Exemple #1
0
/*
 * Get and lock the buffer for the caller if it is not already
 * locked within the given transaction.  If it is already locked
 * within the transaction, just increment its lock recursion count
 * and return a pointer to it.
 *
 * Use the fast path function xfs_trans_buf_item_match() or the buffer
 * cache routine incore_match() to find the buffer
 * if it is already owned by this transaction.
 *
 * If we don't already own the buffer, use get_buf() to get it.
 * If it doesn't yet have an associated xfs_buf_log_item structure,
 * then allocate one and add the item to this transaction.
 *
 * If the transaction pointer is NULL, make this just a normal
 * get_buf() call.
 */
xfs_buf_t *
xfs_trans_get_buf(xfs_trans_t	*tp,
		  xfs_buftarg_t	*target_dev,
		  xfs_daddr_t	blkno,
		  int		len,
		  uint		flags)
{
	xfs_buf_t		*bp;
	xfs_buf_log_item_t	*bip;

	if (flags == 0)
		flags = XFS_BUF_LOCK | XFS_BUF_MAPPED;

	/*
	 * Default to a normal get_buf() call if the tp is NULL.
	 */
	if (tp == NULL) {
		bp = xfs_buf_get_flags(target_dev, blkno, len,
							flags | BUF_BUSY);
		return(bp);
	}

	/*
	 * If we find the buffer in the cache with this transaction
	 * pointer in its b_fsprivate2 field, then we know we already
	 * have it locked.  In this case we just increment the lock
	 * recursion count and return the buffer to the caller.
	 */
	if (tp->t_items.lic_next == NULL) {
		bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
	} else {
		bp  = xfs_trans_buf_item_match_all(tp, target_dev, blkno, len);
	}
	if (bp != NULL) {
		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
			xfs_buftrace("TRANS GET RECUR SHUT", bp);
			XFS_BUF_SUPER_STALE(bp);
		}
		/*
		 * If the buffer is stale then it was binval'ed
		 * since last read.  This doesn't matter since the
		 * caller isn't allowed to use the data anyway.
		 */
		else if (XFS_BUF_ISSTALE(bp)) {
			xfs_buftrace("TRANS GET RECUR STALE", bp);
			ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
		}
		ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
		ASSERT(bip != NULL);
		ASSERT(atomic_read(&bip->bli_refcount) > 0);
		bip->bli_recur++;
		xfs_buftrace("TRANS GET RECUR", bp);
		xfs_buf_item_trace("GET RECUR", bip);
		return (bp);
	}
Exemple #2
0
/*
 * Called when we want to stop a buffer from getting written or read.
 * We attach the EIO error, muck with its flags, and call biodone
 * so that the proper iodone callbacks get called.
 */
int
xfs_bioerror(
	xfs_buf_t *bp)
{

#ifdef XFSERRORDEBUG
	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
#endif

	/*
	 * No need to wait until the buffer is unpinned.
	 * We aren't flushing it.
	 */
	xfs_buftrace("XFS IOERROR", bp);
	XFS_BUF_ERROR(bp, EIO);
	/*
	 * We're calling biodone, so delete B_DONE flag. Either way
	 * we have to call the iodone callback, and calling biodone
	 * probably is the best way since it takes care of
	 * GRIO as well.
	 */
	XFS_BUF_UNREAD(bp);
	XFS_BUF_UNDELAYWRITE(bp);
	XFS_BUF_UNDONE(bp);
	XFS_BUF_STALE(bp);

	XFS_BUF_CLR_BDSTRAT_FUNC(bp);
	xfs_biodone(bp);

	return (EIO);
}
Exemple #3
0
/*
 * This is called to unpin the buffer associated with the buf log
 * item which was previously pinned with a call to xfs_buf_item_pin().
 * Just call bunpin() on the buffer to do this.
 *
 * Also drop the reference to the buf item for the current transaction.
 * If the XFS_BLI_STALE flag is set and we are the last reference,
 * then free up the buf log item and unlock the buffer.
 */
void
xfs_buf_item_unpin(
	xfs_buf_log_item_t	*bip,
	int			stale)
{
	xfs_mount_t	*mp;
	xfs_buf_t	*bp;
	int		freed;
	SPLDECL(s);

	bp = bip->bli_buf;
	ASSERT(bp != NULL);
	ASSERT(XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *) == bip);
	ASSERT(atomic_read(&bip->bli_refcount) > 0);
	xfs_buf_item_trace("UNPIN", bip);
	xfs_buftrace("XFS_UNPIN", bp);

	freed = atomic_dec_and_test(&bip->bli_refcount);
	mp = bip->bli_item.li_mountp;
	xfs_bunpin(bp);
	if (freed && stale) {
		ASSERT(bip->bli_flags & XFS_BLI_STALE);
		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
		ASSERT(XFS_BUF_ISSTALE(bp));
		ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL);
		xfs_buf_item_trace("UNPIN STALE", bip);
		xfs_buftrace("XFS_UNPIN STALE", bp);
		/*
		 * If we get called here because of an IO error, we may
		 * or may not have the item on the AIL. xfs_trans_delete_ail()
		 * will take care of that situation.
		 * xfs_trans_delete_ail() drops the AIL lock.
		 */
		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
			xfs_buf_do_callbacks(bp, (xfs_log_item_t *)bip);
			XFS_BUF_SET_FSPRIVATE(bp, NULL);
			XFS_BUF_CLR_IODONE_FUNC(bp);
		} else {
			AIL_LOCK(mp,s);
			xfs_trans_delete_ail(mp, (xfs_log_item_t *)bip, s);
			xfs_buf_item_relse(bp);
			ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL);
		}
		xfs_buf_relse(bp);
	}
Exemple #4
0
/*
 * Wrapper around bdstrat so that we can stop data from going to disk in case
 * we are shutting down the filesystem.  Typically user data goes thru this
 * path; one of the exceptions is the superblock.
 */
void
xfsbdstrat(
	struct xfs_mount	*mp,
	struct xfs_buf		*bp)
{
	ASSERT(mp);
	if (!XFS_FORCED_SHUTDOWN(mp)) {
		xfs_buf_iorequest(bp);
		return;
	}

	xfs_buftrace("XFSBDSTRAT IOERROR", bp);
	xfs_bioerror_relse(bp);
}
Exemple #5
0
/*
 * This is called to pin the buffer associated with the buf log
 * item in memory so it cannot be written out.  Simply call bpin()
 * on the buffer to do this.
 */
void
xfs_buf_item_pin(
	xfs_buf_log_item_t	*bip)
{
	xfs_buf_t	*bp;

	bp = bip->bli_buf;
	ASSERT(XFS_BUF_ISBUSY(bp));
	ASSERT(atomic_read(&bip->bli_refcount) > 0);
	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
	       (bip->bli_flags & XFS_BLI_STALE));
	xfs_buf_item_trace("PIN", bip);
	xfs_buftrace("XFS_PIN", bp);
	xfs_bpin(bp);
}
Exemple #6
0
/*
 * Wrapper around bdstrat so that we can stop data
 * from going to disk in case we are shutting down the filesystem.
 * Typically user data goes thru this path; one of the exceptions
 * is the superblock.
 */
int
xfsbdstrat(
	struct xfs_mount	*mp,
	struct xfs_buf		*bp)
{
	ASSERT(mp);
	if (!XFS_FORCED_SHUTDOWN(mp)) {
		/* Grio redirection would go here
		 * if (XFS_BUF_IS_GRIO(bp)) {
		 */

		pagebuf_iorequest(bp);
		return 0;
	}

	xfs_buftrace("XFSBDSTRAT IOERROR", bp);
	return (xfs_bioerror_relse(bp));
}
Exemple #7
0
/*
 * All xfs metadata buffers except log state machine buffers
 * get this attached as their b_bdstrat callback function.
 * This is so that we can catch a buffer
 * after prematurely unpinning it to forcibly shutdown the filesystem.
 */
int
xfs_bdstrat_cb(struct xfs_buf *bp)
{
	if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
		xfs_buftrace("XFS__BDSTRAT IOERROR", bp);
		/*
		 * Metadata write that didn't get logged but
		 * written delayed anyway. These aren't associated
		 * with a transaction, and can be ignored.
		 */
		if (XFS_BUF_IODONE_FUNC(bp) == NULL &&
		    (XFS_BUF_ISREAD(bp)) == 0)
			return (xfs_bioerror_relse(bp));
		else
			return (xfs_bioerror(bp));
	}

	xfs_buf_iorequest(bp);
	return 0;
}
Exemple #8
0
/*
 * Same as xfs_bioerror, except that we are releasing the buffer
 * here ourselves, and avoiding the biodone call.
 * This is meant for userdata errors; metadata bufs come with
 * iodone functions attached, so that we can track down errors.
 */
int
xfs_bioerror_relse(
	xfs_buf_t *bp)
{
	int64_t fl;

	ASSERT(XFS_BUF_IODONE_FUNC(bp) != xfs_buf_iodone_callbacks);
	ASSERT(XFS_BUF_IODONE_FUNC(bp) != xlog_iodone);

	xfs_buftrace("XFS IOERRELSE", bp);
	fl = XFS_BUF_BFLAGS(bp);
	/*
	 * No need to wait until the buffer is unpinned.
	 * We aren't flushing it.
	 *
	 * chunkhold expects B_DONE to be set, whether
	 * we actually finish the I/O or not. We don't want to
	 * change that interface.
	 */
	XFS_BUF_UNREAD(bp);
	XFS_BUF_UNDELAYWRITE(bp);
	XFS_BUF_DONE(bp);
	XFS_BUF_STALE(bp);
	XFS_BUF_CLR_IODONE_FUNC(bp);
	XFS_BUF_CLR_BDSTRAT_FUNC(bp);
	if (!(fl & XFS_B_ASYNC)) {
		/*
		 * Mark b_error and B_ERROR _both_.
		 * Lot's of chunkcache code assumes that.
		 * There's no reason to mark error for
		 * ASYNC buffers.
		 */
		XFS_BUF_ERROR(bp, EIO);
		XFS_BUF_V_IODONESEMA(bp);
	} else {
		xfs_buf_relse(bp);
	}
	return (EIO);
}
/*
 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
 * failed to get the inode flush lock but did get the inode locked SHARED.
 * Here we're trying to see if the inode buffer is incore, and if so whether it's
 * marked delayed write. If that's the case, we'll initiate a bawrite on that
 * buffer to expedite the process.
 *
 * We aren't holding the AIL lock (or the flush lock) when this gets called,
 * so it is inherently race-y.
 */
STATIC void
xfs_inode_item_pushbuf(
	xfs_inode_log_item_t	*iip)
{
	xfs_inode_t	*ip;
	xfs_mount_t	*mp;
	xfs_buf_t	*bp;
	uint		dopush;

	ip = iip->ili_inode;

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));

	/*
	 * The ili_pushbuf_flag keeps others from
	 * trying to duplicate our effort.
	 */
	ASSERT(iip->ili_pushbuf_flag != 0);
	ASSERT(iip->ili_push_owner == current_pid());

	/*
	 * If a flush is not in progress anymore, chances are that the
	 * inode was taken off the AIL. So, just get out.
	 */
	if (completion_done(&ip->i_flush) ||
	    ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
		iip->ili_pushbuf_flag = 0;
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
		return;
	}

	mp = ip->i_mount;
	bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
		    iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);

	if (bp != NULL) {
		if (XFS_BUF_ISDELAYWRITE(bp)) {
			/*
			 * We were racing with iflush because we don't hold
			 * the AIL lock or the flush lock. However, at this point,
			 * we have the buffer, and we know that it's dirty.
			 * So, it's possible that iflush raced with us, and
			 * this item is already taken off the AIL.
			 * If not, we can flush it async.
			 */
			dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
				  !completion_done(&ip->i_flush));
			iip->ili_pushbuf_flag = 0;
			xfs_iunlock(ip, XFS_ILOCK_SHARED);
			xfs_buftrace("INODE ITEM PUSH", bp);
			if (XFS_BUF_ISPINNED(bp)) {
				xfs_log_force(mp, (xfs_lsn_t)0,
					      XFS_LOG_FORCE);
			}
			if (dopush) {
				int	error;
				error = xfs_bawrite(mp, bp);
				if (error)
					xfs_fs_cmn_err(CE_WARN, mp,
		"xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
							error, iip, bp);
			} else {
				xfs_buf_relse(bp);
			}
		} else {
			iip->ili_pushbuf_flag = 0;
			xfs_iunlock(ip, XFS_ILOCK_SHARED);
			xfs_buf_relse(bp);
		}
		return;
	}
	/*
	 * We have to be careful about resetting pushbuf flag too early (above).
	 * Even though in theory we can do it as soon as we have the buflock,
	 * we don't want others to be doing work needlessly. They'll come to
	 * this function thinking that pushing the buffer is their
	 * responsibility only to find that the buffer is still locked by
	 * another doing the same thing
	 */
	iip->ili_pushbuf_flag = 0;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
	return;
}
Exemple #10
0
/*
 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
 * failed to get the inode flush lock but did get the inode locked SHARED.
 * Here we're trying to see if the inode buffer is incore, and if so whether it's
 * marked delayed write. If that's the case, we'll initiate a bawrite on that
 * buffer to expedite the process.
 *
 * We aren't holding the AIL_LOCK (or the flush lock) when this gets called,
 * so it is inherently race-y.
 */
STATIC void
xfs_inode_item_pushbuf(
	xfs_inode_log_item_t	*iip)
{
	xfs_inode_t	*ip;
	xfs_mount_t 	*mp;
	xfs_buf_t		*bp;
	uint		dopush;

	ip = iip->ili_inode;
	
	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));

	/*
	 * The ili_pushbuf_flag keeps others from
	 * trying to duplicate our effort.
	 */
	ASSERT(iip->ili_pushbuf_flag != 0);
	ASSERT(iip->ili_push_owner == get_thread_id());

	/*
	 * If flushlock isn't locked anymore, chances are that the
	 * inode flush completed and the inode was taken off the AIL.
	 * So, just get out.
	 */
	if ((valusema(&(ip->i_flock)) > 0)  ||
	    ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
		iip->ili_pushbuf_flag = 0;
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
	    	return;
	}
	
	mp = ip->i_mount;
	bp = xfs_incore(mp->m_ddev_targ, iip->ili_format.ilf_blkno,
		    iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);

	if (bp != NULL) {
		if (XFS_BUF_ISDELAYWRITE(bp)) {
			/*
			 * We were racing with iflush because we don't hold
			 * the AIL_LOCK or the flush lock. However, at this point,
			 * we have the buffer, and we know that it's dirty.
			 * So, it's possible that iflush raced with us, and
			 * this item is already taken off the AIL.
			 * If not, we can flush it async.
			 */
			dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) && 
				  (valusema(&(ip->i_flock)) <= 0));
			iip->ili_pushbuf_flag = 0;
			xfs_iunlock(ip, XFS_ILOCK_SHARED);
			xfs_buftrace("INODE ITEM PUSH", bp);
			if (XFS_BUF_ISPINNED(bp)) {
				xfs_log_force(mp, (xfs_lsn_t)0,
					      XFS_LOG_FORCE);
			}
			if (dopush) {
				xfs_bawrite(mp, bp);
			} else {
				xfs_buf_relse(bp);
			}
		} else {
			iip->ili_pushbuf_flag = 0;
			xfs_iunlock(ip, XFS_ILOCK_SHARED); 
			xfs_buf_relse(bp);
		}
		return;
	}
	/*
	 * We have to be careful about resetting pushbuf flag too early (above).
	 * Eventhough in theory we can do it as soon as we have the buflock,
	 * we don't want others to be doing work needlessly. They'll come to
	 * this function thinking that pushing the buffer is there responsibility
	 * only to find that the buffer is still locked by another doing the
	 * same thing.XXX
	 */
	iip->ili_pushbuf_flag = 0;
	xfs_iunlock(ip, XFS_ILOCK_SHARED); 
	return;
}