM);
			vref(ntmp->ntm_sysvn[pi[i]]);
			vput(ntmp->ntm_sysvn[pi[i]]);
		}
	}

	/* read the Unicode lowercase --> uppercase translation table,
	 * if necessary */
	if ((error = ntfs_toupper_use(mp, ntmp)))
		goto out1;

	/*
	 * Scan $BitMap and count free clusters
	 */
	error = ntfs_calccfree(ntmp, &ntmp->ntm_cfree);
	if(error)
		goto out1;

	/*
	 * Read and translate to internal format attribute
	 * definition file.
	 */
	{
		int num,j;
		struct attrdef ad;

		/* Open $AttrDef */
		error = VFS_VGET(mp, NULL, NTFS_ATTRDEFINO, &vp);
		if(error)
			goto out1;

		/* Count valid entries */
		for(num=0;;num++) {
			error = ntfs_readattr(ntmp, VTONT(vp),
					NTFS_A_DATA, NULL,
					num * sizeof(ad), sizeof(ad),
					&ad, NULL);
			if (error)
				goto out1;
			if (ad.ad_name[0] == 0)
				break;
		}

		/* Alloc memory for attribute definitions */
		ntmp->ntm_ad = kmalloc(num * sizeof(struct ntvattrdef),
				       M_NTFSMNT, M_WAITOK);

		ntmp->ntm_adnum = num;

		/* Read them and translate */
		for(i=0;i<num;i++){
			error = ntfs_readattr(ntmp, VTONT(vp),
					NTFS_A_DATA, NULL,
					i * sizeof(ad), sizeof(ad),
					&ad, NULL);
			if (error)
				goto out1;
			j = 0;
			do {
				ntmp->ntm_ad[i].ad_name[j] = ad.ad_name[j];
			} while(ad.ad_name[j++]);
			ntmp->ntm_ad[i].ad_namelen = j - 1;
			ntmp->ntm_ad[i].ad_type = ad.ad_type;
		}

		vput(vp);
	}

	mp->mnt_stat.f_fsid.val[0] = dev2udev(dev);
	mp->mnt_stat.f_fsid.val[1] = mp->mnt_vfc->vfc_typenum;
	mp->mnt_maxsymlinklen = 0;
	mp->mnt_flag |= MNT_LOCAL;
	dev->si_mountpoint = mp;

	return (0);

out1:
	for(i=0;i<NTFS_SYSNODESNUM;i++)
		if(ntmp->ntm_sysvn[i]) vrele(ntmp->ntm_sysvn[i]);

	if (vflush(mp, 0, 0))
		dprintf(("ntfs_mountfs: vflush failed\n"));

out:
	dev->si_mountpoint = NULL;
	if (bp)
		brelse(bp);

	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
	(void)VOP_CLOSE(devvp, ronly ? FREAD : FREAD|FWRITE, NULL);
	vn_unlock(devvp);

	return (error);
}
Exemple #11
0
/************************************************************************
 *				VOLUMES					*
 ************************************************************************
 *
 * Load a HAMMER volume by name.  Returns 0 on success or a positive error
 * code on failure.  Volumes must be loaded at mount time, get_volume() will
 * not load a new volume.
 *
 * The passed devvp is vref()'d but not locked.  This function consumes the
 * ref (typically by associating it with the volume structure).
 *
 * Calls made to hammer_load_volume() or single-threaded
 */
int
hammer_install_volume(struct hammer_mount *hmp, const char *volname,
		      struct vnode *devvp)
{
	struct mount *mp;
	hammer_volume_t volume;
	struct hammer_volume_ondisk *ondisk;
	struct nlookupdata nd;
	struct buf *bp = NULL;
	int error;
	int ronly;
	int setmp = 0;

	mp = hmp->mp;
	ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);

	/*
	 * Allocate a volume structure
	 */
	++hammer_count_volumes;
	volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
	volume->vol_name = kstrdup(volname, hmp->m_misc);
	volume->io.hmp = hmp;	/* bootstrap */
	hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
	volume->io.offset = 0LL;
	volume->io.bytes = HAMMER_BUFSIZE;

	/*
	 * Get the device vnode
	 */
	if (devvp == NULL) {
		error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
		if (error == 0)
			error = nlookup(&nd);
		if (error == 0)
			error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
		nlookup_done(&nd);
	} else {
		error = 0;
		volume->devvp = devvp;
	}

	if (error == 0) {
		if (vn_isdisk(volume->devvp, &error)) {
			error = vfs_mountedon(volume->devvp);
		}
	}
	if (error == 0 && vcount(volume->devvp) > 0)
		error = EBUSY;
	if (error == 0) {
		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
		error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
		if (error == 0) {
			error = VOP_OPEN(volume->devvp, 
					 (ronly ? FREAD : FREAD|FWRITE),
					 FSCRED, NULL);
		}
		vn_unlock(volume->devvp);
	}
	if (error) {
		hammer_free_volume(volume);
		return(error);
	}
	volume->devvp->v_rdev->si_mountpoint = mp;
	setmp = 1;

	/*
	 * Extract the volume number from the volume header and do various
	 * sanity checks.
	 */
	error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
	if (error)
		goto late_failure;
	ondisk = (void *)bp->b_data;
	if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
		kprintf("hammer_mount: volume %s has an invalid header\n",
			volume->vol_name);
		error = EFTYPE;
		goto late_failure;
	}
	volume->vol_no = ondisk->vol_no;
	volume->buffer_base = ondisk->vol_buf_beg;
	volume->vol_flags = ondisk->vol_flags;
	volume->nblocks = ondisk->vol_nblocks; 
	volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
				    ondisk->vol_buf_end - ondisk->vol_buf_beg);
	volume->maxraw_off = ondisk->vol_buf_end;

	if (RB_EMPTY(&hmp->rb_vols_root)) {
		hmp->fsid = ondisk->vol_fsid;
	} else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
		kprintf("hammer_mount: volume %s's fsid does not match "
			"other volumes\n", volume->vol_name);
		error = EFTYPE;
		goto late_failure;
	}

	/*
	 * Insert the volume structure into the red-black tree.
	 */
	if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
		kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
			volume->vol_name, volume->vol_no);
		error = EEXIST;
	}

	/*
	 * Set the root volume .  HAMMER special cases rootvol the structure.
	 * We do not hold a ref because this would prevent related I/O
	 * from being flushed.
	 */
	if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
		hmp->rootvol = volume;
		hmp->nvolumes = ondisk->vol_count;
		if (bp) {
			brelse(bp);
			bp = NULL;
		}
		hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
			(HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
		hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
			(HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
	}
late_failure:
	if (bp)
		brelse(bp);
	if (error) {
		/*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
		if (setmp)
			volume->devvp->v_rdev->si_mountpoint = NULL;
		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
		VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
		vn_unlock(volume->devvp);
		hammer_free_volume(volume);
	}
	return (error);
}
Exemple #12
0
/*
 * Common code for mount and mountroot
 */
int
ext2fs_mountfs(struct vnode *devvp, struct mount *mp, struct proc *p)
{
	struct ufsmount *ump;
	struct buf *bp;
	struct ext2fs *fs;
	dev_t dev;
	int error, ronly;
	struct ucred *cred;

	dev = devvp->v_rdev;
	cred = p ? p->p_ucred : NOCRED;
	/*
	 * Disallow multiple mounts of the same device.
	 * Disallow mounting of a device that is currently in use
	 * (except for root, which might share swap device for miniroot).
	 * Flush out any old buffers remaining from a previous use.
	 */
	if ((error = vfs_mountedon(devvp)) != 0)
		return (error);
	if (vcount(devvp) > 1 && devvp != rootvp)
		return (EBUSY);
	if ((error = vinvalbuf(devvp, V_SAVE, cred, p, 0, 0)) != 0)
		return (error);

	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
	error = VOP_OPEN(devvp, ronly ? FREAD : FREAD|FWRITE, FSCRED, p);
	if (error)
		return (error);

	bp = NULL;
	ump = NULL;

	/*
	 * Read the superblock from disk.
	 */
	error = bread(devvp, (daddr_t)(SBOFF / DEV_BSIZE), SBSIZE, &bp);
	if (error)
		goto out;
	fs = (struct ext2fs *)bp->b_data;
	error = e2fs_sbcheck(fs, ronly);
	if (error)
		goto out;

	ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
	ump->um_e2fs = malloc(sizeof(struct m_ext2fs), M_UFSMNT,
	    M_WAITOK | M_ZERO);

	/*
	 * Copy in the superblock, compute in-memory values
	 * and load group descriptors.
	 */
	e2fs_sbload(fs, &ump->um_e2fs->e2fs);
	if ((error = e2fs_sbfill(devvp, ump->um_e2fs)) != 0)
		goto out;
	brelse(bp);
	bp = NULL;
	fs = &ump->um_e2fs->e2fs;
	ump->um_e2fs->e2fs_ronly = ronly;
	ump->um_fstype = UM_EXT2FS;

	if (ronly == 0) {
		if (fs->e2fs_state == E2FS_ISCLEAN)
			fs->e2fs_state = 0;
		else
			fs->e2fs_state = E2FS_ERRORS;
		ump->um_e2fs->e2fs_fmod = 1;
	}

	mp->mnt_data = (qaddr_t)ump;
	mp->mnt_stat.f_fsid.val[0] = (long)dev;
	mp->mnt_stat.f_fsid.val[1] = mp->mnt_vfc->vfc_typenum;
	mp->mnt_stat.f_namemax = MAXNAMLEN;
	mp->mnt_flag |= MNT_LOCAL;
	ump->um_mountp = mp;
	ump->um_dev = dev;
	ump->um_devvp = devvp;
	ump->um_nindir = NINDIR(ump->um_e2fs);
	ump->um_bptrtodb = ump->um_e2fs->e2fs_fsbtodb;
	ump->um_seqinc = 1; /* no frags */
	ump->um_maxsymlinklen = EXT2_MAXSYMLINKLEN;
	devvp->v_specmountpoint = mp;
	return (0);
out:
	if (bp)
		brelse(bp);
	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p);
	(void)VOP_CLOSE(devvp, ronly ? FREAD : FREAD|FWRITE, cred, p);
	VOP_UNLOCK(devvp, p);
	if (ump) {
		free(ump->um_e2fs, M_UFSMNT, sizeof *ump->um_e2fs);
		free(ump, M_UFSMNT, sizeof *ump);
		mp->mnt_data = NULL;
	}
	return (error);
}
Exemple #13
0
static int
devfs_spec_open(struct vop_open_args *ap)
{
	struct vnode *vp = ap->a_vp;
	struct vnode *orig_vp = NULL;
	struct devfs_node *node = DEVFS_NODE(vp);
	struct devfs_node *newnode;
	cdev_t dev, ndev = NULL;
	int error = 0;

	if (node) {
		if (node->d_dev == NULL)
			return ENXIO;
		if (!devfs_node_is_accessible(node))
			return ENOENT;
	}

	if ((dev = vp->v_rdev) == NULL)
		return ENXIO;

	vn_lock(vp, LK_UPGRADE | LK_RETRY);

	if (node && ap->a_fp) {
		devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_open: -1.1-\n");
		lockmgr(&devfs_lock, LK_EXCLUSIVE);

		ndev = devfs_clone(dev, node->d_dir.d_name,
				   node->d_dir.d_namlen,
				   ap->a_mode, ap->a_cred);
		if (ndev != NULL) {
			newnode = devfs_create_device_node(
					DEVFS_MNTDATA(vp->v_mount)->root_node,
					ndev, NULL, NULL);
			/* XXX: possibly destroy device if this happens */

			if (newnode != NULL) {
				dev = ndev;
				devfs_link_dev(dev);

				devfs_debug(DEVFS_DEBUG_DEBUG,
						"parent here is: %s, node is: |%s|\n",
						((node->parent->node_type == Nroot) ?
						"ROOT!" : node->parent->d_dir.d_name),
						newnode->d_dir.d_name);
				devfs_debug(DEVFS_DEBUG_DEBUG,
						"test: %s\n",
						((struct devfs_node *)(TAILQ_LAST(DEVFS_DENODE_HEAD(node->parent), devfs_node_head)))->d_dir.d_name);

				/*
				 * orig_vp is set to the original vp if we cloned.
				 */
				/* node->flags |= DEVFS_CLONED; */
				devfs_allocv(&vp, newnode);
				orig_vp = ap->a_vp;
				ap->a_vp = vp;
			}
		}
		lockmgr(&devfs_lock, LK_RELEASE);
	}

	devfs_debug(DEVFS_DEBUG_DEBUG,
		    "devfs_spec_open() called on %s! \n",
		    dev->si_name);

	/*
	 * Make this field valid before any I/O in ->d_open
	 */
	if (!dev->si_iosize_max)
		/* XXX: old DFLTPHYS == 64KB dependency */
		dev->si_iosize_max = min(MAXPHYS,64*1024);

	if (dev_dflags(dev) & D_TTY)
		vsetflags(vp, VISTTY);

	/*
	 * Open underlying device
	 */
	vn_unlock(vp);
	error = dev_dopen(dev, ap->a_mode, S_IFCHR, ap->a_cred, ap->a_fp);
	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);

	/*
	 * Clean up any cloned vp if we error out.
	 */
	if (error) {
		if (orig_vp) {
			vput(vp);
			ap->a_vp = orig_vp;
			/* orig_vp = NULL; */
		}
		return error;
	}

	/*
	 * This checks if the disk device is going to be opened for writing.
	 * It will be only allowed in the cases where securelevel permits it
	 * and it's not mounted R/W.
	 */
	if ((dev_dflags(dev) & D_DISK) && (ap->a_mode & FWRITE) &&
	    (ap->a_cred != FSCRED)) {

		/* Very secure mode. No open for writing allowed */
		if (securelevel >= 2)
			return EPERM;

		/*
		 * If it is mounted R/W, do not allow to open for writing.
		 * In the case it's mounted read-only but securelevel
		 * is >= 1, then do not allow opening for writing either.
		 */
		if (vfs_mountedon(vp)) {
			if (!(dev->si_mountpoint->mnt_flag & MNT_RDONLY))
				return EBUSY;
			else if (securelevel >= 1)
				return EPERM;
		}
	}

	if (dev_dflags(dev) & D_TTY) {
		if (dev->si_tty) {
			struct tty *tp;
			tp = dev->si_tty;
			if (!tp->t_stop) {
				devfs_debug(DEVFS_DEBUG_DEBUG,
					    "devfs: no t_stop\n");
				tp->t_stop = nottystop;
			}
		}
	}


	if (vn_isdisk(vp, NULL)) {
		if (!dev->si_bsize_phys)
			dev->si_bsize_phys = DEV_BSIZE;
		vinitvmio(vp, IDX_TO_OFF(INT_MAX), PAGE_SIZE, -1);
	}

	vop_stdopen(ap);
#if 0
	if (node)
		nanotime(&node->atime);
#endif

	/*
	 * If we replaced the vp the vop_stdopen() call will have loaded
	 * it into fp->f_data and vref()d the vp, giving us two refs.  So
	 * instead of just unlocking it here we have to vput() it.
	 */
	if (orig_vp)
		vput(vp);

	/* Ugly pty magic, to make pty devices appear once they are opened */
	if (node && (node->flags & DEVFS_PTY) == DEVFS_PTY)
		node->flags &= ~DEVFS_INVISIBLE;

	if (ap->a_fp) {
		KKASSERT(ap->a_fp->f_type == DTYPE_VNODE);
		KKASSERT((ap->a_fp->f_flag & FMASK) == (ap->a_mode & FMASK));
		ap->a_fp->f_ops = &devfs_dev_fileops;
		KKASSERT(ap->a_fp->f_data == (void *)vp);
	}

	return 0;
}