int32_t dot_product(int16_t *x,
                    int16_t *y,
                    uint32_t N, //must be a multiple of 8
                    uint8_t output_shift)
{

  uint32_t n;

#if defined(__x86_64__) || defined(__i386__)
  __m128i *x128,*y128,mmtmp1,mmtmp2,mmtmp3,mmcumul,mmcumul_re,mmcumul_im;
  __m64 mmtmp7;
  __m128i minus_i = _mm_set_epi16(-1,1,-1,1,-1,1,-1,1);
  int32_t result;

  x128 = (__m128i*) x;
  y128 = (__m128i*) y;

  mmcumul_re = _mm_setzero_si128();
  mmcumul_im = _mm_setzero_si128();

  for (n=0; n<(N>>2); n++) {

    //printf("n=%d, x128=%p, y128=%p\n",n,x128,y128);
    //    print_shorts("x",&x128[0]);
    //    print_shorts("y",&y128[0]);

    // this computes Re(z) = Re(x)*Re(y) + Im(x)*Im(y)
    mmtmp1 = _mm_madd_epi16(x128[0],y128[0]);
    //    print_ints("re",&mmtmp1);
    // mmtmp1 contains real part of 4 consecutive outputs (32-bit)

    // shift and accumulate results
    mmtmp1 = _mm_srai_epi32(mmtmp1,output_shift);
    mmcumul_re = _mm_add_epi32(mmcumul_re,mmtmp1);
    //    print_ints("re",&mmcumul_re);


    // this computes Im(z) = Re(x)*Im(y) - Re(y)*Im(x)
    mmtmp2 = _mm_shufflelo_epi16(y128[0],_MM_SHUFFLE(2,3,0,1));
    //    print_shorts("y",&mmtmp2);
    mmtmp2 = _mm_shufflehi_epi16(mmtmp2,_MM_SHUFFLE(2,3,0,1));
    //    print_shorts("y",&mmtmp2);
    mmtmp2 = _mm_sign_epi16(mmtmp2,minus_i);
    //        print_shorts("y",&mmtmp2);

    mmtmp3 = _mm_madd_epi16(x128[0],mmtmp2);
    //        print_ints("im",&mmtmp3);
    // mmtmp3 contains imag part of 4 consecutive outputs (32-bit)

    // shift and accumulate results
    mmtmp3 = _mm_srai_epi32(mmtmp3,output_shift);
    mmcumul_im = _mm_add_epi32(mmcumul_im,mmtmp3);
    //    print_ints("im",&mmcumul_im);

    x128++;
    y128++;
  }

  // this gives Re Re Im Im
  mmcumul = _mm_hadd_epi32(mmcumul_re,mmcumul_im);
  //  print_ints("cumul1",&mmcumul);

  // this gives Re Im Re Im
  mmcumul = _mm_hadd_epi32(mmcumul,mmcumul);

  //  print_ints("cumul2",&mmcumul);


  //mmcumul = _mm_srai_epi32(mmcumul,output_shift);
  // extract the lower half
  mmtmp7 = _mm_movepi64_pi64(mmcumul);
  //  print_ints("mmtmp7",&mmtmp7);
  // pack the result
  mmtmp7 = _mm_packs_pi32(mmtmp7,mmtmp7);
  //  print_shorts("mmtmp7",&mmtmp7);
  // convert back to integer
  result = _mm_cvtsi64_si32(mmtmp7);

  _mm_empty();
  _m_empty();

  return(result);

#elif defined(__arm__)
  int16x4_t *x_128=(int16x4_t*)x;
  int16x4_t *y_128=(int16x4_t*)y;
  int32x4_t tmp_re,tmp_im;
  int32x4_t tmp_re1,tmp_im1;
  int32x4_t re_cumul,im_cumul;
  int32x2_t re_cumul2,im_cumul2;
  int32x4_t shift = vdupq_n_s32(-output_shift); 
  int32x2x2_t result2;
  int16_t conjug[4]__attribute__((aligned(16))) = {-1,1,-1,1} ;

  re_cumul = vdupq_n_s32(0);
  im_cumul = vdupq_n_s32(0); 

  for (n=0; n<(N>>2); n++) {

    tmp_re  = vmull_s16(*x_128++, *y_128++);
    //tmp_re = [Re(x[0])Re(y[0]) Im(x[0])Im(y[0]) Re(x[1])Re(y[1]) Im(x[1])Im(y[1])] 
    tmp_re1 = vmull_s16(*x_128++, *y_128++);
    //tmp_re1 = [Re(x1[1])Re(x2[1]) Im(x1[1])Im(x2[1]) Re(x1[1])Re(x2[2]) Im(x1[1])Im(x2[2])] 
    tmp_re  = vcombine_s32(vpadd_s32(vget_low_s32(tmp_re),vget_high_s32(tmp_re)),
                           vpadd_s32(vget_low_s32(tmp_re1),vget_high_s32(tmp_re1)));
    //tmp_re = [Re(ch[0])Re(rx[0])+Im(ch[0])Im(ch[0]) Re(ch[1])Re(rx[1])+Im(ch[1])Im(ch[1]) Re(ch[2])Re(rx[2])+Im(ch[2]) Im(ch[2]) Re(ch[3])Re(rx[3])+Im(ch[3])Im(ch[3])] 

    tmp_im  = vmull_s16(vrev32_s16(vmul_s16(*x_128++,*(int16x4_t*)conjug)),*y_128++);
    //tmp_im = [-Im(ch[0])Re(rx[0]) Re(ch[0])Im(rx[0]) -Im(ch[1])Re(rx[1]) Re(ch[1])Im(rx[1])]
    tmp_im1 = vmull_s16(vrev32_s16(vmul_s16(*x_128++,*(int16x4_t*)conjug)),*y_128++);
    //tmp_im1 = [-Im(ch[2])Re(rx[2]) Re(ch[2])Im(rx[2]) -Im(ch[3])Re(rx[3]) Re(ch[3])Im(rx[3])]
    tmp_im  = vcombine_s32(vpadd_s32(vget_low_s32(tmp_im),vget_high_s32(tmp_im)),
                           vpadd_s32(vget_low_s32(tmp_im1),vget_high_s32(tmp_im1)));
    //tmp_im = [-Im(ch[0])Re(rx[0])+Re(ch[0])Im(rx[0]) -Im(ch[1])Re(rx[1])+Re(ch[1])Im(rx[1]) -Im(ch[2])Re(rx[2])+Re(ch[2])Im(rx[2]) -Im(ch[3])Re(rx[3])+Re(ch[3])Im(rx[3])]

    re_cumul = vqaddq_s32(re_cumul,vqshlq_s32(tmp_re,shift));
    im_cumul = vqaddq_s32(im_cumul,vqshlq_s32(tmp_im,shift));
  }
  
  re_cumul2 = vpadd_s32(vget_low_s32(re_cumul),vget_high_s32(re_cumul));
  im_cumul2 = vpadd_s32(vget_low_s32(im_cumul),vget_high_s32(im_cumul));
  re_cumul2 = vpadd_s32(re_cumul2,re_cumul2);
  im_cumul2 = vpadd_s32(im_cumul2,im_cumul2);
  result2   = vzip_s32(re_cumul2,im_cumul2);
  return(vget_lane_s32(result2.val[0],0));
#endif
}
Exemple #2
0
void test_vpadds32 (void)
{
  int32x2_t out_int32x2_t;
  int32x2_t arg0_int32x2_t;
  int32x2_t arg1_int32x2_t;

  out_int32x2_t = vpadd_s32 (arg0_int32x2_t, arg1_int32x2_t);
}
void dotProd_i16_neon(const float *dataf, const float *weightsf, float *vals, const int n, const int len, const float *istd) {
    const int16_t *data = (const int16_t *)dataf;
    const int16_t *weights = (const int16_t *)weightsf;
    weightsf += n * len / 2; // sizeof(float) / sizeof(int16_t)

    for (int i = 0; i < n; i += 4) {
        int32x4_t accum0 = { 0, 0, 0, 0 };
        int32x4_t accum1 = accum0;
        int32x4_t accum2 = accum0;
        int32x4_t accum3 = accum0;

        for (int j = 0; j < len; j += 8) {
            int16x4x2_t d0 = vld2_s16(data + j);

            int16x4x2_t w0 = vld2_s16(weights);
            int16x4x2_t w1 = vld2_s16(weights + 8);
            int16x4x2_t w2 = vld2_s16(weights + 16);
            int16x4x2_t w3 = vld2_s16(weights + 24);

            accum0 = vmlal_s16(accum0, d0.val[0], w0.val[0]);
            accum0 = vmlal_s16(accum0, d0.val[1], w0.val[1]);

            accum1 = vmlal_s16(accum1, d0.val[0], w1.val[0]);
            accum1 = vmlal_s16(accum1, d0.val[1], w1.val[1]);

            accum2 = vmlal_s16(accum2, d0.val[0], w2.val[0]);
            accum2 = vmlal_s16(accum2, d0.val[1], w2.val[1]);

            accum3 = vmlal_s16(accum3, d0.val[0], w3.val[0]);
            accum3 = vmlal_s16(accum3, d0.val[1], w3.val[1]);

            weights += 32;
        }

        int32x2_t sum0 = vpadd_s32(vget_low_s32(accum0), vget_high_s32(accum0));
        int32x2_t sum1 = vpadd_s32(vget_low_s32(accum1), vget_high_s32(accum1));
        int32x2_t sum2 = vpadd_s32(vget_low_s32(accum2), vget_high_s32(accum2));
        int32x2_t sum3 = vpadd_s32(vget_low_s32(accum3), vget_high_s32(accum3));
        sum0 = vpadd_s32(sum0, sum1);
        sum1 = vpadd_s32(sum2, sum3);
        int32x4_t sum = vcombine_s32(sum0, sum1);

        float32x4_t val = vcvtq_f32_s32(sum);
        val = vmulq_f32(val, vld1q_f32(weightsf + i*2));
        val = vmulq_n_f32(val, istd[0]);
        val = vaddq_f32(val, vld1q_f32(weightsf + i*2 + 4));
        vst1q_f32(vals + i, val);
    }
}
// ref, src = [0, 510] - max diff = 16-bits
// bwl = {2, 3, 4}, width = {16, 32, 64}
int vp9_vector_var_neon(int16_t const *ref, int16_t const *src, const int bwl) {
  int width = 4 << bwl;
  int32x4_t sse = vdupq_n_s32(0);
  int16x8_t total = vdupq_n_s16(0);

  assert(width >= 8);
  assert((width % 8) == 0);

  do {
    const int16x8_t r = vld1q_s16(ref);
    const int16x8_t s = vld1q_s16(src);
    const int16x8_t diff = vsubq_s16(r, s);  // [-510, 510], 10 bits.
    const int16x4_t diff_lo = vget_low_s16(diff);
    const int16x4_t diff_hi = vget_high_s16(diff);
    sse = vmlal_s16(sse, diff_lo, diff_lo);  // dynamic range 26 bits.
    sse = vmlal_s16(sse, diff_hi, diff_hi);
    total = vaddq_s16(total, diff);  // dynamic range 16 bits.

    ref += 8;
    src += 8;
    width -= 8;
  } while (width != 0);

  {
    // Note: 'total''s pairwise addition could be implemented similarly to
    // horizontal_add_u16x8(), but one less vpaddl with 'total' when paired
    // with the summation of 'sse' performed better on a Cortex-A15.
    const int32x4_t t0 = vpaddlq_s16(total);  // cascading summation of 'total'
    const int32x2_t t1 = vadd_s32(vget_low_s32(t0), vget_high_s32(t0));
    const int32x2_t t2 = vpadd_s32(t1, t1);
    const int t = vget_lane_s32(t2, 0);
    const int64x2_t s0 = vpaddlq_s32(sse);  // cascading summation of 'sse'.
    const int32x2_t s1 = vadd_s32(vreinterpret_s32_s64(vget_low_s64(s0)),
                                  vreinterpret_s32_s64(vget_high_s64(s0)));
    const int s = vget_lane_s32(s1, 0);
    const int shift_factor = bwl + 2;
    return s - ((t * t) >> shift_factor);
  }
}
void computeNetwork0new_neon(const float *dataf, const float *weightsf, uint8_t *d) {
    const int16_t *data = (const int16_t *)dataf;
    const int16_t *weights = (const int16_t *)weightsf;

    int32x4_t accum0 = { 0, 0, 0, 0 };
    int32x4_t accum1 = accum0;
    int32x4_t accum2 = accum0;
    int32x4_t accum3 = accum0;

    for (int i = 0; i < 128/2; i += 8) {
        int16x4x2_t d0 = vld2_s16(data + i);

        int16x4x2_t w0 = vld2_s16(weights + i * 4);
        int16x4x2_t w1 = vld2_s16(weights + i * 4 + 8);
        int16x4x2_t w2 = vld2_s16(weights + i * 4 + 16);
        int16x4x2_t w3 = vld2_s16(weights + i * 4 + 24);

        accum0 = vmlal_s16(accum0, d0.val[0], w0.val[0]);
        accum0 = vmlal_s16(accum0, d0.val[1], w0.val[1]);

        accum1 = vmlal_s16(accum1, d0.val[0], w1.val[0]);
        accum1 = vmlal_s16(accum1, d0.val[1], w1.val[1]);

        accum2 = vmlal_s16(accum2, d0.val[0], w2.val[0]);
        accum2 = vmlal_s16(accum2, d0.val[1], w2.val[1]);

        accum3 = vmlal_s16(accum3, d0.val[0], w3.val[0]);
        accum3 = vmlal_s16(accum3, d0.val[1], w3.val[1]);
    }

    int32x2_t sum0 = vpadd_s32(vget_low_s32(accum0), vget_high_s32(accum0));
    int32x2_t sum1 = vpadd_s32(vget_low_s32(accum1), vget_high_s32(accum1));
    int32x2_t sum2 = vpadd_s32(vget_low_s32(accum2), vget_high_s32(accum2));
    int32x2_t sum3 = vpadd_s32(vget_low_s32(accum3), vget_high_s32(accum3));
    sum0 = vpadd_s32(sum0, sum1);
    sum1 = vpadd_s32(sum2, sum3);
    int32x4_t sum = vcombine_s32(sum0, sum1);

    float32x4_t m0 = vcvtq_f32_s32(sum);

    m0 = vmulq_f32(m0, vld1q_f32(weightsf + 512/4));
    m0 = vaddq_f32(m0, vld1q_f32(weightsf + 528/4));

    float32x4_t m1, m2, m3, m4;

    m1 = m0;

    m0 = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(m0), sign_bits_f));
    m0 = vaddq_f32(m0, ones_f);
    m0 = vmulq_f32(reciprocal(m0), m1);

    m1 = vdupq_lane_f32(vget_low_f32(m0), 0);
    m2 = vdupq_lane_f32(vget_low_f32(m0), 1);
    m3 = vdupq_lane_f32(vget_high_f32(m0), 0);
    m4 = vdupq_lane_f32(vget_high_f32(m0), 1);

    m1 = vmulq_f32(m1, vld1q_f32(weightsf + 544/4));
    m2 = vmulq_f32(m2, vld1q_f32(weightsf + 560/4));
    m3 = vmulq_f32(m3, vld1q_f32(weightsf + 576/4));
    m4 = vmulq_f32(m4, vld1q_f32(weightsf + 592/4));

    m1 = vaddq_f32(m1, m2);
    m3 = vaddq_f32(m3, m4);
    m1 = vaddq_f32(m1, m3);
    m1 = vaddq_f32(m1, vld1q_f32(weightsf + 608/4));

    uint32x4_t gte = vcgeq_f32(m1, zeroes_f);
    uint16x4_t gte_u16 = vmovn_u32(gte);
    uint8x8_t gte_u8 = vmovn_u16(vcombine_u16(gte_u16, vget_low_u16(vreinterpretq_u16_u32(sign_bits_f))));
    gte_u8 = vshr_n_u8(gte_u8, 7);
    vst1_lane_u32((uint32_t *)d, vreinterpret_u32_u8(gte_u8), 0);
}
void computeNetwork0_i16_neon(const float *inputf, const float *weightsf, uint8_t *d) {
    const int16_t *input = (const int16_t *)inputf;
    const int16_t *weights = (const int16_t *)weightsf;

    int32x4_t accum0 = { 0, 0, 0, 0 };
    int32x4_t accum1 = accum0;
    int32x4_t accum2 = accum0;
    int32x4_t accum3 = accum0;

    for (int i = 0; i < 96/2; i += 8) {
        int16x4x2_t d0 = vld2_s16(input + i);

        int16x4x2_t w0 = vld2_s16(weights + i * 4);
        int16x4x2_t w1 = vld2_s16(weights + i * 4 + 8);
        int16x4x2_t w2 = vld2_s16(weights + i * 4 + 16);
        int16x4x2_t w3 = vld2_s16(weights + i * 4 + 24);

        accum0 = vmlal_s16(accum0, d0.val[0], w0.val[0]);
        accum0 = vmlal_s16(accum0, d0.val[1], w0.val[1]);

        accum1 = vmlal_s16(accum1, d0.val[0], w1.val[0]);
        accum1 = vmlal_s16(accum1, d0.val[1], w1.val[1]);

        accum2 = vmlal_s16(accum2, d0.val[0], w2.val[0]);
        accum2 = vmlal_s16(accum2, d0.val[1], w2.val[1]);

        accum3 = vmlal_s16(accum3, d0.val[0], w3.val[0]);
        accum3 = vmlal_s16(accum3, d0.val[1], w3.val[1]);
    }

    int32x2_t sum0 = vpadd_s32(vget_low_s32(accum0), vget_high_s32(accum0));
    int32x2_t sum1 = vpadd_s32(vget_low_s32(accum1), vget_high_s32(accum1));
    int32x2_t sum2 = vpadd_s32(vget_low_s32(accum2), vget_high_s32(accum2));
    int32x2_t sum3 = vpadd_s32(vget_low_s32(accum3), vget_high_s32(accum3));
    sum0 = vpadd_s32(sum0, sum1);
    sum1 = vpadd_s32(sum2, sum3);
    int32x4_t sum = vcombine_s32(sum0, sum1);

    float32x4_t m0 = vcvtq_f32_s32(sum);

    m0 = vmulq_f32(m0, vld1q_f32(weightsf + 384/4));
    m0 = vaddq_f32(m0, vld1q_f32(weightsf + 400/4));

    float32x4_t m1, m2, m3, m4, m5, m6, m7;

    m1 = m0;

    m0 = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(m0), sign_bits_f_zero_l));
    m0 = vaddq_f32(m0, ones_f);
    m0 = vmulq_f32(reciprocal(m0), m1);

    m1 = vdupq_lane_f32(vget_low_f32(m0), 0);
    m2 = vdupq_lane_f32(vget_low_f32(m0), 1);
    m3 = vdupq_lane_f32(vget_high_f32(m0), 0);
    m4 = vdupq_lane_f32(vget_high_f32(m0), 1);

    m1 = vmulq_f32(m1, vld1q_f32(weightsf + 416/4));
    m2 = vmulq_f32(m2, vld1q_f32(weightsf + (416+16)/4));
    m3 = vmulq_f32(m3, vld1q_f32(weightsf + (416+32)/4));
    m4 = vmulq_f32(m4, vld1q_f32(weightsf + (416+48)/4));

    m1 = vaddq_f32(m1, m2);
    m3 = vaddq_f32(m3, m4);
    m1 = vaddq_f32(m1, m3);
    m1 = vaddq_f32(m1, vld1q_f32(weightsf + (416+64)/4));

    m7 = m1;
    m1 = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(m1), sign_bits_f));
    m1 = vaddq_f32(m1, ones_f);
    m7 = vmulq_f32(reciprocal(m1), m7);

    m3 = m0;

    m0 = vdupq_lane_f32(vget_low_f32(m0), 0);
    m1 = vdupq_lane_f32(vget_low_f32(m3), 1);
    m2 = vdupq_lane_f32(vget_high_f32(m3), 0);
    m3 = vdupq_lane_f32(vget_high_f32(m3), 1);

    m0 = vmulq_f32(m0, vld1q_f32(weightsf + 496/4));
    m1 = vmulq_f32(m1, vld1q_f32(weightsf + (496+16)/4));
    m2 = vmulq_f32(m2, vld1q_f32(weightsf + (496+32)/4));
    m3 = vmulq_f32(m3, vld1q_f32(weightsf + (496+48)/4));

    m4 = vdupq_lane_f32(vget_low_f32(m7), 0);
    m5 = vdupq_lane_f32(vget_low_f32(m7), 1);
    m6 = vdupq_lane_f32(vget_high_f32(m7), 0);
    m7 = vdupq_lane_f32(vget_high_f32(m7), 1);

    m4 = vmulq_f32(m4, vld1q_f32(weightsf + (496+64)/4));
    m5 = vmulq_f32(m5, vld1q_f32(weightsf + (496+80)/4));
    m6 = vmulq_f32(m6, vld1q_f32(weightsf + (496+96)/4));
    m7 = vmulq_f32(m7, vld1q_f32(weightsf + (496+112)/4));

    m0 = vaddq_f32(m0, m1);
    m2 = vaddq_f32(m2, m3);
    m4 = vaddq_f32(m4, m5);
    m6 = vaddq_f32(m6, m7);

    m0 = vaddq_f32(m0, m2);
    m4 = vaddq_f32(m4, m6);
    m0 = vaddq_f32(m0, m4);

    m0 = vaddq_f32(m0, vld1q_f32(weightsf + (496+128)/4));

    float32x2_t maximum = vmax_f32(vget_low_f32(m0), vget_high_f32(m0));
    d[0] = (vget_lane_f32(maximum, 1) <= vget_lane_f32(maximum, 0));
}
Exemple #7
0
int32x2_t
test_vpadd_s32 (int32x2_t __a, int32x2_t __b)
{
  return vpadd_s32(__a, __b);
}
int rotate_cpx_vector(int16_t *x,
                      int16_t *alpha,
                      int16_t *y,
                      uint32_t N,
                      uint16_t output_shift)
{
  // Multiply elementwise two complex vectors of N elements
  // x        - input 1    in the format  |Re0  Im0 |,......,|Re(N-1) Im(N-1)|
  //            We assume x1 with a dynamic of 15 bit maximum
  //
  // alpha      - input 2    in the format  |Re0 Im0|
  //            We assume x2 with a dynamic of 15 bit maximum
  //
  // y        - output     in the format  |Re0  Im0|,......,|Re(N-1) Im(N-1)|
  //
  // N        - the size f the vectors (this function does N cpx mpy. WARNING: N>=4;
  //
  // log2_amp - increase the output amplitude by a factor 2^log2_amp (default is 0)
  //            WARNING: log2_amp>0 can cause overflow!!

  uint32_t i;                 // loop counter


  simd_q15_t *y_128,alpha_128;
  int32_t *xd=(int32_t *)x; 

#if defined(__x86_64__) || defined(__i386__)
  __m128i shift = _mm_cvtsi32_si128(output_shift);
  register simd_q15_t m0,m1,m2,m3;

  ((int16_t *)&alpha_128)[0] = alpha[0];
  ((int16_t *)&alpha_128)[1] = -alpha[1];
  ((int16_t *)&alpha_128)[2] = alpha[1];
  ((int16_t *)&alpha_128)[3] = alpha[0];
  ((int16_t *)&alpha_128)[4] = alpha[0];
  ((int16_t *)&alpha_128)[5] = -alpha[1];
  ((int16_t *)&alpha_128)[6] = alpha[1];
  ((int16_t *)&alpha_128)[7] = alpha[0];
#elif defined(__arm__)
  int32x4_t shift;
  int32x4_t ab_re0,ab_re1,ab_im0,ab_im1,re32,im32;
  int16_t reflip[8]  __attribute__((aligned(16))) = {1,-1,1,-1,1,-1,1,-1};
  int32x4x2_t xtmp;

  ((int16_t *)&alpha_128)[0] = alpha[0];
  ((int16_t *)&alpha_128)[1] = alpha[1];
  ((int16_t *)&alpha_128)[2] = alpha[0];
  ((int16_t *)&alpha_128)[3] = alpha[1];
  ((int16_t *)&alpha_128)[4] = alpha[0];
  ((int16_t *)&alpha_128)[5] = alpha[1];
  ((int16_t *)&alpha_128)[6] = alpha[0];
  ((int16_t *)&alpha_128)[7] = alpha[1];
  int16x8_t bflip = vrev32q_s16(alpha_128);
  int16x8_t bconj = vmulq_s16(alpha_128,*(int16x8_t *)reflip);
  shift = vdupq_n_s32(-output_shift);
#endif
  y_128 = (simd_q15_t *) y;


  for(i=0; i<N>>2; i++) {
#if defined(__x86_64__) || defined(__i386__)
    m0 = _mm_setr_epi32(xd[0],xd[0],xd[1],xd[1]);
    m1 = _mm_setr_epi32(xd[2],xd[2],xd[3],xd[3]);
    m2 = _mm_madd_epi16(m0,alpha_128); //complex multiply. result is 32bit [Re Im Re Im]
    m3 = _mm_madd_epi16(m1,alpha_128); //complex multiply. result is 32bit [Re Im Re Im]
    m2 = _mm_sra_epi32(m2,shift);        // shift right by shift in order to  compensate for the input amplitude
    m3 = _mm_sra_epi32(m3,shift);        // shift right by shift in order to  compensate for the input amplitude

    y_128[0] = _mm_packs_epi32(m2,m3);        // pack in 16bit integers with saturation [re im re im re im re im]
#elif defined(__arm__)

  ab_re0 = vmull_s16(((int16x4_t*)xd)[0],((int16x4_t*)&bconj)[0]);
  ab_re1 = vmull_s16(((int16x4_t*)xd)[1],((int16x4_t*)&bconj)[1]);
  ab_im0 = vmull_s16(((int16x4_t*)xd)[0],((int16x4_t*)&bflip)[0]);
  ab_im1 = vmull_s16(((int16x4_t*)xd)[1],((int16x4_t*)&bflip)[1]);
  re32 = vshlq_s32(vcombine_s32(vpadd_s32(((int32x2_t*)&ab_re0)[0],((int32x2_t*)&ab_re0)[1]),
                                vpadd_s32(((int32x2_t*)&ab_re1)[0],((int32x2_t*)&ab_re1)[1])),
                   shift);
  im32 = vshlq_s32(vcombine_s32(vpadd_s32(((int32x2_t*)&ab_im0)[0],((int32x2_t*)&ab_im0)[1]),
                                vpadd_s32(((int32x2_t*)&ab_im1)[0],((int32x2_t*)&ab_im1)[1])),
                   shift);

  xtmp = vzipq_s32(re32,im32);
  
  y_128[0] = vcombine_s16(vmovn_s32(xtmp.val[0]),vmovn_s32(xtmp.val[1]));

#endif

    xd+=4;
    y_128+=1;
  }


  _mm_empty();
  _m_empty();

  return(0);
}
Exemple #9
0
int mult_cpx_conj_vector(int16_t *x1,
                         int16_t *x2,
                         int16_t *y,
                         uint32_t N,
                         int output_shift,
			 int madd)
{
  // Multiply elementwise the complex conjugate of x1 with x2.
  // x1       - input 1    in the format  |Re0 Im0 Re1 Im1|,......,|Re(N-2)  Im(N-2) Re(N-1) Im(N-1)|
  //            We assume x1 with a dinamic of 15 bit maximum
  //
  // x2       - input 2    in the format  |Re0 Im0 Re1 Im1|,......,|Re(N-2)  Im(N-2) Re(N-1) Im(N-1)|
  //            We assume x2 with a dinamic of 14 bit maximum
  ///
  // y        - output     in the format  |Re0 Im0 Re1 Im1|,......,|Re(N-2)  Im(N-2) Re(N-1) Im(N-1)|
  //
  // N        - the size f the vectors (this function does N cpx mpy. WARNING: N>=4;
  //
  // output_shift  - shift to be applied to generate output
  //
  // madd - add the output to y

  uint32_t i;                 // loop counter

  simd_q15_t *x1_128;
  simd_q15_t *x2_128;
  simd_q15_t *y_128;
#if defined(__x86_64__) || defined(__i386__)
  simd_q15_t tmp_re,tmp_im;
  simd_q15_t tmpy0,tmpy1;

#elif defined(__arm__)
  int32x4_t tmp_re,tmp_im;
  int32x4_t tmp_re1,tmp_im1;
  int16x4x2_t tmpy;
  int32x4_t shift = vdupq_n_s32(-output_shift);
#endif

  x1_128 = (simd_q15_t *)&x1[0];
  x2_128 = (simd_q15_t *)&x2[0];
  y_128  = (simd_q15_t *)&y[0];


  // we compute 4 cpx multiply for each loop
  for(i=0; i<(N>>2); i++) {
#if defined(__x86_64__) || defined(__i386__)
    tmp_re = _mm_madd_epi16(*x1_128,*x2_128);
    tmp_im = _mm_shufflelo_epi16(*x1_128,_MM_SHUFFLE(2,3,0,1));
    tmp_im = _mm_shufflehi_epi16(tmp_im,_MM_SHUFFLE(2,3,0,1));
    tmp_im = _mm_sign_epi16(tmp_im,*(__m128i*)&conjug[0]);
    tmp_im = _mm_madd_epi16(tmp_im,*x2_128);
    tmp_re = _mm_srai_epi32(tmp_re,output_shift);
    tmp_im = _mm_srai_epi32(tmp_im,output_shift);
    tmpy0  = _mm_unpacklo_epi32(tmp_re,tmp_im);
    tmpy1  = _mm_unpackhi_epi32(tmp_re,tmp_im);
    if (madd==0)
      *y_128 = _mm_packs_epi32(tmpy0,tmpy1);
    else
      *y_128 += _mm_packs_epi32(tmpy0,tmpy1);

#elif defined(__arm__)

    tmp_re  = vmull_s16(((simdshort_q15_t *)x1_128)[0], ((simdshort_q15_t*)x2_128)[0]);
    //tmp_re = [Re(x1[0])Re(x2[0]) Im(x1[0])Im(x2[0]) Re(x1[1])Re(x2[1]) Im(x1[1])Im(x2[1])]
    tmp_re1 = vmull_s16(((simdshort_q15_t *)x1_128)[1], ((simdshort_q15_t*)x2_128)[1]);
    //tmp_re1 = [Re(x1[1])Re(x2[1]) Im(x1[1])Im(x2[1]) Re(x1[1])Re(x2[2]) Im(x1[1])Im(x2[2])]
    tmp_re  = vcombine_s32(vpadd_s32(vget_low_s32(tmp_re),vget_high_s32(tmp_re)),
                           vpadd_s32(vget_low_s32(tmp_re1),vget_high_s32(tmp_re1)));
    //tmp_re = [Re(ch[0])Re(rx[0])+Im(ch[0])Im(ch[0]) Re(ch[1])Re(rx[1])+Im(ch[1])Im(ch[1]) Re(ch[2])Re(rx[2])+Im(ch[2]) Im(ch[2]) Re(ch[3])Re(rx[3])+Im(ch[3])Im(ch[3])]

    tmp_im  = vmull_s16(vrev32_s16(vmul_s16(((simdshort_q15_t*)x2_128)[0],*(simdshort_q15_t*)conjug)), ((simdshort_q15_t*)x1_128)[0]);
    //tmp_im = [-Im(ch[0])Re(rx[0]) Re(ch[0])Im(rx[0]) -Im(ch[1])Re(rx[1]) Re(ch[1])Im(rx[1])]
    tmp_im1 = vmull_s16(vrev32_s16(vmul_s16(((simdshort_q15_t*)x2_128)[1],*(simdshort_q15_t*)conjug)), ((simdshort_q15_t*)x1_128)[1]);
    //tmp_im1 = [-Im(ch[2])Re(rx[2]) Re(ch[2])Im(rx[2]) -Im(ch[3])Re(rx[3]) Re(ch[3])Im(rx[3])]
    tmp_im  = vcombine_s32(vpadd_s32(vget_low_s32(tmp_im),vget_high_s32(tmp_im)),
                           vpadd_s32(vget_low_s32(tmp_im1),vget_high_s32(tmp_im1)));
    //tmp_im = [-Im(ch[0])Re(rx[0])+Re(ch[0])Im(rx[0]) -Im(ch[1])Re(rx[1])+Re(ch[1])Im(rx[1]) -Im(ch[2])Re(rx[2])+Re(ch[2])Im(rx[2]) -Im(ch[3])Re(rx[3])+Re(ch[3])Im(rx[3])]

    tmp_re = vqshlq_s32(tmp_re,shift);
    tmp_im = vqshlq_s32(tmp_im,shift);
    tmpy   = vzip_s16(vmovn_s32(tmp_re),vmovn_s32(tmp_im));
    if (madd==0)
      *y_128 = vcombine_s16(tmpy.val[0],tmpy.val[1]);
    else
      *y_128 += vcombine_s16(tmpy.val[0],tmpy.val[1]);
#endif
    x1_128++;
    x2_128++;
    y_128++;
  }


  _mm_empty();
  _m_empty();

  return(0);
}