Exemple #1
0
int main(void)
{
  // 3.4.5 Class member access
  // p 2
  // if the id-expression in a class member access is an
  // unqualified-id, and the type of the object expression is of class
  // type C (or pointer to class type C), the unqualified-id is looked
  // up in the scope of class C. If the type of the object-expression
  // is of pointer to scalar type, the unqualified-id is looked up in
  // the context of the complete postfix-expression.

  // p 3
  // if the unqualitified id is ~type-name, and the type of the object
  // expression is of a class type C (or pointer to class type C), the
  // type-name is looked up in the context of the entire
  // postfix-expression and in the scope of class C. The type-name
  // shall refer to a class-name. If type-name is found in both
  // contexts, the name shall refer to the same class type. If the
  // type of the object expression is of scalar type, the type-name is
  // looked up in the complete postfix-expression.
  
  typedef X localtype;

  //
  // 1 non-templatized, pointer, unqualified
  //
  X x01 ;
  X *px = &x01;
  px->~X(); 

  X x02 (66);
  px = &x02;
  px->~localtype();

  X x03 (68);
  px = &x03;
  px->~classtype(); //-g++  //p3: unqual-id lookup in object and postfix-expr

  X x04 (70);
  px = &x04;
  px->~globaltype();


  // p 1
  // . . . the id-expression is first looked up in the class of the
  // object-expression. If the identifier is not found, itis then
  // looked up in the context of the entier postfix-expression and
  // shall name a class or function template. If the lookup in the
  // class of the object-expression finds a template, the name is also
  // looked up in teh context of the entier postfix-expression and
  // 1 if the name is not found, use the name from the object-expr
  // 2 if the name found in postfix-expr != class template, use object-expr
  // 3 if name found is class template, name must match object-expr or error

  // p 4 

  // if the id-expr in a class member acess is a qualified-id, the
  // id-expression is looked up in both the context of the entire
  // postfix-expr and in the scope of the class of the object-expr. If
  // the name is found in both contexts, the id-expr shall refer to
  // the same entity.


  //
  // 2 non-templatized, pointer, qualified
  //
  X x05 ;
  px = &x05;
  px->X::~X(); 

  X x06 (66);
  px = &x06;
  px->X::~localtype();

  X x07 (68);
  px = &x07;
  px->X::~classtype(); // -edg

  X x08 (70);
  px = &x08;
  px->X::~globaltype();

  X x09 (66);
  px = &x09;
  px->localtype::~localtype();

  X x10 (68);
  px = &x10;
  px->classtype::~classtype();

  X x11 (70);
  px = &x11;
  px->globaltype::~globaltype();

  X x12 (66);
  px = &x12;
  px->classtype::~localtype();

  X x13 (68);
  px = &x13;
  px->globaltype::~localtype();

  X x14 (70);
  px = &x14;
  px->localtype::~globaltype();

  X x15 (70);
  px = &x15;
  px->classtype::~globaltype();

  X x16 (70);
  px = &x16;
  px->localtype::~classtype(); //-edg

  X x17 (70);
  px = &x17;
  px->globaltype::~classtype(); //-edg

#if 0
  //
  // non-templatized, non-pointer
  //
  X xo5 ;
  xo5.~X(); //unqualified

  localtype xo6 (66);
  xo6.~localtype();

  X xo7 (68);
  xo7.~classtype();

  X xo8 (70);
  xo8.~globaltype();


  //
  // templatized, pointer
  //
  X_tem<int> xto1 ;
  X_tem<int> *pxt = &xto1;
  pxt->~X_tem(); //unqualified

  typedef X_tem<int> localtype_tem;
  localtype_tem xto2 (66);
  pxt = &xto2;
  pxt->~localtype_tem();

  //paragraph 2:  unqualitifed id looked up in scope of post-fix expr if object
  X_tem<int> xto3 (68);
  pxt = &xto3;
  pxt->~classtype_tem();

  X_tem<int> xto4 (70);
  pxt = &xto4;
  pxt->~globaltype_tem();

  //
  // templatized, non-pointer
  //
  X_tem<int> xto5 ;
  xto5.~X_tem(); //unqualified

  localtype_tem xto6 (66);
  xto6.~localtype_tem();

  X_tem<int> xto7 (68);
  xto7.~classtype_tem();

  X_tem<int> xto8 (70);
  xto8.~globaltype_tem();
#endif
  return 0;
}
Exemple #2
0
// Test the DynSysModel class
void test_DynSysModel()
{
	// Make a 4 variable model
	GAParams::SetNumVars( 4 );

	DynSysModel m;

	// Create monomial x1, x2, x3, x4, x1*x2, x3*x4, x1*x2*x3*x4

	Monomial c0(   "0000" );	c0.mCoeff = false;
	Monomial c1(   "0000" );	c1.mCoeff = true;
	Monomial x4(   "0001" );
	Monomial x3(   "0010" );
	Monomial x2(   "0100" );
	Monomial x1(   "1000" );
	Monomial x34(  "0011" );
	Monomial x12(  "1100" );
	Monomial x14(  "1001" );
	Monomial x1234("1111" );

	Polynomial f;
	f.AddTerm( c0 );
	std::cout << "f = " << f.ToString( true ) << std::endl;

	Polynomial g;
	g.AddTerm( c1 );
	std::cout << "g = " << g.ToString( true ) << std::endl;

	// f1(x) = x1 + x2 + x4;
	Polynomial f1;
	f1.AddTerm( x1 );	f1.AddTerm( x2 );	f1.AddTerm( x4 );
	std::cout << "f1 = " << f1.ToString( true ) << std::endl;

	Polynomial::mMaxSupport = 2;
	m.SetFunction( 1, f );
	m.SetFunction( 2, g );
	m.SetFunction( 3, f );
	m.SetFunction( 4, f1 );

	ComplexityMatrix cmplx_mat;
	ComplexityMatrixRow row;
	cmplx_mat.assign( 4, row );

	m.SetPolyComplexities( );
	double s;
	s = m[1].mComplexityScore;
	s = m[2].mComplexityScore;
	s = m[3].mComplexityScore;
	s = m[4].mComplexityScore;


/*
	// f2(x) = x1*x2*x3*x4;
	Polynomial f2;
	f2.AddTerm( x1234 );
	std::cout << "f2 = " << f2.ToString( true ) << std::endl;

	// f3(x) = x1*x2 + x3*x4;
	Polynomial f3;
	f3.AddTerm( x12 );
	f3.AddTerm( x34 );
	std::cout << "f3 = " << f3.ToString( true ) << std::endl;

	// f3'(x) = x1*x4;
	Polynomial f3p;
	f3p.AddTerm( x14 );
	std::cout << "f3p = " << f3p.ToString( true ) << std::endl;

	// f4(x) = x3 + x4;
	Polynomial f4;
	f4.AddTerm( x3 );	f4.AddTerm( x4 );
	std::cout << "f4 = " << f4.ToString( true ) << std::endl;

	// Assign the functions to the model
	m.SetFunction( 1, f1 ); 	m.SetFunction( 2, f2 );
	m.SetFunction( 3, f3p ); 	m.SetFunction( 4, f4 );
*/

	TimeSeries t2;
//	t2.push_back( NTuple("1101" ) );
//	t2.push_back( NTuple("1011" ) );
	t2.push_back( NTuple("1100" ) );
	t2.push_back( NTuple("0010" ) );
	t2.push_back( NTuple("0001" ) );
	t2.push_back( NTuple("1001" ) );
	t2.push_back( NTuple("0001" ) );

	// Better to pass a reference to the time series for the result
	// TimeSeries t3 = m.Iterate( NTuple( "1111" ), 6 );

	// Test iteration for only the k'th variable
	size_t k = 3;
	TimeSeries t4;
	size_t h = m.Iterate( t2, k, t4 );

	TimeSeriesIter iter = t4.begin();
	while( iter != t4.end() )
	{
		std::cout << *iter++ << std::endl;
	}
}