Int_t mp001_fillHistos(UInt_t nWorkers = 4)
{

   // Total amount of numbers
   const UInt_t nNumbers = 20000000U;

   // We define our work item
   auto workItem = [nNumbers](UInt_t workerID) {
      // One generator, file and ntuple per worker
      TRandom3 workerRndm(workerID); // Change the seed
      TFile f(Form("myFile_%u.root", workerID), "RECREATE");
      TH1F h(Form("myHisto_%u", workerID), "The Histogram", 64, -4, 4);
      for (UInt_t i = 0; i < nNumbers; ++i) {
         h.Fill(workerRndm.Gaus());
      }
      h.Write();
      return 0;
   };

   // Create the pool of workers
   TProcPool workers(nWorkers);

   // Fill the pool with work
   std::forward_list<UInt_t> workerIDs(nWorkers);
   std::iota(std::begin(workerIDs), std::end(workerIDs), 0);
   workers.Map(workItem, workerIDs);

   return 0;

}
	bool TaskSchedulerImpl::Initialize(std::size_t workerCount)
	{
		if (IsInitialized())
			return true; // Déjà initialisé

		#if NAZARA_CORE_SAFE
		if (workerCount == 0)
		{
			NazaraError("Invalid worker count ! (0)");
			return false;
		}
		#endif

		s_workerCount = workerCount;
		s_doneEvents.reset(new HANDLE[workerCount]);
		s_workers.reset(new Worker[workerCount]);
		s_workerThreads.reset(new HANDLE[workerCount]);

		// L'identifiant de chaque worker doit rester en vie jusqu'à ce que chaque thread soit correctement lancé
		std::unique_ptr<std::size_t[]> workerIDs(new std::size_t[workerCount]);

		for (std::size_t i = 0; i < workerCount; ++i)
		{
			// On initialise les évènements, mutex et threads de chaque worker
			Worker& worker = s_workers[i];
			InitializeCriticalSection(&worker.queueMutex);
			worker.wakeEvent = CreateEventW(nullptr, false, false, nullptr);
			worker.running = true;
			worker.workCount = 0;

			s_doneEvents[i] = CreateEventW(nullptr, true, false, nullptr);

			// Le thread va se lancer, signaler qu'il est prêt à travailler (s_doneEvents) et attendre d'être réveillé
			workerIDs[i] = i;
			s_workerThreads[i] = reinterpret_cast<HANDLE>(_beginthreadex(nullptr, 0, &WorkerProc, &workerIDs[i], 0, nullptr));
		}

		// On attend que les workers se mettent en attente
		WaitForMultipleObjects(s_workerCount, &s_doneEvents[0], true, INFINITE);

		return true;
	}
Int_t mt102_readNtuplesFillHistosAndFit()
{

   // No nuisance for batch execution
   gROOT->SetBatch();

   // Perform the operation sequentially ---------------------------------------
   TChain inputChain("multiCore");
   inputChain.Add("mc101_multiCore_*.root");
   TH1F outHisto("outHisto", "Random Numbers", 128, -4, 4);
   {
      TimerRAII t("Sequential read and fit");
      inputChain.Draw("r >> outHisto");
      outHisto.Fit("gaus");
   }

   // We now go MT! ------------------------------------------------------------

   // The first, fundamental operation to be performed in order to make ROOT
   // thread-aware.
   ROOT::EnableMT();

   // We adapt our parallelisation to the number of input files
   const auto nFiles = inputChain.GetListOfFiles()->GetEntries();
   std::forward_list<UInt_t> workerIDs(nFiles);
   std::iota(std::begin(workerIDs), std::end(workerIDs), 0);


   // We define the histograms we'll fill
   std::vector<TH1F> histograms;
   histograms.reserve(nFiles);
   for (auto workerID : workerIDs){
      histograms.emplace_back(TH1F(Form("outHisto_%u", workerID), "Random Numbers", 128, -4, 4));
   }

   // We define our work item
   auto workItem = [&histograms](UInt_t workerID) {
      TFile f(Form("mc101_multiCore_%u.root", workerID));
      TNtuple *ntuple = nullptr;
      f.GetObject("multiCore", ntuple);
      auto &histo = histograms.at(workerID);
      for (UInt_t index = 0; index < ntuple->GetEntriesFast(); ++index) {
         ntuple->GetEntry(index);
         histo.Fill(ntuple->GetArgs()[0]);
      }
   };

   TH1F sumHistogram("SumHisto", "Random Numbers", 128, -4, 4);

   // Create the collection which will hold the threads, our "pool"
   std::vector<std::thread> workers;

   // We measure time here as well
   {
      TimerRAII t("Parallel execution");

      // Spawn workers
      // Fill the "pool" with workers
      for (auto workerID : workerIDs) {
         workers.emplace_back(workItem, workerID);
      }

      // Now join them
      for (auto&& worker : workers) worker.join();

      // And reduce
      std::for_each(std::begin(histograms), std::end(histograms),
                    [&sumHistogram](const TH1F & h) {
                       sumHistogram.Add(&h);
                    });

      sumHistogram.Fit("gaus",0);
   }

   return 0;

}