/* Subroutine */ int schklq_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
	nxval, integer *nrhs, real *thresh, logical *tsterr, integer *nmax, 
	real *a, real *af, real *aq, real *al, real *ac, real *b, real *x, 
	real *xact, real *tau, real *work, real *rwork, integer *iwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, K=\002,i"
	    "5,\002, NB=\002,i4,\002, NX=\002,i5,\002, type \002,i2,\002, tes"
	    "t(\002,i2,\002)=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, k, m, n, nb, ik, im, in, kl, nk, ku, nt, nx, lda, inb, mode, 
	    imat, info;
    char path[3];
    integer kval[4];
    char dist[1], type__[1];
    integer nrun;
    integer nfail, iseed[4];
    real anorm;
    integer minmn;
    integer nerrs, lwork;
    real cndnum;
    real result[8];

    /* Fortran I/O blocks */
    static cilist io___33 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKLQ tests SGELQF, SORGLQ and SORMLQ. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB and NX contained in the */
/*          vectors NBVAL and NXVAL.  The blocking parameters are used */
/*          in pairs (NB,NX). */

/*  NBVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the blocksize NB. */

/*  NXVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the crossover point NX. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for M or N, used in dimensioning */
/*          the work arrays. */

/*  A       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AF      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AQ      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AL      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AC      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  TAU     (workspace) REAL array, dimension (NMAX) */

/*  WORK    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  RWORK   (workspace) REAL array, dimension (NMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --tau;
    --xact;
    --x;
    --b;
    --ac;
    --al;
    --aq;
    --af;
    --a;
    --nxval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "LQ", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrlq_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);

    lda = *nmax;
    lwork = *nmax * max(*nmax,*nrhs);

/*     Do for each value of M in MVAL. */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];

/*        Do for each value of N in NVAL. */

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {
	    n = nval[in];
	    minmn = min(m,n);
	    for (imat = 1; imat <= 8; ++imat) {

/*              Do the tests only if DOTYPE( IMAT ) is true. */

		if (! dotype[imat]) {
		    goto L50;
		}

/*              Set up parameters with SLATB4 and generate a test matrix */
/*              with SLATMS. */

		slatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, &
			work[1], &info);

/*              Check error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, " ", &m, &n, &c_n1, 
			    &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L50;
		}

/*              Set some values for K: the first value must be MINMN, */
/*              corresponding to the call of SLQT01; other values are */
/*              used in the calls of SLQT02, and must not exceed MINMN. */

		kval[0] = minmn;
		kval[1] = 0;
		kval[2] = 1;
		kval[3] = minmn / 2;
		if (minmn == 0) {
		    nk = 1;
		} else if (minmn == 1) {
		    nk = 2;
		} else if (minmn <= 3) {
		    nk = 3;
		} else {
		    nk = 4;
		}

/*              Do for each value of K in KVAL */

		i__3 = nk;
		for (ik = 1; ik <= i__3; ++ik) {
		    k = kval[ik - 1];

/*                 Do for each pair of values (NB,NX) in NBVAL and NXVAL. */

		    i__4 = *nnb;
		    for (inb = 1; inb <= i__4; ++inb) {
			nb = nbval[inb];
			xlaenv_(&c__1, &nb);
			nx = nxval[inb];
			xlaenv_(&c__3, &nx);
			for (i__ = 1; i__ <= 8; ++i__) {
			    result[i__ - 1] = 0.f;
			}
			nt = 2;
			if (ik == 1) {

/*                       Test SGELQF */

			    slqt01_(&m, &n, &a[1], &af[1], &aq[1], &al[1], &
				    lda, &tau[1], &work[1], &lwork, &rwork[1], 
				     result);
			    if (! sgennd_(&m, &n, &af[1], &lda)) {
				result[7] = *thresh * 2;
			    }
			    ++nt;
			} else if (m <= n) {

/*                       Test SORGLQ, using factorization */
/*                       returned by SLQT01 */

			    slqt02_(&m, &n, &k, &a[1], &af[1], &aq[1], &al[1], 
				     &lda, &tau[1], &work[1], &lwork, &rwork[
				    1], result);
			}
			if (m >= k) {

/*                       Test SORMLQ, using factorization returned */
/*                       by SLQT01 */

			    slqt03_(&m, &n, &k, &af[1], &ac[1], &al[1], &aq[1]
, &lda, &tau[1], &work[1], &lwork, &rwork[
				    1], &result[2]);
			    nt += 4;

/*                       If M>=N and K=N, call SGELQS to solve a system */
/*                       with NRHS right hand sides and compute the */
/*                       residual. */

			    if (k == m && inb == 1) {

/*                          Generate a solution and set the right */
/*                          hand side. */

				s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, 
					(ftnlen)6);
				slarhs_(path, "New", "Full", "No transpose", &
					m, &n, &c__0, &c__0, nrhs, &a[1], &
					lda, &xact[1], &lda, &b[1], &lda, 
					iseed, &info);

				slacpy_("Full", &m, nrhs, &b[1], &lda, &x[1], 
					&lda);
				s_copy(srnamc_1.srnamt, "SGELQS", (ftnlen)32, 
					(ftnlen)6);
				sgelqs_(&m, &n, nrhs, &af[1], &lda, &tau[1], &
					x[1], &lda, &work[1], &lwork, &info);

/*                          Check error code from SGELQS. */

				if (info != 0) {
				    alaerh_(path, "SGELQS", &info, &c__0, 
					    " ", &m, &n, nrhs, &c_n1, &nb, &
					    imat, &nfail, &nerrs, nout);
				}

				sget02_("No transpose", &m, &n, nrhs, &a[1], &
					lda, &x[1], &lda, &b[1], &lda, &rwork[
					1], &result[6]);
				++nt;
			    }
			}

/*                    Print information about the tests that did not */
/*                    pass the threshold. */

			for (i__ = 1; i__ <= 8; ++i__) {
			    if (result[i__ - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___33.ciunit = *nout;
				s_wsfe(&io___33);
				do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nx, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[i__ - 1], (
					ftnlen)sizeof(real));
				e_wsfe();
				++nfail;
			    }
/* L20: */
			}
			nrun += nt;
/* L30: */
		    }
/* L40: */
		}
L50:
		;
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SCHKLQ */

} /* schklq_ */
Exemple #2
0
/* Subroutine */ int stimtd_(char *line, integer *nm, integer *mval, integer *
	nn, integer *nval, integer *nnb, integer *nbval, integer *nxval, 
	integer *nlda, integer *ldaval, real *timmin, real *a, real *b, real *
	d__, real *tau, real *work, real *reslts, integer *ldr1, integer *
	ldr2, integer *ldr3, integer *nout, ftnlen line_len)
{
    /* Initialized data */

    static char subnam[6*4] = "SSYTRD" "TRED1 " "SORGTR" "SORMTR";
    static char sides[1*2] = "L" "R";
    static char transs[1*2] = "N" "T";
    static char uplos[1*2] = "U" "L";
    static integer iseed[4] = { 0,0,0,1 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)";
    static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops "
	    "*** \002)";
    static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)";
    static char fmt_9996[] = "(/5x,a6,\002 with UPLO = '\002,a1,\002'\002,/)";
    static char fmt_9995[] = "(/5x,a6,\002 with SIDE = '\002,a1,\002', UPLO "
	    "= '\002,a1,\002', TRANS = '\002,a1,\002', \002,a1,\002 =\002,i6,"
	    "/)";

    /* System generated locals */
    integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, 
	    i__3, i__4, i__5, i__6;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    static integer ilda;
    static char side[1];
    static integer info;
    static char path[3];
    static real time;
    static integer isub;
    static char uplo[1];
    extern /* Subroutine */ int tred1_(integer *, integer *, real *, real *, 
	    real *, real *);
    static integer i__, m, n;
    static char cname[6];
    static integer iside, itoff, itran;
    extern doublereal sopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    extern /* Subroutine */ int icopy_(integer *, integer *, integer *, 
	    integer *, integer *);
    static char trans[1];
    static integer iuplo, i3, i4, m1, n1;
    static real s1, s2;
    static integer ic;
    extern /* Subroutine */ int sprtb3_(char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, real *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static integer nb, im, in, lw, nx, reseed[4];
    extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer 
	    *, integer *, integer *, integer *, integer *, ftnlen);
    extern doublereal second_(void);
    extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, 
	    logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), slacpy_(
	    char *, integer *, integer *, real *, integer *, real *, integer *
	    ), xlaenv_(integer *, integer *);
    extern doublereal smflop_(real *, real *, integer *);
    static real untime;
    extern /* Subroutine */ int stimmg_(integer *, integer *, integer *, real 
	    *, integer *, integer *, integer *);
    static logical timsub[4];
    extern /* Subroutine */ int slatms_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, integer *, integer *
	    , char *, real *, integer *, real *, integer *), sprtbl_(char *, char *, integer *, integer *, integer *, 
	    integer *, integer *, real *, integer *, integer *, integer *, 
	    ftnlen, ftnlen), sorgtr_(char *, integer *, real *, integer *, 
	    real *, real *, integer *, integer *), sormtr_(char *, 
	    char *, char *, integer *, integer *, real *, integer *, real *, 
	    real *, integer *, real *, integer *, integer *), ssytrd_(char *, integer *, real *, integer *, real *, 
	    real *, real *, real *, integer *, integer *);
    static integer lda, icl, inb;
    static real ops;
    static char lab1[1], lab2[1];

    /* Fortran I/O blocks */
    static cilist io___10 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___11 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___45 = { 0, 0, 0, 0, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9995, 0 };



#define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6]
#define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\
reslts_dim2 + (a_2))*reslts_dim1 + a_1]


/*  -- LAPACK timing routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    STIMTD times the LAPACK routines SSYTRD, SORGTR, and SORMTR and the   
    EISPACK routine TRED1.   

    Arguments   
    =========   

    LINE    (input) CHARACTER*80   
            The input line that requested this routine.  The first six   
            characters contain either the name of a subroutine or a   
            generic path name.  The remaining characters may be used to   
            specify the individual routines to be timed.  See ATIMIN for   
            a full description of the format of the input line.   

    NM      (input) INTEGER   
            The number of values of M contained in the vector MVAL.   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix size M.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix column dimension N.   

    NNB     (input) INTEGER   
            The number of values of NB and NX contained in the   
            vectors NBVAL and NXVAL.  The blocking parameters are used   
            in pairs (NB,NX).   

    NBVAL   (input) INTEGER array, dimension (NNB)   
            The values of the blocksize NB.   

    NXVAL   (input) INTEGER array, dimension (NNB)   
            The values of the crossover point NX.   

    NLDA    (input) INTEGER   
            The number of values of LDA contained in the vector LDAVAL.   

    LDAVAL  (input) INTEGER array, dimension (NLDA)   
            The values of the leading dimension of the array A.   

    TIMMIN  (input) REAL   
            The minimum time a subroutine will be timed.   

    A       (workspace) REAL array, dimension (LDAMAX*NMAX)   
            where LDAMAX and NMAX are the maximum values of LDA and N.   

    B       (workspace) REAL array, dimension (LDAMAX*NMAX)   

    D       (workspace) REAL array, dimension (2*NMAX-1)   

    TAU     (workspace) REAL array, dimension (NMAX)   

    WORK    (workspace) REAL array, dimension (NMAX*NBMAX)   
            where NBMAX is the maximum value of NB.   

    RESLTS  (workspace) REAL array, dimension   
                        (LDR1,LDR2,LDR3,4*NN+3)   
            The timing results for each subroutine over the relevant   
            values of M, (NB,NX), LDA, and N.   

    LDR1    (input) INTEGER   
            The first dimension of RESLTS.  LDR1 >= max(1,NNB).   

    LDR2    (input) INTEGER   
            The second dimension of RESLTS.  LDR2 >= max(1,NM).   

    LDR3    (input) INTEGER   
            The third dimension of RESLTS.  LDR3 >= max(1,2*NLDA).   

    NOUT    (input) INTEGER   
            The unit number for output.   

    Internal Parameters   
    ===================   

    MODE    INTEGER   
            The matrix type.  MODE = 3 is a geometric distribution of   
            eigenvalues.  See SLATMS for further details.   

    COND    REAL   
            The condition number of the matrix.  The singular values are   
            set to values from DMAX to DMAX/COND.   

    DMAX    REAL   
            The magnitude of the largest singular value.   

    =====================================================================   

       Parameter adjustments */
    --mval;
    --nval;
    --nbval;
    --nxval;
    --ldaval;
    --a;
    --b;
    --d__;
    --tau;
    --work;
    reslts_dim1 = *ldr1;
    reslts_dim2 = *ldr2;
    reslts_dim3 = *ldr3;
    reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1)
	    );
    reslts -= reslts_offset;

    /* Function Body   

       Extract the timing request from the input line. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "TD", (ftnlen)2, (ftnlen)2);
    atimin_(path, line, &c__4, subnam, timsub, nout, &info, (ftnlen)3, (
	    ftnlen)80, (ftnlen)6);
    if (info != 0) {
	goto L240;
    }

/*     Check that M <= LDA for the input values. */

    s_copy(cname, line, (ftnlen)6, (ftnlen)6);
    atimck_(&c__2, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, (
	    ftnlen)6);
    if (info > 0) {
	io___10.ciunit = *nout;
	s_wsfe(&io___10);
	do_fio(&c__1, cname, (ftnlen)6);
	e_wsfe();
	goto L240;
    }

/*     Check that K <= LDA for SORMTR */

    if (timsub[3]) {
	atimck_(&c__3, cname, nn, &nval[1], nlda, &ldaval[1], nout, &info, (
		ftnlen)6);
	if (info > 0) {
	    io___11.ciunit = *nout;
	    s_wsfe(&io___11);
	    do_fio(&c__1, subnam_ref(0, 4), (ftnlen)6);
	    e_wsfe();
	    timsub[3] = FALSE_;
	}
    }

/*     Do first for UPLO = 'U', then for UPLO = 'L' */

    for (iuplo = 1; iuplo <= 2; ++iuplo) {
	*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];

/*        Do for each value of M: */

	i__1 = *nm;
	for (im = 1; im <= i__1; ++im) {
	    m = mval[im];
	    icopy_(&c__4, iseed, &c__1, reseed, &c__1);

/*           Do for each value of LDA: */

	    i__2 = *nlda;
	    for (ilda = 1; ilda <= i__2; ++ilda) {
		lda = ldaval[ilda];
		i3 = (iuplo - 1) * *nlda + ilda;

/*              Do for each pair of values (NB, NX) in NBVAL and NXVAL. */

		i__3 = *nnb;
		for (inb = 1; inb <= i__3; ++inb) {
		    nb = nbval[inb];
		    xlaenv_(&c__1, &nb);
		    nx = nxval[inb];
		    xlaenv_(&c__3, &nx);
/* Computing MAX */
		    i__4 = 1, i__5 = m * max(1,nb);
		    lw = max(i__4,i__5);

/*                 Generate a test matrix of order M. */

		    icopy_(&c__4, reseed, &c__1, iseed, &c__1);
		    slatms_(&m, &m, "Uniform", iseed, "Symmetric", &tau[1], &
			    c__3, &c_b27, &c_b28, &m, &m, "No packing", &b[1],
			     &lda, &work[1], &info);

		    if (timsub[1] && inb == 1 && iuplo == 2) {

/*                    TRED1:  Eispack reduction using orthogonal   
                      transformations. */

			slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda);
			ic = 0;
			s1 = second_();
L10:
			tred1_(&lda, &m, &a[1], &d__[1], &d__[m + 1], &d__[m 
				+ 1]);
			s2 = second_();
			time = s2 - s1;
			++ic;
			if (time < *timmin) {
			    slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda);
			    goto L10;
			}

/*                    Subtract the time used in SLACPY. */

			icl = 1;
			s1 = second_();
L20:
			s2 = second_();
			untime = s2 - s1;
			++icl;
			if (icl <= ic) {
			    slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda);
			    goto L20;
			}

			time = (time - untime) / (real) ic;
			ops = sopla_("SSYTRD", &m, &m, &c_n1, &c_n1, &nb);
			reslts_ref(inb, im, ilda, 2) = smflop_(&ops, &time, &
				info);
		    }

		    if (timsub[0]) {

/*                    SSYTRD:  Reduction to tridiagonal form */

			slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda);
			ic = 0;
			s1 = second_();
L30:
			ssytrd_(uplo, &m, &a[1], &lda, &d__[1], &d__[m + 1], &
				tau[1], &work[1], &lw, &info);
			s2 = second_();
			time = s2 - s1;
			++ic;
			if (time < *timmin) {
			    slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda);
			    goto L30;
			}

/*                    Subtract the time used in SLACPY. */

			icl = 1;
			s1 = second_();
L40:
			s2 = second_();
			untime = s2 - s1;
			++icl;
			if (icl <= ic) {
			    slacpy_(uplo, &m, &m, &a[1], &lda, &b[1], &lda);
			    goto L40;
			}

			time = (time - untime) / (real) ic;
			ops = sopla_("SSYTRD", &m, &m, &c_n1, &c_n1, &nb);
			reslts_ref(inb, im, i3, 1) = smflop_(&ops, &time, &
				info);
		    } else {

/*                    If SSYTRD was not timed, generate a matrix and   
                      factor it using SSYTRD anyway so that the factored   
                      form of the matrix can be used in timing the other   
                      routines. */

			slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda);
			ssytrd_(uplo, &m, &a[1], &lda, &d__[1], &d__[m + 1], &
				tau[1], &work[1], &lw, &info);
		    }

		    if (timsub[2]) {

/*                    SORGTR:  Generate the orthogonal matrix Q from the   
                      reduction to Hessenberg form A = Q*H*Q' */

			slacpy_(uplo, &m, &m, &a[1], &lda, &b[1], &lda);
			ic = 0;
			s1 = second_();
L50:
			sorgtr_(uplo, &m, &b[1], &lda, &tau[1], &work[1], &lw,
				 &info);
			s2 = second_();
			time = s2 - s1;
			++ic;
			if (time < *timmin) {
			    slacpy_(uplo, &m, &m, &a[1], &lda, &b[1], &lda);
			    goto L50;
			}

/*                    Subtract the time used in SLACPY. */

			icl = 1;
			s1 = second_();
L60:
			s2 = second_();
			untime = s2 - s1;
			++icl;
			if (icl <= ic) {
			    slacpy_(uplo, &m, &m, &a[1], &lda, &b[1], &lda);
			    goto L60;
			}

			time = (time - untime) / (real) ic;

/*                    Op count for SORGTR:  same as   
                         SORGQR( N-1, N-1, N-1, ... ) */

			i__4 = m - 1;
			i__5 = m - 1;
			i__6 = m - 1;
			ops = sopla_("SORGQR", &i__4, &i__5, &i__6, &c_n1, &
				nb);
			reslts_ref(inb, im, i3, 3) = smflop_(&ops, &time, &
				info);
		    }

		    if (timsub[3]) {

/*                    SORMTR:  Multiply by Q stored as a product of   
                      elementary transformations */

			i4 = 3;
			for (iside = 1; iside <= 2; ++iside) {
			    *(unsigned char *)side = *(unsigned char *)&sides[
				    iside - 1];
			    i__4 = *nn;
			    for (in = 1; in <= i__4; ++in) {
				n = nval[in];
/* Computing MAX */
				i__5 = 1, i__6 = max(1,nb) * n;
				lw = max(i__5,i__6);
				if (iside == 1) {
				    m1 = m;
				    n1 = n;
				} else {
				    m1 = n;
				    n1 = m;
				}
				itoff = 0;
				for (itran = 1; itran <= 2; ++itran) {
				    *(unsigned char *)trans = *(unsigned char 
					    *)&transs[itran - 1];
				    stimmg_(&c__0, &m1, &n1, &b[1], &lda, &
					    c__0, &c__0);
				    ic = 0;
				    s1 = second_();
L70:
				    sormtr_(side, uplo, trans, &m1, &n1, &a[1]
					    , &lda, &tau[1], &b[1], &lda, &
					    work[1], &lw, &info);
				    s2 = second_();
				    time = s2 - s1;
				    ++ic;
				    if (time < *timmin) {
					stimmg_(&c__0, &m1, &n1, &b[1], &lda, 
						&c__0, &c__0);
					goto L70;
				    }

/*                             Subtract the time used in STIMMG. */

				    icl = 1;
				    s1 = second_();
L80:
				    s2 = second_();
				    untime = s2 - s1;
				    ++icl;
				    if (icl <= ic) {
					stimmg_(&c__0, &m1, &n1, &b[1], &lda, 
						&c__0, &c__0);
					goto L80;
				    }

				    time = (time - untime) / (real) ic;

/*                             Op count for SORMTR, SIDE='L':  same as   
                                  SORMQR( 'L', TRANS, M-1, N, M-1, ...)   

                               Op count for SORMTR, SIDE='R':  same as   
                                  SORMQR( 'R', TRANS, M, N-1, N-1, ...) */

				    if (iside == 1) {
					i__5 = m1 - 1;
					i__6 = m1 - 1;
					ops = sopla_("SORMQR", &i__5, &n1, &
						i__6, &c_n1, &nb);
				    } else {
					i__5 = n1 - 1;
					i__6 = n1 - 1;
					ops = sopla_("SORMQR", &m1, &i__5, &
						i__6, &c__1, &nb);
				    }

				    reslts_ref(inb, im, i3, i4 + itoff + in) =
					     smflop_(&ops, &time, &info);
				    itoff = *nn;
/* L90: */
				}
/* L100: */
			    }
			    i4 += *nn << 1;
/* L110: */
			}
		    }

/* L120: */
		}
/* L130: */
	    }
/* L140: */
	}
/* L150: */
    }

/*     Print tables of results for SSYTRD, TRED1, and SORGTR */

    for (isub = 1; isub <= 3; ++isub) {
	if (! timsub[isub - 1]) {
	    goto L180;
	}
	io___42.ciunit = *nout;
	s_wsfe(&io___42);
	do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	e_wsfe();
	if (*nlda > 1) {
	    i__1 = *nlda;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		io___44.ciunit = *nout;
		s_wsfe(&io___44);
		do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer));
		e_wsfe();
/* L160: */
	    }
	}
	if (isub == 2) {
	    io___45.ciunit = *nout;
	    s_wsle(&io___45);
	    e_wsle();
	    sprtb3_(" ", "N", &c__1, &nbval[1], &nxval[1], nm, &mval[1], nlda,
		     &reslts_ref(1, 1, 1, isub), ldr1, ldr2, nout, (ftnlen)1, 
		    (ftnlen)1);
	} else {
	    i3 = 1;
	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		io___46.ciunit = *nout;
		s_wsfe(&io___46);
		do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
		do_fio(&c__1, uplos + (iuplo - 1), (ftnlen)1);
		e_wsfe();
		sprtb3_("(  NB,  NX)", "N", nnb, &nbval[1], &nxval[1], nm, &
			mval[1], nlda, &reslts_ref(1, 1, i3, isub), ldr1, 
			ldr2, nout, (ftnlen)11, (ftnlen)1);
		i3 += *nlda;
/* L170: */
	    }
	}
L180:
	;
    }

/*     Print tables of results for SORMTR */

    isub = 4;
    if (timsub[isub - 1]) {
	i4 = 3;
	for (iside = 1; iside <= 2; ++iside) {
	    if (iside == 1) {
		*(unsigned char *)lab1 = 'M';
		*(unsigned char *)lab2 = 'N';
		if (*nlda > 1) {
		    io___49.ciunit = *nout;
		    s_wsfe(&io___49);
		    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
		    e_wsfe();
		    i__1 = *nlda;
		    for (i__ = 1; i__ <= i__1; ++i__) {
			io___50.ciunit = *nout;
			s_wsfe(&io___50);
			do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(
				integer));
			e_wsfe();
/* L190: */
		    }
		}
	    } else {
		*(unsigned char *)lab1 = 'N';
		*(unsigned char *)lab2 = 'M';
	    }
	    for (itran = 1; itran <= 2; ++itran) {
		i__1 = *nn;
		for (in = 1; in <= i__1; ++in) {
		    i3 = 1;
		    for (iuplo = 1; iuplo <= 2; ++iuplo) {
			io___51.ciunit = *nout;
			s_wsfe(&io___51);
			do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
			do_fio(&c__1, sides + (iside - 1), (ftnlen)1);
			do_fio(&c__1, uplos + (iuplo - 1), (ftnlen)1);
			do_fio(&c__1, transs + (itran - 1), (ftnlen)1);
			do_fio(&c__1, lab2, (ftnlen)1);
			do_fio(&c__1, (char *)&nval[in], (ftnlen)sizeof(
				integer));
			e_wsfe();
			sprtbl_("NB", lab1, nnb, &nbval[1], nm, &mval[1], 
				nlda, &reslts_ref(1, 1, i3, i4 + in), ldr1, 
				ldr2, nout, (ftnlen)2, (ftnlen)1);
			i3 += *nlda;
/* L200: */
		    }
/* L210: */
		}
		i4 += *nn;
/* L220: */
	    }
/* L230: */
	}
    }
L240:

/*     Print a table of results for each timed routine. */

    return 0;

/*     End of STIMTD */

} /* stimtd_ */
/* Subroutine */ int cdrvpo_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, integer *nmax, complex *
	a, complex *afac, complex *asav, complex *b, complex *bsav, complex *
	x, complex *xact, real *s, complex *work, real *rwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*2] = "N" "Y";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9997[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002,"
	    "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i1,"
	    "\002, test(\002,i1,\002) =\002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002,"
	    "a1,\002', N=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    char ch__1[2];

    /* Local variables */
    integer i__, k, n;
    real *errbnds_c__, *errbnds_n__;
    integer k1, nb, in, kl, ku, nt, n_err_bnds__, lda;
    char fact[1];
    integer ioff, mode;
    real amax;
    char path[3];
    integer imat, info;
    real *berr;
    char dist[1];
    real rpvgrw_svxx__;
    char uplo[1], type__[1];
    integer nrun, ifact;
    integer nfail, iseed[4], nfact;
    char equed[1];
    integer nbmin;
    real rcond, roldc, scond;
    integer nimat;
    real anorm;
    logical equil;
    integer iuplo, izero, nerrs;
    logical zerot;
    char xtype[1];
    logical prefac;
    real rcondc;
    logical nofact;
    integer iequed;
    real cndnum;
    real ainvnm;
    real result[6];

    /* Fortran I/O blocks */
    static cilist io___48 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___58 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CDRVPO tests the driver routines CPOSV, -SVX, and -SVXX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) COMPLEX array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) COMPLEX array, dimension (NMAX*NMAX) */

/*  ASAV    (workspace) COMPLEX array, dimension (NMAX*NMAX) */

/*  B       (workspace) COMPLEX array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) COMPLEX array, dimension (NMAX*NRHS) */

/*  X       (workspace) COMPLEX array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) COMPLEX array, dimension (NMAX*NRHS) */

/*  S       (workspace) REAL array, dimension (NMAX) */

/*  WORK    (workspace) COMPLEX array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension (NMAX+2*NRHS) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "PO", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	cerrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 9;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L120;
	    }

/*           Skip types 3, 4, or 5 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 5;
	    if (zerot && n < imat - 2) {
		goto L120;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];

/*              Set up parameters with CLATB4 and generate a test matrix */
/*              with CLATMS. */

		clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)32, (ftnlen)6);
		clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &work[1], 
			 &info);

/*              Check error code from CLATMS. */

		if (info != 0) {
		    alaerh_(path, "CLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L110;
		}

/*              For types 3-5, zero one row and column of the matrix to */
/*              test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }
		    ioff = (izero - 1) * lda;

/*                 Set row and column IZERO of A to 0. */

		    if (iuplo == 1) {
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = ioff + i__;
			    a[i__4].r = 0.f, a[i__4].i = 0.f;
/* L20: */
			}
			ioff += izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    i__4 = ioff;
			    a[i__4].r = 0.f, a[i__4].i = 0.f;
			    ioff += lda;
/* L30: */
			}
		    } else {
			ioff = izero;
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = ioff;
			    a[i__4].r = 0.f, a[i__4].i = 0.f;
			    ioff += lda;
/* L40: */
			}
			ioff -= izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    i__4 = ioff + i__;
			    a[i__4].r = 0.f, a[i__4].i = 0.f;
/* L50: */
			}
		    }
		} else {
		    izero = 0;
		}

/*              Set the imaginary part of the diagonals. */

		i__3 = lda + 1;
		claipd_(&n, &a[1], &i__3, &c__0);

/*              Save a copy of the matrix A in ASAV. */

		clacpy_(uplo, &n, &n, &a[1], &lda, &asav[1], &lda);

		for (iequed = 1; iequed <= 2; ++iequed) {
		    *(unsigned char *)equed = *(unsigned char *)&equeds[
			    iequed - 1];
		    if (iequed == 1) {
			nfact = 3;
		    } else {
			nfact = 1;
		    }

		    i__3 = nfact;
		    for (ifact = 1; ifact <= i__3; ++ifact) {
			for (i__ = 1; i__ <= 6; ++i__) {
			    result[i__ - 1] = 0.f;
			}
			*(unsigned char *)fact = *(unsigned char *)&facts[
				ifact - 1];
			prefac = lsame_(fact, "F");
			nofact = lsame_(fact, "N");
			equil = lsame_(fact, "E");

			if (zerot) {
			    if (prefac) {
				goto L90;
			    }
			    rcondc = 0.f;

			} else if (! lsame_(fact, "N")) 
				{

/*                       Compute the condition number for comparison with */
/*                       the value returned by CPOSVX (FACT = 'N' reuses */
/*                       the condition number from the previous iteration */
/*                       with FACT = 'F'). */

			    clacpy_(uplo, &n, &n, &asav[1], &lda, &afac[1], &
				    lda);
			    if (equil || iequed > 1) {

/*                          Compute row and column scale factors to */
/*                          equilibrate the matrix A. */

				cpoequ_(&n, &afac[1], &lda, &s[1], &scond, &
					amax, &info);
				if (info == 0 && n > 0) {
				    if (iequed > 1) {
					scond = 0.f;
				    }

/*                             Equilibrate the matrix. */

				    claqhe_(uplo, &n, &afac[1], &lda, &s[1], &
					    scond, &amax, equed);
				}
			    }

/*                       Save the condition number of the */
/*                       non-equilibrated system for use in CGET04. */

			    if (equil) {
				roldc = rcondc;
			    }

/*                       Compute the 1-norm of A. */

			    anorm = clanhe_("1", uplo, &n, &afac[1], &lda, &
				    rwork[1]);

/*                       Factor the matrix A. */

			    cpotrf_(uplo, &n, &afac[1], &lda, &info);

/*                       Form the inverse of A. */

			    clacpy_(uplo, &n, &n, &afac[1], &lda, &a[1], &lda);
			    cpotri_(uplo, &n, &a[1], &lda, &info);

/*                       Compute the 1-norm condition number of A. */

			    ainvnm = clanhe_("1", uplo, &n, &a[1], &lda, &
				    rwork[1]);
			    if (anorm <= 0.f || ainvnm <= 0.f) {
				rcondc = 1.f;
			    } else {
				rcondc = 1.f / anorm / ainvnm;
			    }
			}

/*                    Restore the matrix A. */

			clacpy_(uplo, &n, &n, &asav[1], &lda, &a[1], &lda);

/*                    Form an exact solution and set the right hand side. */

			s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)32, (ftnlen)
				6);
			clarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, 
				nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
				lda, iseed, &info);
			*(unsigned char *)xtype = 'C';
			clacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda);

			if (nofact) {

/*                       --- Test CPOSV  --- */

/*                       Compute the L*L' or U'*U factorization of the */
/*                       matrix and solve the system. */

			    clacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda);
			    clacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "CPOSV ", (ftnlen)32, (
				    ftnlen)6);
			    cposv_(uplo, &n, nrhs, &afac[1], &lda, &x[1], &
				    lda, &info);

/*                       Check error code from CPOSV . */

			    if (info != izero) {
				alaerh_(path, "CPOSV ", &info, &izero, uplo, &
					n, &n, &c_n1, &c_n1, nrhs, &imat, &
					nfail, &nerrs, nout);
				goto L70;
			    } else if (info != 0) {
				goto L70;
			    }

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    cpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &
				    rwork[1], result);

/*                       Compute residual of the computed solution. */

			    clacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &
				    lda);
			    cpot02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, 
				    &work[1], &lda, &rwork[1], &result[1]);

/*                       Check solution from generated exact solution. */

			    cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[2]);
			    nt = 3;

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    i__4 = nt;
			    for (k = 1; k <= i__4; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    io___48.ciunit = *nout;
				    s_wsfe(&io___48);
				    do_fio(&c__1, "CPOSV ", (ftnlen)6);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(real));
				    e_wsfe();
				    ++nfail;
				}
/* L60: */
			    }
			    nrun += nt;
L70:
			    ;
			}

/*                    --- Test CPOSVX --- */

			if (! prefac) {
			    claset_(uplo, &n, &n, &c_b51, &c_b51, &afac[1], &
				    lda);
			}
			claset_("Full", &n, nrhs, &c_b51, &c_b51, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT='F' and */
/*                       EQUED='Y'. */

			    claqhe_(uplo, &n, &a[1], &lda, &s[1], &scond, &
				    amax, equed);
			}

/*                    Solve the system and compute the condition number */
/*                    and error bounds using CPOSVX. */

			s_copy(srnamc_1.srnamt, "CPOSVX", (ftnlen)32, (ftnlen)
				6);
			cposvx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], &
				lda, equed, &s[1], &b[1], &lda, &x[1], &lda, &
				rcond, &rwork[1], &rwork[*nrhs + 1], &work[1], 
				 &rwork[(*nrhs << 1) + 1], &info);

/*                    Check the error code from CPOSVX. */

			if (info == n + 1) {
			    goto L90;
			}
			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = uplo;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "CPOSVX", &info, &izero, ch__1, &n, 
				    &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			    goto L90;
			}

			if (info == 0) {
			    if (! prefac) {

/*                          Reconstruct matrix from factors and compute */
/*                          residual. */

				cpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, 
					 &rwork[(*nrhs << 1) + 1], result);
				k1 = 1;
			    } else {
				k1 = 2;
			    }

/*                       Compute residual of the computed solution. */

			    clacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
, &lda);
			    cpot02_(uplo, &n, nrhs, &asav[1], &lda, &x[1], &
				    lda, &work[1], &lda, &rwork[(*nrhs << 1) 
				    + 1], &result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
			    } else {
				cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &roldc, &result[2]);
			    }

/*                       Check the error bounds from iterative */
/*                       refinement. */

			    cpot05_(uplo, &n, nrhs, &asav[1], &lda, &b[1], &
				    lda, &x[1], &lda, &xact[1], &lda, &rwork[
				    1], &rwork[*nrhs + 1], &result[3]);
			} else {
			    k1 = 6;
			}

/*                    Compare RCOND from CPOSVX with the computed value */
/*                    in RCONDC. */

			result[5] = sget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			for (k = k1; k <= 6; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___51.ciunit = *nout;
				    s_wsfe(&io___51);
				    do_fio(&c__1, "CPOSVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(real));
				    e_wsfe();
				} else {
				    io___52.ciunit = *nout;
				    s_wsfe(&io___52);
				    do_fio(&c__1, "CPOSVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(real));
				    e_wsfe();
				}
				++nfail;
			    }
/* L80: */
			}
			nrun = nrun + 7 - k1;

/*                    --- Test CPOSVXX --- */

/*                    Restore the matrices A and B. */

			clacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda);
			clacpy_("Full", &n, nrhs, &bsav[1], &lda, &b[1], &lda);
			if (! prefac) {
			    claset_(uplo, &n, &n, &c_b51, &c_b51, &afac[1], &
				    lda);
			}
			claset_("Full", &n, nrhs, &c_b51, &c_b51, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT='F' and */
/*                       EQUED='Y'. */

			    claqhe_(uplo, &n, &a[1], &lda, &s[1], &scond, &
				    amax, equed);
			}

/*                    Solve the system and compute the condition number */
/*                    and error bounds using CPOSVXX. */

			s_copy(srnamc_1.srnamt, "CPOSVXX", (ftnlen)32, (
				ftnlen)7);

			salloc3();

			cposvxx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], 
				&lda, equed, &s[1], &b[1], &lda, &x[1], &lda, 
				&rcond, &rpvgrw_svxx__, berr, &n_err_bnds__, 
				errbnds_n__, errbnds_c__, &c__0, &c_b94, &
				work[1], &rwork[(*nrhs << 1) + 1], &info);

			free3();

/*                    Check the error code from CPOSVXX. */

			if (info == n + 1) {
			    goto L90;
			}
			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = uplo;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "CPOSVXX", &info, &izero, ch__1, &n, 
				     &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			    goto L90;
			}

			if (info == 0) {
			    if (! prefac) {

/*                          Reconstruct matrix from factors and compute */
/*                          residual. */

				cpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, 
					 &rwork[(*nrhs << 1) + 1], result);
				k1 = 1;
			    } else {
				k1 = 2;
			    }

/*                       Compute residual of the computed solution. */

			    clacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
, &lda);
			    cpot02_(uplo, &n, nrhs, &asav[1], &lda, &x[1], &
				    lda, &work[1], &lda, &rwork[(*nrhs << 1) 
				    + 1], &result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
			    } else {
				cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &roldc, &result[2]);
			    }

/*                       Check the error bounds from iterative */
/*                       refinement. */

			    cpot05_(uplo, &n, nrhs, &asav[1], &lda, &b[1], &
				    lda, &x[1], &lda, &xact[1], &lda, &rwork[
				    1], &rwork[*nrhs + 1], &result[3]);
			} else {
			    k1 = 6;
			}

/*                    Compare RCOND from CPOSVXX with the computed value */
/*                    in RCONDC. */

			result[5] = sget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			for (k = k1; k <= 6; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___58.ciunit = *nout;
				    s_wsfe(&io___58);
				    do_fio(&c__1, "CPOSVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(real));
				    e_wsfe();
				} else {
				    io___59.ciunit = *nout;
				    s_wsfe(&io___59);
				    do_fio(&c__1, "CPOSVXX", (ftnlen)7);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(real));
				    e_wsfe();
				}
				++nfail;
			    }
/* L85: */
			}
			nrun = nrun + 7 - k1;
L90:
			;
		    }
/* L100: */
		}
L110:
		;
	    }
L120:
	    ;
	}
/* L130: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

/*     Test Error Bounds for CGESVXX */
    cebchvxx_(thresh, path);
    return 0;

/*     End of CDRVPO */

} /* cdrvpo_ */
Exemple #4
0
/* Subroutine */ int ddrvls_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nns, integer *nsval, integer *
	nnb, integer *nbval, integer *nxval, doublereal *thresh, logical *
	tsterr, doublereal *a, doublereal *copya, doublereal *b, doublereal *
	copyb, doublereal *c__, doublereal *s, doublereal *copys, doublereal *
	work, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 TRANS='\002,a1,\002', M=\002,i5,\002, N"
	    "=\002,i5,\002, NRHS=\002,i4,\002, NB=\002,i4,\002, type\002,i2"
	    ",\002, test(\002,i2,\002)=\002,g12.5)";
    static char fmt_9998[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, NRHS="
	    "\002,i4,\002, NB=\002,i4,\002, type\002,i2,\002, test(\002,i2"
	    ",\002)=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5, i__6;
    doublereal d__1, d__2;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double sqrt(doublereal), log(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer info;
    static char path[3];
    static integer rank, nrhs, nlvl, nrun, i__, j, k;
    extern /* Subroutine */ int alahd_(integer *, char *);
    static integer m, n;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    static integer nfail, iseed[4];
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    static integer crank;
    extern /* Subroutine */ int dgels_(char *, integer *, integer *, integer *
	    , doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *);
    static integer irank;
    static doublereal rcond;
    extern doublereal dasum_(integer *, doublereal *, integer *);
    static integer itran, mnmin, ncols;
    static doublereal norma, normb;
    extern doublereal dqrt12_(integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dqrt14_(char *, integer *,
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *), dqrt17_(char *, 
	    integer *, integer *, integer *, integer *, doublereal *, integer 
	    *, doublereal *, integer *, doublereal *, integer *, doublereal *,
	     doublereal *, integer *);
    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *);
    static char trans[1];
    static integer nerrs, itype;
    extern /* Subroutine */ int dqrt13_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    static integer lwork;
    extern /* Subroutine */ int dqrt15_(integer *, integer *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *), dqrt16_(char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *);
    static integer nrows, lwlsy, nb, im, in;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static integer iscale;
    extern /* Subroutine */ int dgelsd_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *), dlacpy_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *), dgelss_(integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, integer *), alasvm_(char *, integer *, integer *, 
	    integer *, integer *), dgelsx_(integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *), 
	    dgelsy_(integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, integer *), dlarnv_(integer *, integer *,
	     integer *, doublereal *), derrls_(char *, integer *), 
	    xlaenv_(integer *, integer *);
    static integer ldwork;
    static doublereal result[18];
    static integer lda, ldb, inb;
    static doublereal eps;
    static integer ins;

    /* Fortran I/O blocks */
    static cilist io___35 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       January 3, 2000   


    Purpose   
    =======   

    DDRVLS tests the least squares driver routines DGELS, DGELSS, DGELSX,   
    DGELSY and DGELSD.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   
            The matrix of type j is generated as follows:   
            j=1: A = U*D*V where U and V are random orthogonal matrices   
                 and D has random entries (> 0.1) taken from a uniform   
                 distribution (0,1). A is full rank.   
            j=2: The same of 1, but A is scaled up.   
            j=3: The same of 1, but A is scaled down.   
            j=4: A = U*D*V where U and V are random orthogonal matrices   
                 and D has 3*min(M,N)/4 random entries (> 0.1) taken   
                 from a uniform distribution (0,1) and the remaining   
                 entries set to 0. A is rank-deficient.   
            j=5: The same of 4, but A is scaled up.   
            j=6: The same of 5, but A is scaled down.   

    NM      (input) INTEGER   
            The number of values of M contained in the vector MVAL.   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix row dimension M.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix column dimension N.   

    NNS     (input) INTEGER   
            The number of values of NRHS contained in the vector NSVAL.   

    NSVAL   (input) INTEGER array, dimension (NNS)   
            The values of the number of right hand sides NRHS.   

    NNB     (input) INTEGER   
            The number of values of NB and NX contained in the   
            vectors NBVAL and NXVAL.  The blocking parameters are used   
            in pairs (NB,NX).   

    NBVAL   (input) INTEGER array, dimension (NNB)   
            The values of the blocksize NB.   

    NXVAL   (input) INTEGER array, dimension (NNB)   
            The values of the crossover point NX.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    A       (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)   
            where MMAX is the maximum value of M in MVAL and NMAX is the   
            maximum value of N in NVAL.   

    COPYA   (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)   

    B       (workspace) DOUBLE PRECISION array, dimension (MMAX*NSMAX)   
            where MMAX is the maximum value of M in MVAL and NSMAX is the   
            maximum value of NRHS in NSVAL.   

    COPYB   (workspace) DOUBLE PRECISION array, dimension (MMAX*NSMAX)   

    C       (workspace) DOUBLE PRECISION array, dimension (MMAX*NSMAX)   

    S       (workspace) DOUBLE PRECISION array, dimension   
                        (min(MMAX,NMAX))   

    COPYS   (workspace) DOUBLE PRECISION array, dimension   
                        (min(MMAX,NMAX))   

    WORK    (workspace) DOUBLE PRECISION array,   
                        dimension (MMAX*NMAX + 4*NMAX + MMAX).   

    IWORK   (workspace) INTEGER array, dimension (15*NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --work;
    --copys;
    --s;
    --c__;
    --copyb;
    --b;
    --copya;
    --a;
    --nxval;
    --nbval;
    --nsval;
    --nval;
    --mval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "LS", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
    eps = dlamch_("Epsilon");

/*     Threshold for rank estimation */

    rcond = sqrt(eps) - (sqrt(eps) - eps) / 2;

/*     Test the error exits */

    if (*tsterr) {
	derrls_(path, nout);
    }

/*     Print the header if NM = 0 or NN = 0 and THRESH = 0. */

    if ((*nm == 0 || *nn == 0) && *thresh == 0.) {
	alahd_(nout, path);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);
    xlaenv_(&c__9, &c__25);

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];
	lda = max(1,m);

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {
	    n = nval[in];
	    mnmin = min(m,n);
/* Computing MAX */
	    i__3 = max(1,m);
	    ldb = max(i__3,n);

	    i__3 = *nns;
	    for (ins = 1; ins <= i__3; ++ins) {
		nrhs = nsval[ins];
/* Computing MAX   
   Computing MAX */
		d__1 = 1., d__2 = (doublereal) mnmin;
		i__4 = (integer) (log(max(d__1,d__2) / 26.) / log(2.)) + 1;
		nlvl = max(i__4,0);
/* Computing MAX */
		i__4 = 1, i__5 = (m + nrhs) * (n + 2), i__4 = max(i__4,i__5), 
			i__5 = (n + nrhs) * (m + 2), i__4 = max(i__4,i__5), 
			i__5 = m * n + (mnmin << 2) + max(m,n), i__4 = max(
			i__4,i__5), i__5 = mnmin * 12 + mnmin * 50 + (mnmin <<
			 3) * nlvl + mnmin * nrhs + 676;
		lwork = max(i__4,i__5);

		for (irank = 1; irank <= 2; ++irank) {
		    for (iscale = 1; iscale <= 3; ++iscale) {
			itype = (irank - 1) * 3 + iscale;
			if (! dotype[itype]) {
			    goto L110;
			}

			if (irank == 1) {

/*                       Test DGELS   

                         Generate a matrix of scaling type ISCALE */

			    dqrt13_(&iscale, &m, &n, &copya[1], &lda, &norma, 
				    iseed);
			    i__4 = *nnb;
			    for (inb = 1; inb <= i__4; ++inb) {
				nb = nbval[inb];
				xlaenv_(&c__1, &nb);
				xlaenv_(&c__3, &nxval[inb]);

				for (itran = 1; itran <= 2; ++itran) {
				    if (itran == 1) {
					*(unsigned char *)trans = 'N';
					nrows = m;
					ncols = n;
				    } else {
					*(unsigned char *)trans = 'T';
					nrows = n;
					ncols = m;
				    }
				    ldwork = max(1,ncols);

/*                             Set up a consistent rhs */

				    if (ncols > 0) {
					i__5 = ncols * nrhs;
					dlarnv_(&c__2, iseed, &i__5, &work[1])
						;
					i__5 = ncols * nrhs;
					d__1 = 1. / (doublereal) ncols;
					dscal_(&i__5, &d__1, &work[1], &c__1);
				    }
				    dgemm_(trans, "No transpose", &nrows, &
					    nrhs, &ncols, &c_b24, &copya[1], &
					    lda, &work[1], &ldwork, &c_b25, &
					    b[1], &ldb)
					    ;
				    dlacpy_("Full", &nrows, &nrhs, &b[1], &
					    ldb, &copyb[1], &ldb);

/*                             Solve LS or overdetermined system */

				    if (m > 0 && n > 0) {
					dlacpy_("Full", &m, &n, &copya[1], &
						lda, &a[1], &lda);
					dlacpy_("Full", &nrows, &nrhs, &copyb[
						1], &ldb, &b[1], &ldb);
				    }
				    s_copy(srnamc_1.srnamt, "DGELS ", (ftnlen)
					    6, (ftnlen)6);
				    dgels_(trans, &m, &n, &nrhs, &a[1], &lda, 
					    &b[1], &ldb, &work[1], &lwork, &
					    info);
				    if (info != 0) {
					alaerh_(path, "DGELS ", &info, &c__0, 
						trans, &m, &n, &nrhs, &c_n1, &
						nb, &itype, &nfail, &nerrs, 
						nout);
				    }

/*                             Check correctness of results */

				    ldwork = max(1,nrows);
				    if (nrows > 0 && nrhs > 0) {
					dlacpy_("Full", &nrows, &nrhs, &copyb[
						1], &ldb, &c__[1], &ldb);
				    }
				    dqrt16_(trans, &m, &n, &nrhs, &copya[1], &
					    lda, &b[1], &ldb, &c__[1], &ldb, &
					    work[1], result);

				    if (itran == 1 && m >= n || itran == 2 && 
					    m < n) {

/*                                Solving LS system */

					result[1] = dqrt17_(trans, &c__1, &m, 
						&n, &nrhs, &copya[1], &lda, &
						b[1], &ldb, &copyb[1], &ldb, &
						c__[1], &work[1], &lwork);
				    } else {

/*                                Solving overdetermined system */

					result[1] = dqrt14_(trans, &m, &n, &
						nrhs, &copya[1], &lda, &b[1], 
						&ldb, &work[1], &lwork);
				    }

/*                             Print information about the tests that   
                               did not pass the threshold. */

				    for (k = 1; k <= 2; ++k) {
					if (result[k - 1] >= *thresh) {
					    if (nfail == 0 && nerrs == 0) {
			  alahd_(nout, path);
					    }
					    io___35.ciunit = *nout;
					    s_wsfe(&io___35);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&m, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&nrhs, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&nb, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&itype, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&k, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&result[k - 
						    1], (ftnlen)sizeof(
						    doublereal));
					    e_wsfe();
					    ++nfail;
					}
/* L20: */
				    }
				    nrun += 2;
/* L30: */
				}
/* L40: */
			    }
			}

/*                    Generate a matrix of scaling type ISCALE and rank   
                      type IRANK. */

			dqrt15_(&iscale, &irank, &m, &n, &nrhs, &copya[1], &
				lda, &copyb[1], &ldb, &copys[1], &rank, &
				norma, &normb, iseed, &work[1], &lwork);

/*                    workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)   

                      Initialize vector IWORK. */

			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    iwork[j] = 0;
/* L50: */
			}
			ldwork = max(1,m);

/*                    Test DGELSX   

                      DGELSX:  Compute the minimum-norm solution X   
                      to min( norm( A * X - B ) ) using a complete   
                      orthogonal factorization. */

			dlacpy_("Full", &m, &n, &copya[1], &lda, &a[1], &lda);
			dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &b[1], &
				ldb);

			s_copy(srnamc_1.srnamt, "DGELSX", (ftnlen)6, (ftnlen)
				6);
			dgelsx_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &
				iwork[1], &rcond, &crank, &work[1], &info);
			if (info != 0) {
			    alaerh_(path, "DGELSX", &info, &c__0, " ", &m, &n,
				     &nrhs, &c_n1, &nb, &itype, &nfail, &
				    nerrs, nout);
			}

/*                    workspace used: MAX( MNMIN+3*N, 2*MNMIN+NRHS )   

                      Test 3:  Compute relative error in svd   
                               workspace: M*N + 4*MIN(M,N) + MAX(M,N) */

			result[2] = dqrt12_(&crank, &crank, &a[1], &lda, &
				copys[1], &work[1], &lwork);

/*                    Test 4:  Compute error in solution   
                               workspace:  M*NRHS + M */

			dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &work[1], 
				&ldwork);
			dqrt16_("No transpose", &m, &n, &nrhs, &copya[1], &
				lda, &b[1], &ldb, &work[1], &ldwork, &work[m *
				 nrhs + 1], &result[3]);

/*                    Test 5:  Check norm of r'*A   
                               workspace: NRHS*(M+N) */

			result[4] = 0.;
			if (m > crank) {
			    result[4] = dqrt17_("No transpose", &c__1, &m, &n,
				     &nrhs, &copya[1], &lda, &b[1], &ldb, &
				    copyb[1], &ldb, &c__[1], &work[1], &lwork);
			}

/*                    Test 6:  Check if x is in the rowspace of A   
                               workspace: (M+NRHS)*(N+2) */

			result[5] = 0.;

			if (n > crank) {
			    result[5] = dqrt14_("No transpose", &m, &n, &nrhs,
				     &copya[1], &lda, &b[1], &ldb, &work[1], &
				    lwork);
			}

/*                    Print information about the tests that did not   
                      pass the threshold. */

			for (k = 3; k <= 6; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___40.ciunit = *nout;
				s_wsfe(&io___40);
				do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&itype, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L60: */
			}
			nrun += 4;

/*                    Loop for testing different block sizes. */

			i__4 = *nnb;
			for (inb = 1; inb <= i__4; ++inb) {
			    nb = nbval[inb];
			    xlaenv_(&c__1, &nb);
			    xlaenv_(&c__3, &nxval[inb]);

/*                       Test DGELSY   

                         DGELSY:  Compute the minimum-norm solution X   
                         to min( norm( A * X - B ) )   
                         using the rank-revealing orthogonal   
                         factorization.   

                         Initialize vector IWORK. */

			    i__5 = n;
			    for (j = 1; j <= i__5; ++j) {
				iwork[j] = 0;
/* L70: */
			    }

/*                       Set LWLSY to the adequate value.   

   Computing MAX */
			    i__5 = 1, i__6 = mnmin + (n << 1) + nb * (n + 1), 
				    i__5 = max(i__5,i__6), i__6 = (mnmin << 1)
				     + nb * nrhs;
			    lwlsy = max(i__5,i__6);

			    dlacpy_("Full", &m, &n, &copya[1], &lda, &a[1], &
				    lda);
			    dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &b[1],
				     &ldb);

			    s_copy(srnamc_1.srnamt, "DGELSY", (ftnlen)6, (
				    ftnlen)6);
			    dgelsy_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &
				    iwork[1], &rcond, &crank, &work[1], &
				    lwlsy, &info);
			    if (info != 0) {
				alaerh_(path, "DGELSY", &info, &c__0, " ", &m,
					 &n, &nrhs, &c_n1, &nb, &itype, &
					nfail, &nerrs, nout);
			    }

/*                       Test 7:  Compute relative error in svd   
                                  workspace: M*N + 4*MIN(M,N) + MAX(M,N) */

			    result[6] = dqrt12_(&crank, &crank, &a[1], &lda, &
				    copys[1], &work[1], &lwork);

/*                       Test 8:  Compute error in solution   
                                  workspace:  M*NRHS + M */

			    dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &work[
				    1], &ldwork);
			    dqrt16_("No transpose", &m, &n, &nrhs, &copya[1], 
				    &lda, &b[1], &ldb, &work[1], &ldwork, &
				    work[m * nrhs + 1], &result[7]);

/*                       Test 9:  Check norm of r'*A   
                                  workspace: NRHS*(M+N) */

			    result[8] = 0.;
			    if (m > crank) {
				result[8] = dqrt17_("No transpose", &c__1, &m,
					 &n, &nrhs, &copya[1], &lda, &b[1], &
					ldb, &copyb[1], &ldb, &c__[1], &work[
					1], &lwork);
			    }

/*                       Test 10:  Check if x is in the rowspace of A   
                                  workspace: (M+NRHS)*(N+2) */

			    result[9] = 0.;

			    if (n > crank) {
				result[9] = dqrt14_("No transpose", &m, &n, &
					nrhs, &copya[1], &lda, &b[1], &ldb, &
					work[1], &lwork);
			    }

/*                       Test DGELSS   

                         DGELSS:  Compute the minimum-norm solution X   
                         to min( norm( A * X - B ) )   
                         using the SVD. */

			    dlacpy_("Full", &m, &n, &copya[1], &lda, &a[1], &
				    lda);
			    dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &b[1],
				     &ldb);
			    s_copy(srnamc_1.srnamt, "DGELSS", (ftnlen)6, (
				    ftnlen)6);
			    dgelss_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &
				    s[1], &rcond, &crank, &work[1], &lwork, &
				    info);
			    if (info != 0) {
				alaerh_(path, "DGELSS", &info, &c__0, " ", &m,
					 &n, &nrhs, &c_n1, &nb, &itype, &
					nfail, &nerrs, nout);
			    }

/*                       workspace used: 3*min(m,n) +   
                                         max(2*min(m,n),nrhs,max(m,n))   

                         Test 11:  Compute relative error in svd */

			    if (rank > 0) {
				daxpy_(&mnmin, &c_b92, &copys[1], &c__1, &s[1]
					, &c__1);
				result[10] = dasum_(&mnmin, &s[1], &c__1) / 
					dasum_(&mnmin, &copys[1], &c__1) / (
					eps * (doublereal) mnmin);
			    } else {
				result[10] = 0.;
			    }

/*                       Test 12:  Compute error in solution */

			    dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &work[
				    1], &ldwork);
			    dqrt16_("No transpose", &m, &n, &nrhs, &copya[1], 
				    &lda, &b[1], &ldb, &work[1], &ldwork, &
				    work[m * nrhs + 1], &result[11]);

/*                       Test 13:  Check norm of r'*A */

			    result[12] = 0.;
			    if (m > crank) {
				result[12] = dqrt17_("No transpose", &c__1, &
					m, &n, &nrhs, &copya[1], &lda, &b[1], 
					&ldb, &copyb[1], &ldb, &c__[1], &work[
					1], &lwork);
			    }

/*                       Test 14:  Check if x is in the rowspace of A */

			    result[13] = 0.;
			    if (n > crank) {
				result[13] = dqrt14_("No transpose", &m, &n, &
					nrhs, &copya[1], &lda, &b[1], &ldb, &
					work[1], &lwork);
			    }

/*                       Test DGELSD   

                         DGELSD:  Compute the minimum-norm solution X   
                         to min( norm( A * X - B ) ) using a   
                         divide and conquer SVD.   

                         Initialize vector IWORK. */

			    i__5 = n;
			    for (j = 1; j <= i__5; ++j) {
				iwork[j] = 0;
/* L80: */
			    }

			    dlacpy_("Full", &m, &n, &copya[1], &lda, &a[1], &
				    lda);
			    dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &b[1],
				     &ldb);

			    s_copy(srnamc_1.srnamt, "DGELSD", (ftnlen)6, (
				    ftnlen)6);
			    dgelsd_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &
				    s[1], &rcond, &crank, &work[1], &lwork, &
				    iwork[1], &info);
			    if (info != 0) {
				alaerh_(path, "DGELSD", &info, &c__0, " ", &m,
					 &n, &nrhs, &c_n1, &nb, &itype, &
					nfail, &nerrs, nout);
			    }

/*                       Test 15:  Compute relative error in svd */

			    if (rank > 0) {
				daxpy_(&mnmin, &c_b92, &copys[1], &c__1, &s[1]
					, &c__1);
				result[14] = dasum_(&mnmin, &s[1], &c__1) / 
					dasum_(&mnmin, &copys[1], &c__1) / (
					eps * (doublereal) mnmin);
			    } else {
				result[14] = 0.;
			    }

/*                       Test 16:  Compute error in solution */

			    dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &work[
				    1], &ldwork);
			    dqrt16_("No transpose", &m, &n, &nrhs, &copya[1], 
				    &lda, &b[1], &ldb, &work[1], &ldwork, &
				    work[m * nrhs + 1], &result[15]);

/*                       Test 17:  Check norm of r'*A */

			    result[16] = 0.;
			    if (m > crank) {
				result[16] = dqrt17_("No transpose", &c__1, &
					m, &n, &nrhs, &copya[1], &lda, &b[1], 
					&ldb, &copyb[1], &ldb, &c__[1], &work[
					1], &lwork);
			    }

/*                       Test 18:  Check if x is in the rowspace of A */

			    result[17] = 0.;
			    if (n > crank) {
				result[17] = dqrt14_("No transpose", &m, &n, &
					nrhs, &copya[1], &lda, &b[1], &ldb, &
					work[1], &lwork);
			    }

/*                       Print information about the tests that did not   
                         pass the threshold. */

			    for (k = 7; k <= 18; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					alahd_(nout, path);
				    }
				    io___42.ciunit = *nout;
				    s_wsfe(&io___42);
				    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&nrhs, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&itype, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				    ++nfail;
				}
/* L90: */
			    }
			    nrun += 12;

/* L100: */
			}
L110:
			;
		    }
/* L120: */
		}
/* L130: */
	    }
/* L140: */
	}
/* L150: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DDRVLS */

} /* ddrvls_ */
Exemple #5
0
/* Subroutine */ int dchkpb_(logical *dotype, integer *nn, integer *nval, 
	integer *nnb, integer *nbval, integer *nns, integer *nsval, 
	doublereal *thresh, logical *tsterr, integer *nmax, doublereal *a, 
	doublereal *afac, doublereal *ainv, doublereal *b, doublereal *x, 
	doublereal *xact, doublereal *work, doublereal *rwork, integer *iwork,
	 integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO='\002,a1,\002', N=\002,i5,\002, KD"
	    "=\002,i5,\002, NB=\002,i4,\002, type \002,i2,\002, test \002,i2"
	    ",\002, ratio= \002,g12.5)";
    static char fmt_9998[] = "(\002 UPLO='\002,a1,\002', N=\002,i5,\002, KD"
	    "=\002,i5,\002, NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i"
	    "2,\002) = \002,g12.5)";
    static char fmt_9997[] = "(\002 UPLO='\002,a1,\002', N=\002,i5,\002, KD"
	    "=\002,i5,\002,\002,10x,\002 type \002,i2,\002, test(\002,i2,\002"
	    ") = \002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5, i__6;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer ldab, ioff, mode, koff, imat, info;
    static char path[3], dist[1];
    static integer irhs, nrhs;
    static char uplo[1], type__[1];
    static integer nrun, i__;
    extern /* Subroutine */ int alahd_(integer *, char *);
    static integer k, n;
    extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *);
    static integer nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    extern /* Subroutine */ int dpbt01_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *), dpbt02_(char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *), 
	    dpbt05_(char *, integer *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *);
    static integer kdval[4];
    static doublereal rcond;
    static integer nimat;
    static doublereal anorm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
	    *, doublereal *, integer *);
    static integer iuplo, izero, i1, i2, nerrs;
    static logical zerot;
    static char xtype[1];
    extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *);
    static integer kd, nb, in, kl;
    extern doublereal dlange_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static integer iw, ku;
    extern doublereal dlansb_(char *, char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *);
    extern /* Subroutine */ int dpbcon_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
	     integer *, integer *);
    static doublereal rcondc;
    static char packit[1];
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    dlarhs_(char *, char *, char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *), dlaset_(char *, 
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    integer *), dpbrfs_(char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, integer *, doublereal *,
	     integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, integer *), dpbtrf_(char *, 
	    integer *, integer *, doublereal *, integer *, integer *),
	     alasum_(char *, integer *, integer *, integer *, integer *);
    static doublereal cndnum;
    extern /* Subroutine */ int dlatms_(integer *, integer *, char *, integer 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublereal *, integer *, doublereal 
	    *, integer *);
    static doublereal ainvnm;
    extern /* Subroutine */ int derrpo_(char *, integer *), dpbtrs_(
	    char *, integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, integer *), xlaenv_(integer *, 
	    integer *);
    static doublereal result[7];
    static integer lda, ikd, inb, nkd;

    /* Fortran I/O blocks */
    static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___48 = { 0, 0, 0, fmt_9997, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       December 7, 1999   


    Purpose   
    =======   

    DCHKPB tests DPBTRF, -TRS, -RFS, and -CON.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    NNB     (input) INTEGER   
            The number of values of NB contained in the vector NBVAL.   

    NBVAL   (input) INTEGER array, dimension (NBVAL)   
            The values of the blocksize NB.   

    NNS     (input) INTEGER   
            The number of values of NRHS contained in the vector NSVAL.   

    NSVAL   (input) INTEGER array, dimension (NNS)   
            The values of the number of right hand sides NRHS.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    AFAC    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    AINV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX)   
            where NSMAX is the largest entry in NSVAL.   

    X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX)   

    XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX)   

    WORK    (workspace) DOUBLE PRECISION array, dimension   
                        (NMAX*max(3,NSMAX))   

    RWORK   (workspace) DOUBLE PRECISION array, dimension   
                        (max(NMAX,2*NSMAX))   

    IWORK   (workspace) INTEGER array, dimension (NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nsval;
    --nbval;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "PB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	derrpo_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);
    kdval[0] = 0;

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';

/*        Set limits on the number of loop iterations.   

   Computing MAX */
	i__2 = 1, i__3 = min(n,4);
	nkd = max(i__2,i__3);
	nimat = 8;
	if (n == 0) {
	    nimat = 1;
	}

	kdval[1] = n + (n + 1) / 4;
	kdval[2] = (n * 3 - 1) / 4;
	kdval[3] = (n + 1) / 4;

	i__2 = nkd;
	for (ikd = 1; ikd <= i__2; ++ikd) {

/*           Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order   
             makes it easier to skip redundant values for small values   
             of N. */

	    kd = kdval[ikd - 1];
	    ldab = kd + 1;

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		koff = 1;
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
/* Computing MAX */
		    i__3 = 1, i__4 = kd + 2 - n;
		    koff = max(i__3,i__4);
		    *(unsigned char *)packit = 'Q';
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'B';
		}

		i__3 = nimat;
		for (imat = 1; imat <= i__3; ++imat) {

/*                 Do the tests only if DOTYPE( IMAT ) is true. */

		    if (! dotype[imat]) {
			goto L60;
		    }

/*                 Skip types 2, 3, or 4 if the matrix size is too small. */

		    zerot = imat >= 2 && imat <= 4;
		    if (zerot && n < imat - 1) {
			goto L60;
		    }

		    if (! zerot || ! dotype[1]) {

/*                    Set up parameters with DLATB4 and generate a test   
                      matrix with DLATMS. */

			dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm,
				 &mode, &cndnum, dist);

			s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)6, (ftnlen)
				6);
			dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode,
				 &cndnum, &anorm, &kd, &kd, packit, &a[koff], 
				&ldab, &work[1], &info);

/*                    Check error code from DLATMS. */

			if (info != 0) {
			    alaerh_(path, "DLATMS", &info, &c__0, uplo, &n, &
				    n, &kd, &kd, &c_n1, &imat, &nfail, &nerrs,
				     nout);
			    goto L60;
			}
		    } else if (izero > 0) {

/*                    Use the same matrix for types 3 and 4 as for type   
                      2 by copying back the zeroed out column, */

			iw = (lda << 1) + 1;
			if (iuplo == 1) {
			    ioff = (izero - 1) * ldab + kd + 1;
			    i__4 = izero - i1;
			    dcopy_(&i__4, &work[iw], &c__1, &a[ioff - izero + 
				    i1], &c__1);
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    dcopy_(&i__4, &work[iw], &c__1, &a[ioff], &i__5);
			} else {
			    ioff = (i1 - 1) * ldab + 1;
			    i__4 = izero - i1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    dcopy_(&i__4, &work[iw], &c__1, &a[ioff + izero - 
				    i1], &i__5);
			    ioff = (izero - 1) * ldab + 1;
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
			    dcopy_(&i__4, &work[iw], &c__1, &a[ioff], &c__1);
			}
		    }

/*                 For types 2-4, zero one row and column of the matrix   
                   to test that INFO is returned correctly. */

		    izero = 0;
		    if (zerot) {
			if (imat == 2) {
			    izero = 1;
			} else if (imat == 3) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}

/*                    Save the zeroed out row and column in WORK(*,3) */

			iw = lda << 1;
/* Computing MIN */
			i__5 = (kd << 1) + 1;
			i__4 = min(i__5,n);
			for (i__ = 1; i__ <= i__4; ++i__) {
			    work[iw + i__] = 0.;
/* L20: */
			}
			++iw;
/* Computing MAX */
			i__4 = izero - kd;
			i1 = max(i__4,1);
/* Computing MIN */
			i__4 = izero + kd;
			i2 = min(i__4,n);

			if (iuplo == 1) {
			    ioff = (izero - 1) * ldab + kd + 1;
			    i__4 = izero - i1;
			    dswap_(&i__4, &a[ioff - izero + i1], &c__1, &work[
				    iw], &c__1);
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    dswap_(&i__4, &a[ioff], &i__5, &work[iw], &c__1);
			} else {
			    ioff = (i1 - 1) * ldab + 1;
			    i__4 = izero - i1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    dswap_(&i__4, &a[ioff + izero - i1], &i__5, &work[
				    iw], &c__1);
			    ioff = (izero - 1) * ldab + 1;
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
			    dswap_(&i__4, &a[ioff], &c__1, &work[iw], &c__1);
			}
		    }

/*                 Do for each value of NB in NBVAL */

		    i__4 = *nnb;
		    for (inb = 1; inb <= i__4; ++inb) {
			nb = nbval[inb];
			xlaenv_(&c__1, &nb);

/*                    Compute the L*L' or U'*U factorization of the band   
                      matrix. */

			i__5 = kd + 1;
			dlacpy_("Full", &i__5, &n, &a[1], &ldab, &afac[1], &
				ldab);
			s_copy(srnamc_1.srnamt, "DPBTRF", (ftnlen)6, (ftnlen)
				6);
			dpbtrf_(uplo, &n, &kd, &afac[1], &ldab, &info);

/*                    Check error code from DPBTRF. */

			if (info != izero) {
			    alaerh_(path, "DPBTRF", &info, &izero, uplo, &n, &
				    n, &kd, &kd, &nb, &imat, &nfail, &nerrs, 
				    nout);
			    goto L50;
			}

/*                    Skip the tests if INFO is not 0. */

			if (info != 0) {
			    goto L50;
			}

/* +    TEST 1   
                      Reconstruct matrix from factors and compute   
                      residual. */

			i__5 = kd + 1;
			dlacpy_("Full", &i__5, &n, &afac[1], &ldab, &ainv[1], 
				&ldab);
			dpbt01_(uplo, &n, &kd, &a[1], &ldab, &ainv[1], &ldab, 
				&rwork[1], result);

/*                    Print the test ratio if it is .GE. THRESH. */

			if (result[0] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___40.ciunit = *nout;
			    s_wsfe(&io___40);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&kd, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(
				    doublereal));
			    e_wsfe();
			    ++nfail;
			}
			++nrun;

/*                    Only do other tests if this is the first blocksize. */

			if (inb > 1) {
			    goto L50;
			}

/*                    Form the inverse of A so we can get a good estimate   
                      of RCONDC = 1/(norm(A) * norm(inv(A))). */

			dlaset_("Full", &n, &n, &c_b50, &c_b51, &ainv[1], &
				lda);
			s_copy(srnamc_1.srnamt, "DPBTRS", (ftnlen)6, (ftnlen)
				6);
			dpbtrs_(uplo, &n, &kd, &n, &afac[1], &ldab, &ainv[1], 
				&lda, &info);

/*                    Compute RCONDC = 1/(norm(A) * norm(inv(A))). */

			anorm = dlansb_("1", uplo, &n, &kd, &a[1], &ldab, &
				rwork[1]);
			ainvnm = dlange_("1", &n, &n, &ainv[1], &lda, &rwork[
				1]);
			if (anorm <= 0. || ainvnm <= 0.) {
			    rcondc = 1.;
			} else {
			    rcondc = 1. / anorm / ainvnm;
			}

			i__5 = *nns;
			for (irhs = 1; irhs <= i__5; ++irhs) {
			    nrhs = nsval[irhs];

/* +    TEST 2   
                      Solve and compute residual for A * X = B. */

			    s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)6, (
				    ftnlen)6);
			    dlarhs_(path, xtype, uplo, " ", &n, &n, &kd, &kd, 
				    &nrhs, &a[1], &ldab, &xact[1], &lda, &b[1]
				    , &lda, iseed, &info);
			    dlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "DPBTRS", (ftnlen)6, (
				    ftnlen)6);
			    dpbtrs_(uplo, &n, &kd, &nrhs, &afac[1], &ldab, &x[
				    1], &lda, &info);

/*                    Check error code from DPBTRS. */

			    if (info != 0) {
				alaerh_(path, "DPBTRS", &info, &c__0, uplo, &
					n, &n, &kd, &kd, &nrhs, &imat, &nfail,
					 &nerrs, nout);
			    }

			    dlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], 
				    &lda);
			    dpbt02_(uplo, &n, &kd, &nrhs, &a[1], &ldab, &x[1],
				     &lda, &work[1], &lda, &rwork[1], &result[
				    1]);

/* +    TEST 3   
                      Check solution from generated exact solution. */

			    dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[2]);

/* +    TESTS 4, 5, and 6   
                      Use iterative refinement to improve the solution. */

			    s_copy(srnamc_1.srnamt, "DPBRFS", (ftnlen)6, (
				    ftnlen)6);
			    dpbrfs_(uplo, &n, &kd, &nrhs, &a[1], &ldab, &afac[
				    1], &ldab, &b[1], &lda, &x[1], &lda, &
				    rwork[1], &rwork[nrhs + 1], &work[1], &
				    iwork[1], &info);

/*                    Check error code from DPBRFS. */

			    if (info != 0) {
				alaerh_(path, "DPBRFS", &info, &c__0, uplo, &
					n, &n, &kd, &kd, &nrhs, &imat, &nfail,
					 &nerrs, nout);
			    }

			    dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[3]);
			    dpbt05_(uplo, &n, &kd, &nrhs, &a[1], &ldab, &b[1],
				     &lda, &x[1], &lda, &xact[1], &lda, &
				    rwork[1], &rwork[nrhs + 1], &result[4]);

/*                       Print information about the tests that did not   
                         pass the threshold. */

			    for (k = 2; k <= 6; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					alahd_(nout, path);
				    }
				    io___46.ciunit = *nout;
				    s_wsfe(&io___46);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&kd, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&nrhs, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				    ++nfail;
				}
/* L30: */
			    }
			    nrun += 5;
/* L40: */
			}

/* +    TEST 7   
                      Get an estimate of RCOND = 1/CNDNUM. */

			s_copy(srnamc_1.srnamt, "DPBCON", (ftnlen)6, (ftnlen)
				6);
			dpbcon_(uplo, &n, &kd, &afac[1], &ldab, &anorm, &
				rcond, &work[1], &iwork[1], &info);

/*                    Check error code from DPBCON. */

			if (info != 0) {
			    alaerh_(path, "DPBCON", &info, &c__0, uplo, &n, &
				    n, &kd, &kd, &c_n1, &imat, &nfail, &nerrs,
				     nout);
			}

			result[6] = dget06_(&rcond, &rcondc);

/*                    Print the test ratio if it is .GE. THRESH. */

			if (result[6] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___48.ciunit = *nout;
			    s_wsfe(&io___48);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&kd, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(
				    doublereal));
			    e_wsfe();
			    ++nfail;
			}
			++nrun;
L50:
			;
		    }
L60:
		    ;
		}
/* L70: */
	    }
/* L80: */
	}
/* L90: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DCHKPB */

} /* dchkpb_ */
Exemple #6
0
/* Subroutine */ int dchksy_(logical *dotype, integer *nn, integer *nval, 
	integer *nnb, integer *nbval, integer *nns, integer *nsval, 
	doublereal *thresh, logical *tsterr, integer *nmax, doublereal *a, 
	doublereal *afac, doublereal *ainv, doublereal *b, doublereal *x, 
	doublereal *xact, doublereal *work, doublereal *rwork, integer *iwork,
	 integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "NB =\002,i4,\002, type \002,i2,\002, test \002,i2,\002, ratio "
	    "=\002,g12.5)";
    static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g"
	    "12.5)";
    static char fmt_9997[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002"
	    ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)"
	    ;

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer ioff, mode, imat, info;
    static char path[3], dist[1];
    static integer irhs, nrhs;
    static char uplo[1], type__[1];
    static integer nrun, i__, j, k;
    extern /* Subroutine */ int alahd_(integer *, char *);
    static integer n;
    extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *);
    static integer nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    static doublereal rcond;
    static integer nimat;
    extern /* Subroutine */ int dpot02_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *), dpot03_(char *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *), dpot05_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *);
    static doublereal anorm;
    extern /* Subroutine */ int dsyt01_(char *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *);
    static integer iuplo, izero, i1, i2, nerrs, lwork;
    static logical zerot;
    static char xtype[1];
    extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *);
    static integer nb, in, kl;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static integer ku, nt;
    static doublereal rcondc;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    dlarhs_(char *, char *, char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *), alasum_(char *, 
	    integer *, integer *, integer *, integer *);
    static doublereal cndnum;
    extern /* Subroutine */ int dlatms_(integer *, integer *, char *, integer 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublereal *, integer *, doublereal 
	    *, integer *);
    extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
	    integer *, doublereal *);
    static logical trfcon;
    extern /* Subroutine */ int xlaenv_(integer *, integer *), dsycon_(char *,
	     integer *, doublereal *, integer *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, integer *), 
	    derrsy_(char *, integer *), dsyrfs_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *), dsytrf_(char *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, integer *);
    static doublereal result[8];
    extern /* Subroutine */ int dsytri_(char *, integer *, doublereal *, 
	    integer *, integer *, doublereal *, integer *), dsytrs_(
	    char *, integer *, integer *, doublereal *, integer *, integer *, 
	    doublereal *, integer *, integer *);
    static integer lda, inb;

    /* Fortran I/O blocks */
    static cilist io___39 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9997, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       December 7, 1999   


    Purpose   
    =======   

    DCHKSY tests DSYTRF, -TRI, -TRS, -RFS, and -CON.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    NNB     (input) INTEGER   
            The number of values of NB contained in the vector NBVAL.   

    NBVAL   (input) INTEGER array, dimension (NBVAL)   
            The values of the blocksize NB.   

    NNS     (input) INTEGER   
            The number of values of NRHS contained in the vector NSVAL.   

    NSVAL   (input) INTEGER array, dimension (NNS)   
            The values of the number of right hand sides NRHS.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    AFAC    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    AINV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX)   
            where NSMAX is the largest entry in NSVAL.   

    X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX)   

    XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX)   

    WORK    (workspace) DOUBLE PRECISION array, dimension   
                        (NMAX*max(3,NSMAX))   

    RWORK   (workspace) DOUBLE PRECISION array, dimension   
                        (max(NMAX,2*NSMAX))   

    IWORK   (workspace) INTEGER array, dimension (2*NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nsval;
    --nbval;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "SY", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	derrsy_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 10;
	if (n <= 0) {
	    nimat = 1;
	}

	izero = 0;
	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L170;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L170;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];

/*              Set up parameters with DLATB4 and generate a test matrix   
                with DLATMS. */

		dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)6, (ftnlen)6);
		dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &work[1],
			 &info);

/*              Check error code from DLATMS. */

		if (info != 0) {
		    alaerh_(path, "DLATMS", &info, &c__0, uplo, &n, &n, &c_n1,
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L160;
		}

/*              For types 3-6, zero one or more rows and columns of   
                the matrix to test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

		    if (imat < 6) {

/*                    Set row and column IZERO to zero. */

			if (iuplo == 1) {
			    ioff = (izero - 1) * lda;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				a[ioff + i__] = 0.;
/* L20: */
			    }
			    ioff += izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				a[ioff] = 0.;
				ioff += lda;
/* L30: */
			    }
			} else {
			    ioff = izero;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				a[ioff] = 0.;
				ioff += lda;
/* L40: */
			    }
			    ioff -= izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				a[ioff + i__] = 0.;
/* L50: */
			    }
			}
		    } else {
			ioff = 0;
			if (iuplo == 1) {

/*                       Set the first IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i2 = min(j,izero);
				i__4 = i2;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    a[ioff + i__] = 0.;
/* L60: */
				}
				ioff += lda;
/* L70: */
			    }
			} else {

/*                       Set the last IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i1 = max(j,izero);
				i__4 = n;
				for (i__ = i1; i__ <= i__4; ++i__) {
				    a[ioff + i__] = 0.;
/* L80: */
				}
				ioff += lda;
/* L90: */
			    }
			}
		    }
		} else {
		    izero = 0;
		}

/*              Do for each value of NB in NBVAL */

		i__3 = *nnb;
		for (inb = 1; inb <= i__3; ++inb) {
		    nb = nbval[inb];
		    xlaenv_(&c__1, &nb);

/*                 Compute the L*D*L' or U*D*U' factorization of the   
                   matrix. */

		    dlacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda);
		    lwork = max(2,nb) * lda;
		    s_copy(srnamc_1.srnamt, "DSYTRF", (ftnlen)6, (ftnlen)6);
		    dsytrf_(uplo, &n, &afac[1], &lda, &iwork[1], &ainv[1], &
			    lwork, &info);

/*                 Adjust the expected value of INFO to account for   
                   pivoting. */

		    k = izero;
		    if (k > 0) {
L100:
			if (iwork[k] < 0) {
			    if (iwork[k] != -k) {
				k = -iwork[k];
				goto L100;
			    }
			} else if (iwork[k] != k) {
			    k = iwork[k];
			    goto L100;
			}
		    }

/*                 Check error code from DSYTRF. */

		    if (info != k) {
			alaerh_(path, "DSYTRF", &info, &k, uplo, &n, &n, &
				c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout);
		    }
		    if (info != 0) {
			trfcon = TRUE_;
		    } else {
			trfcon = FALSE_;
		    }

/* +    TEST 1   
                   Reconstruct matrix from factors and compute residual. */

		    dsyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &iwork[1], 
			    &ainv[1], &lda, &rwork[1], result);
		    nt = 1;

/* +    TEST 2   
                   Form the inverse and compute the residual. */

		    if (inb == 1 && ! trfcon) {
			dlacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda);
			s_copy(srnamc_1.srnamt, "DSYTRI", (ftnlen)6, (ftnlen)
				6);
			dsytri_(uplo, &n, &ainv[1], &lda, &iwork[1], &work[1],
				 &info);

/*                 Check error code from DSYTRI. */

			if (info != 0) {
			    alaerh_(path, "DSYTRI", &info, &c_n1, uplo, &n, &
				    n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &
				    nerrs, nout);
			}

			dpot03_(uplo, &n, &a[1], &lda, &ainv[1], &lda, &work[
				1], &lda, &rwork[1], &rcondc, &result[1]);
			nt = 2;
		    }

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    i__4 = nt;
		    for (k = 1; k <= i__4; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___39.ciunit = *nout;
			    s_wsfe(&io___39);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L110: */
		    }
		    nrun += nt;

/*                 Skip the other tests if this is not the first block   
                   size. */

		    if (inb > 1) {
			goto L150;
		    }

/*                 Do only the condition estimate if INFO is not 0. */

		    if (trfcon) {
			rcondc = 0.;
			goto L140;
		    }

		    i__4 = *nns;
		    for (irhs = 1; irhs <= i__4; ++irhs) {
			nrhs = nsval[irhs];

/* +    TEST 3   
                   Solve and compute residual for  A * X = B. */

			s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)6, (ftnlen)
				6);
			dlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &
				nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
				lda, iseed, &info);
			dlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);

			s_copy(srnamc_1.srnamt, "DSYTRS", (ftnlen)6, (ftnlen)
				6);
			dsytrs_(uplo, &n, &nrhs, &afac[1], &lda, &iwork[1], &
				x[1], &lda, &info);

/*                 Check error code from DSYTRS. */

			if (info != 0) {
			    alaerh_(path, "DSYTRS", &info, &c__0, uplo, &n, &
				    n, &c_n1, &c_n1, &nrhs, &imat, &nfail, &
				    nerrs, nout);
			}

			dlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &
				lda);
			dpot02_(uplo, &n, &nrhs, &a[1], &lda, &x[1], &lda, &
				work[1], &lda, &rwork[1], &result[2]);

/* +    TEST 4   
                   Check solution from generated exact solution. */

			dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[3]);

/* +    TESTS 5, 6, and 7   
                   Use iterative refinement to improve the solution. */

			s_copy(srnamc_1.srnamt, "DSYRFS", (ftnlen)6, (ftnlen)
				6);
			dsyrfs_(uplo, &n, &nrhs, &a[1], &lda, &afac[1], &lda, 
				&iwork[1], &b[1], &lda, &x[1], &lda, &rwork[1]
				, &rwork[nrhs + 1], &work[1], &iwork[n + 1], &
				info);

/*                 Check error code from DSYRFS. */

			if (info != 0) {
			    alaerh_(path, "DSYRFS", &info, &c__0, uplo, &n, &
				    n, &c_n1, &c_n1, &nrhs, &imat, &nfail, &
				    nerrs, nout);
			}

			dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[4]);
			dpot05_(uplo, &n, &nrhs, &a[1], &lda, &b[1], &lda, &x[
				1], &lda, &xact[1], &lda, &rwork[1], &rwork[
				nrhs + 1], &result[5]);

/*                    Print information about the tests that did not pass   
                      the threshold. */

			for (k = 3; k <= 7; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L120: */
			}
			nrun += 5;
/* L130: */
		    }

/* +    TEST 8   
                   Get an estimate of RCOND = 1/CNDNUM. */

L140:
		    anorm = dlansy_("1", uplo, &n, &a[1], &lda, &rwork[1]);
		    s_copy(srnamc_1.srnamt, "DSYCON", (ftnlen)6, (ftnlen)6);
		    dsycon_(uplo, &n, &afac[1], &lda, &iwork[1], &anorm, &
			    rcond, &work[1], &iwork[n + 1], &info);

/*                 Check error code from DSYCON. */

		    if (info != 0) {
			alaerh_(path, "DSYCON", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    result[7] = dget06_(&rcond, &rcondc);

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    if (result[7] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___44.ciunit = *nout;
			s_wsfe(&io___44);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			++nfail;
		    }
		    ++nrun;
L150:
		    ;
		}

L160:
		;
	    }
L170:
	    ;
	}
/* L180: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DCHKSY */

} /* dchksy_ */
Exemple #7
0
/* Subroutine */ int cdrvgb_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, complex *a, integer *la, 
	 complex *afb, integer *lafb, complex *asav, complex *b, complex *
	bsav, complex *x, complex *xact, real *s, complex *work, real *rwork, 
	integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*4] = "N" "R" "C" "B";

    /* Format strings */
    static char fmt_9999[] = "(\002 *** In CDRVGB, LA=\002,i5,\002 is too sm"
	    "all for N=\002,i5,\002, KU=\002,i5,\002, KL=\002,i5,/\002 ==> In"
	    "crease LA to at least \002,i5)";
    static char fmt_9998[] = "(\002 *** In CDRVGB, LAFB=\002,i5,\002 is too "
	    "small for N=\002,i5,\002, KU=\002,i5,\002, KL=\002,i5,/\002 ==> "
	    "Increase LAFB to at least \002,i5)";
    static char fmt_9997[] = "(1x,a6,\002, N=\002,i5,\002, KL=\002,i5,\002, "
	    "KU=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12."
	    "5)";
    static char fmt_9995[] = "(1x,a6,\002( '\002,a1,\002','\002,a1,\002',"
	    "\002,i5,\002,\002,i5,\002,\002,i5,\002,...), EQUED='\002,a1,\002"
	    "', type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9996[] = "(1x,a6,\002( '\002,a1,\002','\002,a1,\002',"
	    "\002,i5,\002,\002,i5,\002,\002,i5,\002,...), type \002,i1,\002, "
	    "test(\002,i1,\002)=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, 
	    i__11[2];
    real r__1, r__2;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
    double c_abs(complex *);

    /* Local variables */
    integer i__, j, k, n, i1, i2, k1, nb, in, kl, ku, nt, lda, ldb, ikl, nkl, 
	    iku, nku;
    char fact[1];
    integer ioff, mode;
    real amax;
    char path[3];
    integer imat, info;
    char dist[1];
    real rdum[1];
    char type__[1];
    integer nrun, ldafb;
    extern /* Subroutine */ int cgbt01_(integer *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, integer *, integer *, 
	    complex *, real *), cgbt02_(char *, integer *, integer *, integer 
	    *, integer *, integer *, complex *, integer *, complex *, integer 
	    *, complex *, integer *, real *), cgbt05_(char *, integer 
	    *, integer *, integer *, integer *, complex *, integer *, complex 
	    *, integer *, complex *, integer *, complex *, integer *, real *, 
	    real *, real *);
    integer ifact;
    extern /* Subroutine */ int cget04_(integer *, integer *, complex *, 
	    integer *, complex *, integer *, real *, real *);
    integer nfail, iseed[4], nfact;
    extern logical lsame_(char *, char *);
    char equed[1];
    integer nbmin;
    real rcond, roldc;
    extern /* Subroutine */ int cgbsv_(integer *, integer *, integer *, 
	    integer *, complex *, integer *, integer *, complex *, integer *, 
	    integer *);
    integer nimat;
    real roldi;
    extern doublereal sget06_(real *, real *);
    real anorm;
    integer itran;
    logical equil;
    real roldo;
    char trans[1];
    integer izero, nerrs;
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int clatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
), aladhd_(integer *, char *);
    extern doublereal clangb_(char *, integer *, integer *, integer *, 
	    complex *, integer *, real *), clange_(char *, integer *, 
	    integer *, complex *, integer *, real *);
    extern /* Subroutine */ int claqgb_(integer *, integer *, integer *, 
	    integer *, complex *, integer *, real *, real *, real *, real *, 
	    real *, char *), alaerh_(char *, char *, integer *, 
	    integer *, char *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *);
    logical prefac;
    real colcnd;
    extern doublereal clantb_(char *, char *, char *, integer *, integer *, 
	    complex *, integer *, real *);
    extern /* Subroutine */ int cgbequ_(integer *, integer *, integer *, 
	    integer *, complex *, integer *, real *, real *, real *, real *, 
	    real *, integer *);
    real rcondc;
    extern doublereal slamch_(char *);
    logical nofact;
    extern /* Subroutine */ int cgbtrf_(integer *, integer *, integer *, 
	    integer *, complex *, integer *, integer *, integer *);
    integer iequed;
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *);
    real rcondi;
    extern /* Subroutine */ int clarhs_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, integer *, integer *, complex *, 
	    integer *, complex *, integer *, complex *, integer *, integer *, 
	    integer *), claset_(char *, 
	    integer *, integer *, complex *, complex *, complex *, integer *), alasvm_(char *, integer *, integer *, integer *, integer 
	    *);
    real cndnum, anormi, rcondo, ainvnm;
    extern /* Subroutine */ int cgbtrs_(char *, integer *, integer *, integer 
	    *, integer *, complex *, integer *, integer *, complex *, integer 
	    *, integer *), clatms_(integer *, integer *, char *, 
	    integer *, char *, real *, integer *, real *, real *, integer *, 
	    integer *, char *, complex *, integer *, complex *, integer *);
    logical trfcon;
    real anormo, rowcnd;
    extern /* Subroutine */ int cgbsvx_(char *, char *, integer *, integer *, 
	    integer *, integer *, complex *, integer *, complex *, integer *, 
	    integer *, char *, real *, real *, complex *, integer *, complex *
, integer *, real *, real *, real *, complex *, real *, integer *), xlaenv_(integer *, integer *);
    real anrmpv;
    extern /* Subroutine */ int cerrvx_(char *, integer *);
    real result[7], rpvgrw;

    /* Fortran I/O blocks */
    static cilist io___26 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___27 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___65 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___73 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___74 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___75 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___76 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___77 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___78 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___79 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___80 = { 0, 0, 0, fmt_9996, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CDRVGB tests the driver routines CGBSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) COMPLEX array, dimension (LA) */

/*  LA      (input) INTEGER */
/*          The length of the array A.  LA >= (2*NMAX-1)*NMAX */
/*          where NMAX is the largest entry in NVAL. */

/*  AFB     (workspace) COMPLEX array, dimension (LAFB) */

/*  LAFB    (input) INTEGER */
/*          The length of the array AFB.  LAFB >= (3*NMAX-2)*NMAX */
/*          where NMAX is the largest entry in NVAL. */

/*  ASAV    (workspace) COMPLEX array, dimension (LA) */

/*  B       (workspace) COMPLEX array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) COMPLEX array, dimension (NMAX*NRHS) */

/*  X       (workspace) COMPLEX array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) COMPLEX array, dimension (NMAX*NRHS) */

/*  S       (workspace) REAL array, dimension (2*NMAX) */

/*  WORK    (workspace) COMPLEX array, dimension */
/*                      (NMAX*max(3,NRHS,NMAX)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NRHS)) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afb;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	cerrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	ldb = max(n,1);
	*(unsigned char *)xtype = 'N';

/*        Set limits on the number of loop iterations. */

/* Computing MAX */
	i__2 = 1, i__3 = min(n,4);
	nkl = max(i__2,i__3);
	if (n == 0) {
	    nkl = 1;
	}
	nku = nkl;
	nimat = 8;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nkl;
	for (ikl = 1; ikl <= i__2; ++ikl) {

/*           Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes */
/*           it easier to skip redundant values for small values of N. */

	    if (ikl == 1) {
		kl = 0;
	    } else if (ikl == 2) {
/* Computing MAX */
		i__3 = n - 1;
		kl = max(i__3,0);
	    } else if (ikl == 3) {
		kl = (n * 3 - 1) / 4;
	    } else if (ikl == 4) {
		kl = (n + 1) / 4;
	    }
	    i__3 = nku;
	    for (iku = 1; iku <= i__3; ++iku) {

/*              Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order */
/*              makes it easier to skip redundant values for small */
/*              values of N. */

		if (iku == 1) {
		    ku = 0;
		} else if (iku == 2) {
/* Computing MAX */
		    i__4 = n - 1;
		    ku = max(i__4,0);
		} else if (iku == 3) {
		    ku = (n * 3 - 1) / 4;
		} else if (iku == 4) {
		    ku = (n + 1) / 4;
		}

/*              Check that A and AFB are big enough to generate this */
/*              matrix. */

		lda = kl + ku + 1;
		ldafb = (kl << 1) + ku + 1;
		if (lda * n > *la || ldafb * n > *lafb) {
		    if (nfail == 0 && nerrs == 0) {
			aladhd_(nout, path);
		    }
		    if (lda * n > *la) {
			io___26.ciunit = *nout;
			s_wsfe(&io___26);
			do_fio(&c__1, (char *)&(*la), (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer));
			i__4 = n * (kl + ku + 1);
			do_fio(&c__1, (char *)&i__4, (ftnlen)sizeof(integer));
			e_wsfe();
			++nerrs;
		    }
		    if (ldafb * n > *lafb) {
			io___27.ciunit = *nout;
			s_wsfe(&io___27);
			do_fio(&c__1, (char *)&(*lafb), (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer));
			i__4 = n * ((kl << 1) + ku + 1);
			do_fio(&c__1, (char *)&i__4, (ftnlen)sizeof(integer));
			e_wsfe();
			++nerrs;
		    }
		    goto L130;
		}

		i__4 = nimat;
		for (imat = 1; imat <= i__4; ++imat) {

/*                 Do the tests only if DOTYPE( IMAT ) is true. */

		    if (! dotype[imat]) {
			goto L120;
		    }

/*                 Skip types 2, 3, or 4 if the matrix is too small. */

		    zerot = imat >= 2 && imat <= 4;
		    if (zerot && n < imat - 1) {
			goto L120;
		    }

/*                 Set up parameters with CLATB4 and generate a */
/*                 test matrix with CLATMS. */

		    clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &
			    mode, &cndnum, dist);
		    rcondc = 1.f / cndnum;

		    s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)6, (ftnlen)6);
		    clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			    cndnum, &anorm, &kl, &ku, "Z", &a[1], &lda, &work[
			    1], &info);

/*                 Check the error code from CLATMS. */

		    if (info != 0) {
			alaerh_(path, "CLATMS", &info, &c__0, " ", &n, &n, &
				kl, &ku, &c_n1, &imat, &nfail, &nerrs, nout);
			goto L120;
		    }

/*                 For types 2, 3, and 4, zero one or more columns of */
/*                 the matrix to test that INFO is returned correctly. */

		    izero = 0;
		    if (zerot) {
			if (imat == 2) {
			    izero = 1;
			} else if (imat == 3) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}
			ioff = (izero - 1) * lda;
			if (imat < 4) {
/* Computing MAX */
			    i__5 = 1, i__6 = ku + 2 - izero;
			    i1 = max(i__5,i__6);
/* Computing MIN */
			    i__5 = kl + ku + 1, i__6 = ku + 1 + (n - izero);
			    i2 = min(i__5,i__6);
			    i__5 = i2;
			    for (i__ = i1; i__ <= i__5; ++i__) {
				i__6 = ioff + i__;
				a[i__6].r = 0.f, a[i__6].i = 0.f;
/* L20: */
			    }
			} else {
			    i__5 = n;
			    for (j = izero; j <= i__5; ++j) {
/* Computing MAX */
				i__6 = 1, i__7 = ku + 2 - j;
/* Computing MIN */
				i__9 = kl + ku + 1, i__10 = ku + 1 + (n - j);
				i__8 = min(i__9,i__10);
				for (i__ = max(i__6,i__7); i__ <= i__8; ++i__)
					 {
				    i__6 = ioff + i__;
				    a[i__6].r = 0.f, a[i__6].i = 0.f;
/* L30: */
				}
				ioff += lda;
/* L40: */
			    }
			}
		    }

/*                 Save a copy of the matrix A in ASAV. */

		    i__5 = kl + ku + 1;
		    clacpy_("Full", &i__5, &n, &a[1], &lda, &asav[1], &lda);

		    for (iequed = 1; iequed <= 4; ++iequed) {
			*(unsigned char *)equed = *(unsigned char *)&equeds[
				iequed - 1];
			if (iequed == 1) {
			    nfact = 3;
			} else {
			    nfact = 1;
			}

			i__5 = nfact;
			for (ifact = 1; ifact <= i__5; ++ifact) {
			    *(unsigned char *)fact = *(unsigned char *)&facts[
				    ifact - 1];
			    prefac = lsame_(fact, "F");
			    nofact = lsame_(fact, "N");
			    equil = lsame_(fact, "E");

			    if (zerot) {
				if (prefac) {
				    goto L100;
				}
				rcondo = 0.f;
				rcondi = 0.f;

			    } else if (! nofact) {

/*                          Compute the condition number for comparison */
/*                          with the value returned by SGESVX (FACT = */
/*                          'N' reuses the condition number from the */
/*                          previous iteration with FACT = 'F'). */

				i__8 = kl + ku + 1;
				clacpy_("Full", &i__8, &n, &asav[1], &lda, &
					afb[kl + 1], &ldafb);
				if (equil || iequed > 1) {

/*                             Compute row and column scale factors to */
/*                             equilibrate the matrix A. */

				    cgbequ_(&n, &n, &kl, &ku, &afb[kl + 1], &
					    ldafb, &s[1], &s[n + 1], &rowcnd, 
					    &colcnd, &amax, &info);
				    if (info == 0 && n > 0) {
					if (lsame_(equed, "R")) {
					    rowcnd = 0.f;
					    colcnd = 1.f;
					} else if (lsame_(equed, "C")) {
					    rowcnd = 1.f;
					    colcnd = 0.f;
					} else if (lsame_(equed, "B")) {
					    rowcnd = 0.f;
					    colcnd = 0.f;
					}

/*                                Equilibrate the matrix. */

					claqgb_(&n, &n, &kl, &ku, &afb[kl + 1]
, &ldafb, &s[1], &s[n + 1], &
						rowcnd, &colcnd, &amax, equed);
				    }
				}

/*                          Save the condition number of the */
/*                          non-equilibrated system for use in CGET04. */

				if (equil) {
				    roldo = rcondo;
				    roldi = rcondi;
				}

/*                          Compute the 1-norm and infinity-norm of A. */

				anormo = clangb_("1", &n, &kl, &ku, &afb[kl + 
					1], &ldafb, &rwork[1]);
				anormi = clangb_("I", &n, &kl, &ku, &afb[kl + 
					1], &ldafb, &rwork[1]);

/*                          Factor the matrix A. */

				cgbtrf_(&n, &n, &kl, &ku, &afb[1], &ldafb, &
					iwork[1], &info);

/*                          Form the inverse of A. */

				claset_("Full", &n, &n, &c_b48, &c_b49, &work[
					1], &ldb);
				s_copy(srnamc_1.srnamt, "CGBTRS", (ftnlen)6, (
					ftnlen)6);
				cgbtrs_("No transpose", &n, &kl, &ku, &n, &
					afb[1], &ldafb, &iwork[1], &work[1], &
					ldb, &info);

/*                          Compute the 1-norm condition number of A. */

				ainvnm = clange_("1", &n, &n, &work[1], &ldb, 
					&rwork[1]);
				if (anormo <= 0.f || ainvnm <= 0.f) {
				    rcondo = 1.f;
				} else {
				    rcondo = 1.f / anormo / ainvnm;
				}

/*                          Compute the infinity-norm condition number */
/*                          of A. */

				ainvnm = clange_("I", &n, &n, &work[1], &ldb, 
					&rwork[1]);
				if (anormi <= 0.f || ainvnm <= 0.f) {
				    rcondi = 1.f;
				} else {
				    rcondi = 1.f / anormi / ainvnm;
				}
			    }

			    for (itran = 1; itran <= 3; ++itran) {

/*                          Do for each value of TRANS. */

				*(unsigned char *)trans = *(unsigned char *)&
					transs[itran - 1];
				if (itran == 1) {
				    rcondc = rcondo;
				} else {
				    rcondc = rcondi;
				}

/*                          Restore the matrix A. */

				i__8 = kl + ku + 1;
				clacpy_("Full", &i__8, &n, &asav[1], &lda, &a[
					1], &lda);

/*                          Form an exact solution and set the right hand */
/*                          side. */

				s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)6, (
					ftnlen)6);
				clarhs_(path, xtype, "Full", trans, &n, &n, &
					kl, &ku, nrhs, &a[1], &lda, &xact[1], 
					&ldb, &b[1], &ldb, iseed, &info);
				*(unsigned char *)xtype = 'C';
				clacpy_("Full", &n, nrhs, &b[1], &ldb, &bsav[
					1], &ldb);

				if (nofact && itran == 1) {

/*                             --- Test CGBSV  --- */

/*                             Compute the LU factorization of the matrix */
/*                             and solve the system. */

				    i__8 = kl + ku + 1;
				    clacpy_("Full", &i__8, &n, &a[1], &lda, &
					    afb[kl + 1], &ldafb);
				    clacpy_("Full", &n, nrhs, &b[1], &ldb, &x[
					    1], &ldb);

				    s_copy(srnamc_1.srnamt, "CGBSV ", (ftnlen)
					    6, (ftnlen)6);
				    cgbsv_(&n, &kl, &ku, nrhs, &afb[1], &
					    ldafb, &iwork[1], &x[1], &ldb, &
					    info);

/*                             Check error code from CGBSV . */

				    if (info != izero) {
					alaerh_(path, "CGBSV ", &info, &izero, 
						 " ", &n, &n, &kl, &ku, nrhs, 
						&imat, &nfail, &nerrs, nout);
				    }

/*                             Reconstruct matrix from factors and */
/*                             compute residual. */

				    cgbt01_(&n, &n, &kl, &ku, &a[1], &lda, &
					    afb[1], &ldafb, &iwork[1], &work[
					    1], result);
				    nt = 1;
				    if (izero == 0) {

/*                                Compute residual of the computed */
/*                                solution. */

					clacpy_("Full", &n, nrhs, &b[1], &ldb, 
						 &work[1], &ldb);
					cgbt02_("No transpose", &n, &n, &kl, &
						ku, nrhs, &a[1], &lda, &x[1], 
						&ldb, &work[1], &ldb, &result[
						1]);

/*                                Check solution from generated exact */
/*                                solution. */

					cget04_(&n, nrhs, &x[1], &ldb, &xact[
						1], &ldb, &rcondc, &result[2])
						;
					nt = 3;
				    }

/*                             Print information about the tests that did */
/*                             not pass the threshold. */

				    i__8 = nt;
				    for (k = 1; k <= i__8; ++k) {
					if (result[k - 1] >= *thresh) {
					    if (nfail == 0 && nerrs == 0) {
			  aladhd_(nout, path);
					    }
					    io___65.ciunit = *nout;
					    s_wsfe(&io___65);
					    do_fio(&c__1, "CGBSV ", (ftnlen)6)
						    ;
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&k, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&result[k - 
						    1], (ftnlen)sizeof(real));
					    e_wsfe();
					    ++nfail;
					}
/* L50: */
				    }
				    nrun += nt;
				}

/*                          --- Test CGBSVX --- */

				if (! prefac) {
				    i__8 = (kl << 1) + ku + 1;
				    claset_("Full", &i__8, &n, &c_b48, &c_b48, 
					     &afb[1], &ldafb);
				}
				claset_("Full", &n, nrhs, &c_b48, &c_b48, &x[
					1], &ldb);
				if (iequed > 1 && n > 0) {

/*                             Equilibrate the matrix if FACT = 'F' and */
/*                             EQUED = 'R', 'C', or 'B'. */

				    claqgb_(&n, &n, &kl, &ku, &a[1], &lda, &s[
					    1], &s[n + 1], &rowcnd, &colcnd, &
					    amax, equed);
				}

/*                          Solve the system and compute the condition */
/*                          number and error bounds using CGBSVX. */

				s_copy(srnamc_1.srnamt, "CGBSVX", (ftnlen)6, (
					ftnlen)6);
				cgbsvx_(fact, trans, &n, &kl, &ku, nrhs, &a[1]
, &lda, &afb[1], &ldafb, &iwork[1], 
					equed, &s[1], &s[ldb + 1], &b[1], &
					ldb, &x[1], &ldb, &rcond, &rwork[1], &
					rwork[*nrhs + 1], &work[1], &rwork[(*
					nrhs << 1) + 1], &info);

/*                          Check the error code from CGBSVX. */

				if (info != izero) {
/* Writing concatenation */
				    i__11[0] = 1, a__1[0] = fact;
				    i__11[1] = 1, a__1[1] = trans;
				    s_cat(ch__1, a__1, i__11, &c__2, (ftnlen)
					    2);
				    alaerh_(path, "CGBSVX", &info, &izero, 
					    ch__1, &n, &n, &kl, &ku, nrhs, &
					    imat, &nfail, &nerrs, nout);
				}
/*                          Compare RWORK(2*NRHS+1) from CGBSVX with the */
/*                          computed reciprocal pivot growth RPVGRW */

				if (info != 0) {
				    anrmpv = 0.f;
				    i__8 = info;
				    for (j = 1; j <= i__8; ++j) {
/* Computing MAX */
					i__6 = ku + 2 - j;
/* Computing MIN */
					i__9 = n + ku + 1 - j, i__10 = kl + 
						ku + 1;
					i__7 = min(i__9,i__10);
					for (i__ = max(i__6,1); i__ <= i__7; 
						++i__) {
/* Computing MAX */
					    r__1 = anrmpv, r__2 = c_abs(&a[
						    i__ + (j - 1) * lda]);
					    anrmpv = dmax(r__1,r__2);
/* L60: */
					}
/* L70: */
				    }
/* Computing MIN */
				    i__7 = info - 1, i__6 = kl + ku;
				    i__8 = min(i__7,i__6);
/* Computing MAX */
				    i__9 = 1, i__10 = kl + ku + 2 - info;
				    rpvgrw = clantb_("M", "U", "N", &info, &
					    i__8, &afb[max(i__9, i__10)], &
					    ldafb, rdum);
				    if (rpvgrw == 0.f) {
					rpvgrw = 1.f;
				    } else {
					rpvgrw = anrmpv / rpvgrw;
				    }
				} else {
				    i__8 = kl + ku;
				    rpvgrw = clantb_("M", "U", "N", &n, &i__8, 
					     &afb[1], &ldafb, rdum);
				    if (rpvgrw == 0.f) {
					rpvgrw = 1.f;
				    } else {
					rpvgrw = clangb_("M", &n, &kl, &ku, &
						a[1], &lda, rdum) /
						 rpvgrw;
				    }
				}
/* Computing MAX */
				r__2 = rwork[(*nrhs << 1) + 1];
				result[6] = (r__1 = rpvgrw - rwork[(*nrhs << 
					1) + 1], dabs(r__1)) / dmax(r__2,
					rpvgrw) / slamch_("E");

				if (! prefac) {

/*                             Reconstruct matrix from factors and */
/*                             compute residual. */

				    cgbt01_(&n, &n, &kl, &ku, &a[1], &lda, &
					    afb[1], &ldafb, &iwork[1], &work[
					    1], result);
				    k1 = 1;
				} else {
				    k1 = 2;
				}

				if (info == 0) {
				    trfcon = FALSE_;

/*                             Compute residual of the computed solution. */

				    clacpy_("Full", &n, nrhs, &bsav[1], &ldb, 
					    &work[1], &ldb);
				    cgbt02_(trans, &n, &n, &kl, &ku, nrhs, &
					    asav[1], &lda, &x[1], &ldb, &work[
					    1], &ldb, &result[1]);

/*                             Check solution from generated exact */
/*                             solution. */

				    if (nofact || prefac && lsame_(equed, 
					    "N")) {
					cget04_(&n, nrhs, &x[1], &ldb, &xact[
						1], &ldb, &rcondc, &result[2])
						;
				    } else {
					if (itran == 1) {
					    roldc = roldo;
					} else {
					    roldc = roldi;
					}
					cget04_(&n, nrhs, &x[1], &ldb, &xact[
						1], &ldb, &roldc, &result[2]);
				    }

/*                             Check the error bounds from iterative */
/*                             refinement. */

				    cgbt05_(trans, &n, &kl, &ku, nrhs, &asav[
					    1], &lda, &bsav[1], &ldb, &x[1], &
					    ldb, &xact[1], &ldb, &rwork[1], &
					    rwork[*nrhs + 1], &result[3]);
				} else {
				    trfcon = TRUE_;
				}

/*                          Compare RCOND from CGBSVX with the computed */
/*                          value in RCONDC. */

				result[5] = sget06_(&rcond, &rcondc);

/*                          Print information about the tests that did */
/*                          not pass the threshold. */

				if (! trfcon) {
				    for (k = k1; k <= 7; ++k) {
					if (result[k - 1] >= *thresh) {
					    if (nfail == 0 && nerrs == 0) {
			  aladhd_(nout, path);
					    }
					    if (prefac) {
			  io___73.ciunit = *nout;
			  s_wsfe(&io___73);
			  do_fio(&c__1, "CGBSVX", (ftnlen)6);
			  do_fio(&c__1, fact, (ftnlen)1);
			  do_fio(&c__1, trans, (ftnlen)1);
			  do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer));
			  do_fio(&c__1, equed, (ftnlen)1);
			  do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)
				  );
			  do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				  sizeof(real));
			  e_wsfe();
					    } else {
			  io___74.ciunit = *nout;
			  s_wsfe(&io___74);
			  do_fio(&c__1, "CGBSVX", (ftnlen)6);
			  do_fio(&c__1, fact, (ftnlen)1);
			  do_fio(&c__1, trans, (ftnlen)1);
			  do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)
				  );
			  do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				  sizeof(real));
			  e_wsfe();
					    }
					    ++nfail;
					}
/* L80: */
				    }
				    nrun = nrun + 7 - k1;
				} else {
				    if (result[0] >= *thresh && ! prefac) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					if (prefac) {
					    io___75.ciunit = *nout;
					    s_wsfe(&io___75);
					    do_fio(&c__1, "CGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, equed, (ftnlen)1);
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__1, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[0], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					} else {
					    io___76.ciunit = *nout;
					    s_wsfe(&io___76);
					    do_fio(&c__1, "CGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__1, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[0], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					}
					++nfail;
					++nrun;
				    }
				    if (result[5] >= *thresh) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					if (prefac) {
					    io___77.ciunit = *nout;
					    s_wsfe(&io___77);
					    do_fio(&c__1, "CGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, equed, (ftnlen)1);
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__6, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[5], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					} else {
					    io___78.ciunit = *nout;
					    s_wsfe(&io___78);
					    do_fio(&c__1, "CGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__6, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[5], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					}
					++nfail;
					++nrun;
				    }
				    if (result[6] >= *thresh) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					if (prefac) {
					    io___79.ciunit = *nout;
					    s_wsfe(&io___79);
					    do_fio(&c__1, "CGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, equed, (ftnlen)1);
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__7, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[6], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					} else {
					    io___80.ciunit = *nout;
					    s_wsfe(&io___80);
					    do_fio(&c__1, "CGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__7, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[6], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					}
					++nfail;
					++nrun;
				    }
				}
/* L90: */
			    }
L100:
			    ;
			}
/* L110: */
		    }
L120:
		    ;
		}
L130:
		;
	    }
/* L140: */
	}
/* L150: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);


    return 0;

/*     End of CDRVGB */

} /* cdrvgb_ */
Exemple #8
0
/* Subroutine */ int dchktr_(logical *dotype, integer *nn, integer *nval, 
	integer *nnb, integer *nbval, integer *nns, integer *nsval, 
	doublereal *thresh, logical *tsterr, integer *nmax, doublereal *a, 
	doublereal *ainv, doublereal *b, doublereal *x, doublereal *xact, 
	doublereal *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO='\002,a1,\002', DIAG='\002,a1,\002'"
	    ", N=\002,i5,\002, NB=\002,i4,\002, type \002,i2,\002, test(\002,"
	    "i2,\002)= \002,g12.5)";
    static char fmt_9998[] = "(\002 UPLO='\002,a1,\002', TRANS='\002,a1,\002"
	    "', DIAG='\002,a1,\002', N=\002,i5,\002, NB=\002,i4,\002, type"
	    " \002,i2,\002,                      test(\002,i2,\002)= \002,g12"
	    ".5)";
    static char fmt_9997[] = "(\002 NORM='\002,a1,\002', UPLO ='\002,a1,\002"
	    "', N=\002,i5,\002,\002,11x,\002 type \002,i2,\002, test(\002,i2"
	    ",\002)=\002,g12.5)";
    static char fmt_9996[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002', "
	    "'\002,a1,\002', '\002,a1,\002',\002,i5,\002, ... ), type \002,i2,"
	    "\002, test(\002,i2,\002)=\002,g12.5)";

    /* System generated locals */
    address a__1[2], a__2[3], a__3[4];
    integer i__1, i__2, i__3[2], i__4, i__5[3], i__6[4];
    char ch__1[2], ch__2[3], ch__3[4];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen), s_cat(char *,
	     char **, integer *, integer *, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, k, n, nb, in, lda, inb;
    char diag[1];
    integer imat, info;
    char path[3];
    integer irhs, nrhs;
    char norm[1], uplo[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer idiag;
    doublereal scale;
    extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *);
    integer nfail, iseed[4];
    extern logical lsame_(char *, char *);
    doublereal rcond, anorm;
    integer itran;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dtrt01_(char *, char *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *), dtrt02_(char *, char 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *), dtrt03_(char *, char *, 
	    char *, integer *, integer *, doublereal *, integer *, doublereal 
	    *, doublereal *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *), dtrt05_(char *, char *, char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *), dtrt06_(
	    doublereal *, doublereal *, char *, char *, integer *, doublereal 
	    *, integer *, doublereal *, doublereal *);
    char trans[1];
    integer iuplo, nerrs;
    doublereal dummy;
    char xtype[1];
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    doublereal rcondc;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    dlarhs_(char *, char *, char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *);
    doublereal rcondi;
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer 
	    *, integer *);
    doublereal rcondo;
    extern doublereal dlantr_(char *, char *, char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *);
    doublereal ainvnm;
    extern /* Subroutine */ int dlatrs_(char *, char *, char *, char *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *), dlattr_(
	    integer *, char *, char *, char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *), dtrcon_(char *, char *, char *, integer *
, doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), xlaenv_(integer *, integer *),
	     derrtr_(char *, integer *), dtrrfs_(char *, char *, char 
	    *, integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, integer *), 
	    dtrtri_(char *, char *, integer *, doublereal *, integer *, 
	    integer *);
    doublereal result[9];
    extern /* Subroutine */ int dtrtrs_(char *, char *, char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *);

    /* Fortran I/O blocks */
    static cilist io___27 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___36 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___38 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9996, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DCHKTR tests DTRTRI, -TRS, -RFS, and -CON, and DLATRS */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB contained in the vector NBVAL. */

/*  NBVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the blocksize NB. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The leading dimension of the work arrays. */
/*          NMAX >= the maximum value of N in NVAL. */

/*  A       (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AINV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension */
/*                      (NMAX*max(3,NSMAX)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension */
/*                      (max(NMAX,2*NSMAX)) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --a;
    --nsval;
    --nbval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "TR", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	derrtr_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL */

	n = nval[in];
	lda = max(1,n);
	*(unsigned char *)xtype = 'N';

	for (imat = 1; imat <= 10; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L80;
	    }

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {

/*              Do first for UPLO = 'U', then for UPLO = 'L' */

		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];

/*              Call DLATTR to generate a triangular test matrix. */

		s_copy(srnamc_1.srnamt, "DLATTR", (ftnlen)6, (ftnlen)6);
		dlattr_(&imat, uplo, "No transpose", diag, iseed, &n, &a[1], &
			lda, &x[1], &work[1], &info);

/*              Set IDIAG = 1 for non-unit matrices, 2 for unit. */

		if (lsame_(diag, "N")) {
		    idiag = 1;
		} else {
		    idiag = 2;
		}

		i__2 = *nnb;
		for (inb = 1; inb <= i__2; ++inb) {

/*                 Do for each blocksize in NBVAL */

		    nb = nbval[inb];
		    xlaenv_(&c__1, &nb);

/* +    TEST 1 */
/*                 Form the inverse of A. */

		    dlacpy_(uplo, &n, &n, &a[1], &lda, &ainv[1], &lda);
		    s_copy(srnamc_1.srnamt, "DTRTRI", (ftnlen)6, (ftnlen)6);
		    dtrtri_(uplo, diag, &n, &ainv[1], &lda, &info);

/*                 Check error code from DTRTRI. */

		    if (info != 0) {
/* Writing concatenation */
			i__3[0] = 1, a__1[0] = uplo;
			i__3[1] = 1, a__1[1] = diag;
			s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
			alaerh_(path, "DTRTRI", &info, &c__0, ch__1, &n, &n, &
				c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout);
		    }

/*                 Compute the infinity-norm condition number of A. */

		    anorm = dlantr_("I", uplo, diag, &n, &n, &a[1], &lda, &
			    rwork[1]);
		    ainvnm = dlantr_("I", uplo, diag, &n, &n, &ainv[1], &lda, 
			    &rwork[1]);
		    if (anorm <= 0. || ainvnm <= 0.) {
			rcondi = 1.;
		    } else {
			rcondi = 1. / anorm / ainvnm;
		    }

/*                 Compute the residual for the triangular matrix times */
/*                 its inverse.  Also compute the 1-norm condition number */
/*                 of A. */

		    dtrt01_(uplo, diag, &n, &a[1], &lda, &ainv[1], &lda, &
			    rcondo, &rwork[1], result);

/*                 Print the test ratio if it is .GE. THRESH. */

		    if (result[0] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___27.ciunit = *nout;
			s_wsfe(&io___27);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, diag, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			++nfail;
		    }
		    ++nrun;

/*                 Skip remaining tests if not the first block size. */

		    if (inb != 1) {
			goto L60;
		    }

		    i__4 = *nns;
		    for (irhs = 1; irhs <= i__4; ++irhs) {
			nrhs = nsval[irhs];
			*(unsigned char *)xtype = 'N';

			for (itran = 1; itran <= 3; ++itran) {

/*                    Do for op(A) = A, A**T, or A**H. */

			    *(unsigned char *)trans = *(unsigned char *)&
				    transs[itran - 1];
			    if (itran == 1) {
				*(unsigned char *)norm = 'O';
				rcondc = rcondo;
			    } else {
				*(unsigned char *)norm = 'I';
				rcondc = rcondi;
			    }

/* +    TEST 2 */
/*                       Solve and compute residual for op(A)*x = b. */

			    s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)6, (
				    ftnlen)6);
			    dlarhs_(path, xtype, uplo, trans, &n, &n, &c__0, &
				    idiag, &nrhs, &a[1], &lda, &xact[1], &lda, 
				     &b[1], &lda, iseed, &info);
			    *(unsigned char *)xtype = 'C';
			    dlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "DTRTRS", (ftnlen)6, (
				    ftnlen)6);
			    dtrtrs_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, 
				     &x[1], &lda, &info);

/*                       Check error code from DTRTRS. */

			    if (info != 0) {
/* Writing concatenation */
				i__5[0] = 1, a__2[0] = uplo;
				i__5[1] = 1, a__2[1] = trans;
				i__5[2] = 1, a__2[2] = diag;
				s_cat(ch__2, a__2, i__5, &c__3, (ftnlen)3);
				alaerh_(path, "DTRTRS", &info, &c__0, ch__2, &
					n, &n, &c_n1, &c_n1, &nrhs, &imat, &
					nfail, &nerrs, nout);
			    }

/*                       This line is needed on a Sun SPARCstation. */

			    if (n > 0) {
				dummy = a[1];
			    }

			    dtrt02_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, 
				     &x[1], &lda, &b[1], &lda, &work[1], &
				    result[1]);

/* +    TEST 3 */
/*                       Check solution from generated exact solution. */

			    dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[2]);

/* +    TESTS 4, 5, and 6 */
/*                       Use iterative refinement to improve the solution */
/*                       and compute error bounds. */

			    s_copy(srnamc_1.srnamt, "DTRRFS", (ftnlen)6, (
				    ftnlen)6);
			    dtrrfs_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, 
				     &b[1], &lda, &x[1], &lda, &rwork[1], &
				    rwork[nrhs + 1], &work[1], &iwork[1], &
				    info);

/*                       Check error code from DTRRFS. */

			    if (info != 0) {
/* Writing concatenation */
				i__5[0] = 1, a__2[0] = uplo;
				i__5[1] = 1, a__2[1] = trans;
				i__5[2] = 1, a__2[2] = diag;
				s_cat(ch__2, a__2, i__5, &c__3, (ftnlen)3);
				alaerh_(path, "DTRRFS", &info, &c__0, ch__2, &
					n, &n, &c_n1, &c_n1, &nrhs, &imat, &
					nfail, &nerrs, nout);
			    }

			    dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[3]);
			    dtrt05_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, 
				     &b[1], &lda, &x[1], &lda, &xact[1], &lda, 
				     &rwork[1], &rwork[nrhs + 1], &result[4]);

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    for (k = 2; k <= 6; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					alahd_(nout, path);
				    }
				    io___36.ciunit = *nout;
				    s_wsfe(&io___36);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, diag, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&nrhs, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				    ++nfail;
				}
/* L20: */
			    }
			    nrun += 5;
/* L30: */
			}
/* L40: */
		    }

/* +    TEST 7 */
/*                       Get an estimate of RCOND = 1/CNDNUM. */

		    for (itran = 1; itran <= 2; ++itran) {
			if (itran == 1) {
			    *(unsigned char *)norm = 'O';
			    rcondc = rcondo;
			} else {
			    *(unsigned char *)norm = 'I';
			    rcondc = rcondi;
			}
			s_copy(srnamc_1.srnamt, "DTRCON", (ftnlen)6, (ftnlen)
				6);
			dtrcon_(norm, uplo, diag, &n, &a[1], &lda, &rcond, &
				work[1], &iwork[1], &info);

/*                       Check error code from DTRCON. */

			if (info != 0) {
/* Writing concatenation */
			    i__5[0] = 1, a__2[0] = norm;
			    i__5[1] = 1, a__2[1] = uplo;
			    i__5[2] = 1, a__2[2] = diag;
			    s_cat(ch__2, a__2, i__5, &c__3, (ftnlen)3);
			    alaerh_(path, "DTRCON", &info, &c__0, ch__2, &n, &
				    n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &
				    nerrs, nout);
			}

			dtrt06_(&rcond, &rcondc, uplo, diag, &n, &a[1], &lda, 
				&rwork[1], &result[6]);

/*                    Print the test ratio if it is .GE. THRESH. */

			if (result[6] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___38.ciunit = *nout;
			    s_wsfe(&io___38);
			    do_fio(&c__1, norm, (ftnlen)1);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(
				    doublereal));
			    e_wsfe();
			    ++nfail;
			}
			++nrun;
/* L50: */
		    }
L60:
		    ;
		}
/* L70: */
	    }
L80:
	    ;
	}

/*        Use pathological test matrices to test DLATRS. */

	for (imat = 11; imat <= 18; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L110;
	    }

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {

/*              Do first for UPLO = 'U', then for UPLO = 'L' */

		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
		for (itran = 1; itran <= 3; ++itran) {

/*                 Do for op(A) = A, A**T, and A**H. */

		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];

/*                 Call DLATTR to generate a triangular test matrix. */

		    s_copy(srnamc_1.srnamt, "DLATTR", (ftnlen)6, (ftnlen)6);
		    dlattr_(&imat, uplo, trans, diag, iseed, &n, &a[1], &lda, 
			    &x[1], &work[1], &info);

/* +    TEST 8 */
/*                 Solve the system op(A)*x = b. */

		    s_copy(srnamc_1.srnamt, "DLATRS", (ftnlen)6, (ftnlen)6);
		    dcopy_(&n, &x[1], &c__1, &b[1], &c__1);
		    dlatrs_(uplo, trans, diag, "N", &n, &a[1], &lda, &b[1], &
			    scale, &rwork[1], &info);

/*                 Check error code from DLATRS. */

		    if (info != 0) {
/* Writing concatenation */
			i__6[0] = 1, a__3[0] = uplo;
			i__6[1] = 1, a__3[1] = trans;
			i__6[2] = 1, a__3[2] = diag;
			i__6[3] = 1, a__3[3] = "N";
			s_cat(ch__3, a__3, i__6, &c__4, (ftnlen)4);
			alaerh_(path, "DLATRS", &info, &c__0, ch__3, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    dtrt03_(uplo, trans, diag, &n, &c__1, &a[1], &lda, &scale, 
			     &rwork[1], &c_b101, &b[1], &lda, &x[1], &lda, &
			    work[1], &result[7]);

/* +    TEST 9 */
/*                 Solve op(A)*X = b again with NORMIN = 'Y'. */

		    dcopy_(&n, &x[1], &c__1, &b[n + 1], &c__1);
		    dlatrs_(uplo, trans, diag, "Y", &n, &a[1], &lda, &b[n + 1]
, &scale, &rwork[1], &info);

/*                 Check error code from DLATRS. */

		    if (info != 0) {
/* Writing concatenation */
			i__6[0] = 1, a__3[0] = uplo;
			i__6[1] = 1, a__3[1] = trans;
			i__6[2] = 1, a__3[2] = diag;
			i__6[3] = 1, a__3[3] = "Y";
			s_cat(ch__3, a__3, i__6, &c__4, (ftnlen)4);
			alaerh_(path, "DLATRS", &info, &c__0, ch__3, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    dtrt03_(uplo, trans, diag, &n, &c__1, &a[1], &lda, &scale, 
			     &rwork[1], &c_b101, &b[n + 1], &lda, &x[1], &lda, 
			     &work[1], &result[8]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    if (result[7] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___40.ciunit = *nout;
			s_wsfe(&io___40);
			do_fio(&c__1, "DLATRS", (ftnlen)6);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, trans, (ftnlen)1);
			do_fio(&c__1, diag, (ftnlen)1);
			do_fio(&c__1, "N", (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			++nfail;
		    }
		    if (result[8] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___41.ciunit = *nout;
			s_wsfe(&io___41);
			do_fio(&c__1, "DLATRS", (ftnlen)6);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, trans, (ftnlen)1);
			do_fio(&c__1, diag, (ftnlen)1);
			do_fio(&c__1, "Y", (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&c__9, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[8], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			++nfail;
		    }
		    nrun += 2;
/* L90: */
		}
/* L100: */
	    }
L110:
	    ;
	}
/* L120: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DCHKTR */

} /* dchktr_ */
Exemple #9
0
/* Subroutine */ int dchklq_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
	nxval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *
	nmax, doublereal *a, doublereal *af, doublereal *aq, doublereal *al, 
	doublereal *ac, doublereal *b, doublereal *x, doublereal *xact, 
	doublereal *tau, doublereal *work, doublereal *rwork, integer *iwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, K=\002,i"
	    "5,\002, NB=\002,i4,\002, NX=\002,i5,\002, type \002,i2,\002, tes"
	    "t(\002,i2,\002)=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer mode, imat, info;
    static char path[3];
    static integer kval[4];
    static char dist[1], type__[1];
    static integer nrun, i__;
    extern /* Subroutine */ int alahd_(integer *, char *);
    static integer k, m, n;
    extern /* Subroutine */ int dget02_(char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, integer *, doublereal *,
	     integer *, doublereal *, doublereal *);
    static integer nfail, iseed[4];
    extern /* Subroutine */ int dlqt01_(integer *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *, doublereal *,
	     doublereal *, integer *, doublereal *, doublereal *), dlqt02_(
	    integer *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, doublereal *,
	     integer *, doublereal *, doublereal *), dlqt03_(integer *, 
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, doublereal *);
    static doublereal anorm;
    static integer minmn, nerrs, lwork;
    extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *);
    static integer nb, ik, im, in, kl, nk;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static integer ku, nt, nx;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    dlarhs_(char *, char *, char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *), dgelqs_(integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *), 
	    alasum_(char *, integer *, integer *, integer *, integer *);
    static doublereal cndnum;
    extern /* Subroutine */ int dlatms_(integer *, integer *, char *, integer 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublereal *, integer *, doublereal 
	    *, integer *), derrlq_(char *, integer *), xlaenv_(integer *, integer *);
    static doublereal result[7];
    static integer lda, inb;

    /* Fortran I/O blocks */
    static cilist io___33 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    DCHKLQ tests DGELQF, DORGLQ and DORMLQ.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NM      (input) INTEGER   
            The number of values of M contained in the vector MVAL.   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix row dimension M.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix column dimension N.   

    NNB     (input) INTEGER   
            The number of values of NB and NX contained in the   
            vectors NBVAL and NXVAL.  The blocking parameters are used   
            in pairs (NB,NX).   

    NBVAL   (input) INTEGER array, dimension (NNB)   
            The values of the blocksize NB.   

    NXVAL   (input) INTEGER array, dimension (NNB)   
            The values of the crossover point NX.   

    NRHS    (input) INTEGER   
            The number of right hand side vectors to be generated for   
            each linear system.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for M or N, used in dimensioning   
            the work arrays.   

    A       (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    AF      (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    AQ      (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    AL      (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    AC      (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS)   

    X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS)   

    XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS)   

    TAU     (workspace) DOUBLE PRECISION array, dimension (NMAX)   

    WORK    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX)   

    IWORK   (workspace) INTEGER array, dimension (NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --tau;
    --xact;
    --x;
    --b;
    --ac;
    --al;
    --aq;
    --af;
    --a;
    --nxval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "LQ", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	derrlq_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);

    lda = *nmax;
    lwork = *nmax * max(*nmax,*nrhs);

/*     Do for each value of M in MVAL. */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];

/*        Do for each value of N in NVAL. */

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {
	    n = nval[in];
	    minmn = min(m,n);
	    for (imat = 1; imat <= 8; ++imat) {

/*              Do the tests only if DOTYPE( IMAT ) is true. */

		if (! dotype[imat]) {
		    goto L50;
		}

/*              Set up parameters with DLATB4 and generate a test matrix   
                with DLATMS. */

		dlatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)6, (ftnlen)6);
		dlatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, &
			work[1], &info);

/*              Check error code from DLATMS. */

		if (info != 0) {
		    alaerh_(path, "DLATMS", &info, &c__0, " ", &m, &n, &c_n1, 
			    &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L50;
		}

/*              Set some values for K: the first value must be MINMN,   
                corresponding to the call of DLQT01; other values are   
                used in the calls of DLQT02, and must not exceed MINMN. */

		kval[0] = minmn;
		kval[1] = 0;
		kval[2] = 1;
		kval[3] = minmn / 2;
		if (minmn == 0) {
		    nk = 1;
		} else if (minmn == 1) {
		    nk = 2;
		} else if (minmn <= 3) {
		    nk = 3;
		} else {
		    nk = 4;
		}

/*              Do for each value of K in KVAL */

		i__3 = nk;
		for (ik = 1; ik <= i__3; ++ik) {
		    k = kval[ik - 1];

/*                 Do for each pair of values (NB,NX) in NBVAL and NXVAL. */

		    i__4 = *nnb;
		    for (inb = 1; inb <= i__4; ++inb) {
			nb = nbval[inb];
			xlaenv_(&c__1, &nb);
			nx = nxval[inb];
			xlaenv_(&c__3, &nx);
			nt = 2;
			if (ik == 1) {

/*                       Test DGELQF */

			    dlqt01_(&m, &n, &a[1], &af[1], &aq[1], &al[1], &
				    lda, &tau[1], &work[1], &lwork, &rwork[1],
				     result);
			} else if (m <= n) {

/*                       Test DORGLQ, using factorization   
                         returned by DLQT01 */

			    dlqt02_(&m, &n, &k, &a[1], &af[1], &aq[1], &al[1],
				     &lda, &tau[1], &work[1], &lwork, &rwork[
				    1], result);
			} else {
			    result[0] = 0.;
			    result[1] = 0.;
			}
			if (m >= k) {

/*                       Test DORMLQ, using factorization returned   
                         by DLQT01 */

			    dlqt03_(&m, &n, &k, &af[1], &ac[1], &al[1], &aq[1]
				    , &lda, &tau[1], &work[1], &lwork, &rwork[
				    1], &result[2]);
			    nt += 4;

/*                       If M>=N and K=N, call DGELQS to solve a system   
                         with NRHS right hand sides and compute the   
                         residual. */

			    if (k == m && inb == 1) {

/*                          Generate a solution and set the right   
                            hand side. */

				s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)6, (
					ftnlen)6);
				dlarhs_(path, "New", "Full", "No transpose", &
					m, &n, &c__0, &c__0, nrhs, &a[1], &
					lda, &xact[1], &lda, &b[1], &lda, 
					iseed, &info);

				dlacpy_("Full", &m, nrhs, &b[1], &lda, &x[1], 
					&lda);
				s_copy(srnamc_1.srnamt, "DGELQS", (ftnlen)6, (
					ftnlen)6);
				dgelqs_(&m, &n, nrhs, &af[1], &lda, &tau[1], &
					x[1], &lda, &work[1], &lwork, &info);

/*                          Check error code from DGELQS. */

				if (info != 0) {
				    alaerh_(path, "DGELQS", &info, &c__0, 
					    " ", &m, &n, nrhs, &c_n1, &nb, &
					    imat, &nfail, &nerrs, nout);
				}

				dget02_("No transpose", &m, &n, nrhs, &a[1], &
					lda, &x[1], &lda, &b[1], &lda, &rwork[
					1], &result[6]);
				++nt;
			    } else {
				result[6] = 0.;
			    }
			} else {
			    result[2] = 0.;
			    result[3] = 0.;
			    result[4] = 0.;
			    result[5] = 0.;
			}

/*                    Print information about the tests that did not   
                      pass the threshold. */

			i__5 = nt;
			for (i__ = 1; i__ <= i__5; ++i__) {
			    if (result[i__ - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___33.ciunit = *nout;
				s_wsfe(&io___33);
				do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nx, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[i__ - 1], (
					ftnlen)sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L20: */
			}
			nrun += nt;
/* L30: */
		    }
/* L40: */
		}
L50:
		;
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DCHKLQ */

} /* dchklq_ */
Exemple #10
0
/* Subroutine */ int dchkge_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
	nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *
	nmax, doublereal *a, doublereal *afac, doublereal *ainv, doublereal *
	b, doublereal *x, doublereal *xact, doublereal *work, doublereal *
	rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(\002 M = \002,i5,\002, N =\002,i5,\002, NB "
	    "=\002,i4,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)"
	    ;
    static char fmt_9998[] = "(\002 TRANS='\002,a1,\002', N =\002,i5,\002, N"
	    "RHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g1"
	    "2.5)";
    static char fmt_9997[] = "(\002 NORM ='\002,a1,\002', N =\002,i5,\002"
	    ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)"
	    ;

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, k, m, n, nb, im, in, kl, ku, nt, lda, inb, ioff, mode, imat, 
	    info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char norm[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *), dget01_(
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, doublereal *, doublereal *), dget02_(char *, 
	     integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *), dget03_(integer *, doublereal *, integer *, 
	     doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *), dget04_(integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *);
    integer nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    extern /* Subroutine */ int dget07_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, logical *, 
	    doublereal *, doublereal *);
    doublereal rcond;
    integer nimat;
    doublereal anorm;
    integer itran;
    char trans[1];
    integer izero, nerrs;
    doublereal dummy;
    integer lwork;
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *);
    extern doublereal dlange_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *), dgecon_(char *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *);
    doublereal rcondc;
    extern /* Subroutine */ int derrge_(char *, integer *), dgerfs_(
	    char *, integer *, integer *, doublereal *, integer *, doublereal 
	    *, integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
	    integer *), dgetrf_(integer *, integer *, doublereal *, 
	    integer *, integer *, integer *), dlacpy_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *), dlarhs_(char *, char *, char *, char *, integer *, 
	    integer *, integer *, integer *, integer *, doublereal *, integer 
	    *, doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *);
    doublereal rcondi;
    extern /* Subroutine */ int dgetri_(integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, integer *), dlaset_(char *, 
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    integer *), alasum_(char *, integer *, integer *, integer 
	    *, integer *);
    doublereal cndnum, anormi, rcondo;
    extern /* Subroutine */ int dlatms_(integer *, integer *, char *, integer 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublereal *, integer *, doublereal 
	    *, integer *);
    doublereal ainvnm;
    extern /* Subroutine */ int dgetrs_(char *, integer *, integer *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *);
    logical trfcon;
    doublereal anormo;
    extern /* Subroutine */ int xlaenv_(integer *, integer *);
    doublereal result[8];

    /* Fortran I/O blocks */
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9997, 0 };



/*  -- LAPACK test routine (version 3.1.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     January 2007 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DCHKGE tests DGETRF, -TRI, -TRS, -RFS, and -CON. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB contained in the vector NBVAL. */

/*  NBVAL   (input) INTEGER array, dimension (NBVAL) */
/*          The values of the blocksize NB. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for M or N, used in dimensioning */
/*          the work arrays. */

/*  A       (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AINV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension */
/*                      (NMAX*max(3,NSMAX)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension */
/*                      (max(2*NMAX,2*NSMAX+NWORK)) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nsval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    xlaenv_(&c__1, &c__1);
    if (*tsterr) {
	derrge_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);

/*     Do for each value of M in MVAL */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];
	lda = max(1,m);

/*        Do for each value of N in NVAL */

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {
	    n = nval[in];
	    *(unsigned char *)xtype = 'N';
	    nimat = 11;
	    if (m <= 0 || n <= 0) {
		nimat = 1;
	    }

	    i__3 = nimat;
	    for (imat = 1; imat <= i__3; ++imat) {

/*              Do the tests only if DOTYPE( IMAT ) is true. */

		if (! dotype[imat]) {
		    goto L100;
		}

/*              Skip types 5, 6, or 7 if the matrix size is too small. */

		zerot = imat >= 5 && imat <= 7;
		if (zerot && n < imat - 4) {
		    goto L100;
		}

/*              Set up parameters with DLATB4 and generate a test matrix */
/*              with DLATMS. */

		dlatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)32, (ftnlen)6);
		dlatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, &
			work[1], &info);

/*              Check error code from DLATMS. */

		if (info != 0) {
		    alaerh_(path, "DLATMS", &info, &c__0, " ", &m, &n, &c_n1, 
			    &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L100;
		}

/*              For types 5-7, zero one or more columns of the matrix to */
/*              test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 5) {
			izero = 1;
		    } else if (imat == 6) {
			izero = min(m,n);
		    } else {
			izero = min(m,n) / 2 + 1;
		    }
		    ioff = (izero - 1) * lda;
		    if (imat < 7) {
			i__4 = m;
			for (i__ = 1; i__ <= i__4; ++i__) {
			    a[ioff + i__] = 0.;
/* L20: */
			}
		    } else {
			i__4 = n - izero + 1;
			dlaset_("Full", &m, &i__4, &c_b23, &c_b23, &a[ioff + 
				1], &lda);
		    }
		} else {
		    izero = 0;
		}

/*              These lines, if used in place of the calls in the DO 60 */
/*              loop, cause the code to bomb on a Sun SPARCstation. */

/*               ANORMO = DLANGE( 'O', M, N, A, LDA, RWORK ) */
/*               ANORMI = DLANGE( 'I', M, N, A, LDA, RWORK ) */

/*              Do for each blocksize in NBVAL */

		i__4 = *nnb;
		for (inb = 1; inb <= i__4; ++inb) {
		    nb = nbval[inb];
		    xlaenv_(&c__1, &nb);

/*                 Compute the LU factorization of the matrix. */

		    dlacpy_("Full", &m, &n, &a[1], &lda, &afac[1], &lda);
		    s_copy(srnamc_1.srnamt, "DGETRF", (ftnlen)32, (ftnlen)6);
		    dgetrf_(&m, &n, &afac[1], &lda, &iwork[1], &info);

/*                 Check error code from DGETRF. */

		    if (info != izero) {
			alaerh_(path, "DGETRF", &info, &izero, " ", &m, &n, &
				c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout);
		    }
		    trfcon = FALSE_;

/* +    TEST 1 */
/*                 Reconstruct matrix from factors and compute residual. */

		    dlacpy_("Full", &m, &n, &afac[1], &lda, &ainv[1], &lda);
		    dget01_(&m, &n, &a[1], &lda, &ainv[1], &lda, &iwork[1], &
			    rwork[1], result);
		    nt = 1;

/* +    TEST 2 */
/*                 Form the inverse if the factorization was successful */
/*                 and compute the residual. */

		    if (m == n && info == 0) {
			dlacpy_("Full", &n, &n, &afac[1], &lda, &ainv[1], &
				lda);
			s_copy(srnamc_1.srnamt, "DGETRI", (ftnlen)32, (ftnlen)
				6);
			nrhs = nsval[1];
			lwork = *nmax * max(3,nrhs);
			dgetri_(&n, &ainv[1], &lda, &iwork[1], &work[1], &
				lwork, &info);

/*                    Check error code from DGETRI. */

			if (info != 0) {
			    alaerh_(path, "DGETRI", &info, &c__0, " ", &n, &n, 
				     &c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, 
				     nout);
			}

/*                    Compute the residual for the matrix times its */
/*                    inverse.  Also compute the 1-norm condition number */
/*                    of A. */

			dget03_(&n, &a[1], &lda, &ainv[1], &lda, &work[1], &
				lda, &rwork[1], &rcondo, &result[1]);
			anormo = dlange_("O", &m, &n, &a[1], &lda, &rwork[1]);

/*                    Compute the infinity-norm condition number of A. */

			anormi = dlange_("I", &m, &n, &a[1], &lda, &rwork[1]);
			ainvnm = dlange_("I", &n, &n, &ainv[1], &lda, &rwork[
				1]);
			if (anormi <= 0. || ainvnm <= 0.) {
			    rcondi = 1.;
			} else {
			    rcondi = 1. / anormi / ainvnm;
			}
			nt = 2;
		    } else {

/*                    Do only the condition estimate if INFO > 0. */

			trfcon = TRUE_;
			anormo = dlange_("O", &m, &n, &a[1], &lda, &rwork[1]);
			anormi = dlange_("I", &m, &n, &a[1], &lda, &rwork[1]);
			rcondo = 0.;
			rcondi = 0.;
		    }

/*                 Print information about the tests so far that did not */
/*                 pass the threshold. */

		    i__5 = nt;
		    for (k = 1; k <= i__5; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___41.ciunit = *nout;
			    s_wsfe(&io___41);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L30: */
		    }
		    nrun += nt;

/*                 Skip the remaining tests if this is not the first */
/*                 block size or if M .ne. N.  Skip the solve tests if */
/*                 the matrix is singular. */

		    if (inb > 1 || m != n) {
			goto L90;
		    }
		    if (trfcon) {
			goto L70;
		    }

		    i__5 = *nns;
		    for (irhs = 1; irhs <= i__5; ++irhs) {
			nrhs = nsval[irhs];
			*(unsigned char *)xtype = 'N';

			for (itran = 1; itran <= 3; ++itran) {
			    *(unsigned char *)trans = *(unsigned char *)&
				    transs[itran - 1];
			    if (itran == 1) {
				rcondc = rcondo;
			    } else {
				rcondc = rcondi;
			    }

/* +    TEST 3 */
/*                       Solve and compute residual for A * X = B. */

			    s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)32, (
				    ftnlen)6);
			    dlarhs_(path, xtype, " ", trans, &n, &n, &kl, &ku, 
				     &nrhs, &a[1], &lda, &xact[1], &lda, &b[1]
, &lda, iseed, &info);
			    *(unsigned char *)xtype = 'C';

			    dlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &
				    lda);
			    s_copy(srnamc_1.srnamt, "DGETRS", (ftnlen)32, (
				    ftnlen)6);
			    dgetrs_(trans, &n, &nrhs, &afac[1], &lda, &iwork[
				    1], &x[1], &lda, &info);

/*                       Check error code from DGETRS. */

			    if (info != 0) {
				alaerh_(path, "DGETRS", &info, &c__0, trans, &
					n, &n, &c_n1, &c_n1, &nrhs, &imat, &
					nfail, &nerrs, nout);
			    }

			    dlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], 
				    &lda);
			    dget02_(trans, &n, &n, &nrhs, &a[1], &lda, &x[1], 
				    &lda, &work[1], &lda, &rwork[1], &result[
				    2]);

/* +    TEST 4 */
/*                       Check solution from generated exact solution. */

			    dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[3]);

/* +    TESTS 5, 6, and 7 */
/*                       Use iterative refinement to improve the */
/*                       solution. */

			    s_copy(srnamc_1.srnamt, "DGERFS", (ftnlen)32, (
				    ftnlen)6);
			    dgerfs_(trans, &n, &nrhs, &a[1], &lda, &afac[1], &
				    lda, &iwork[1], &b[1], &lda, &x[1], &lda, 
				    &rwork[1], &rwork[nrhs + 1], &work[1], &
				    iwork[n + 1], &info);

/*                       Check error code from DGERFS. */

			    if (info != 0) {
				alaerh_(path, "DGERFS", &info, &c__0, trans, &
					n, &n, &c_n1, &c_n1, &nrhs, &imat, &
					nfail, &nerrs, nout);
			    }

			    dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[4]);
			    dget07_(trans, &n, &nrhs, &a[1], &lda, &b[1], &
				    lda, &x[1], &lda, &xact[1], &lda, &rwork[
				    1], &c_true, &rwork[nrhs + 1], &result[5]);

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    for (k = 3; k <= 7; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					alahd_(nout, path);
				    }
				    io___46.ciunit = *nout;
				    s_wsfe(&io___46);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&nrhs, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				    ++nfail;
				}
/* L40: */
			    }
			    nrun += 5;
/* L50: */
			}
/* L60: */
		    }

/* +    TEST 8 */
/*                    Get an estimate of RCOND = 1/CNDNUM. */

L70:
		    for (itran = 1; itran <= 2; ++itran) {
			if (itran == 1) {
			    anorm = anormo;
			    rcondc = rcondo;
			    *(unsigned char *)norm = 'O';
			} else {
			    anorm = anormi;
			    rcondc = rcondi;
			    *(unsigned char *)norm = 'I';
			}
			s_copy(srnamc_1.srnamt, "DGECON", (ftnlen)32, (ftnlen)
				6);
			dgecon_(norm, &n, &afac[1], &lda, &anorm, &rcond, &
				work[1], &iwork[n + 1], &info);

/*                       Check error code from DGECON. */

			if (info != 0) {
			    alaerh_(path, "DGECON", &info, &c__0, norm, &n, &
				    n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &
				    nerrs, nout);
			}

/*                       This line is needed on a Sun SPARCstation. */

			dummy = rcond;

			result[7] = dget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			if (result[7] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___50.ciunit = *nout;
			    s_wsfe(&io___50);
			    do_fio(&c__1, norm, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(
				    doublereal));
			    e_wsfe();
			    ++nfail;
			}
			++nrun;
/* L80: */
		    }
L90:
		    ;
		}
L100:
		;
	    }
/* L110: */
	}
/* L120: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DCHKGE */

} /* dchkge_ */
Exemple #11
0
/* Subroutine */ int zchkgb_(logical *dotype, integer *nm, integer *mval,
                             integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
                             nns, integer *nsval, doublereal *thresh, logical *tsterr,
                             doublecomplex *a, integer *la, doublecomplex *afac, integer *lafac,
                             doublecomplex *b, doublecomplex *x, doublecomplex *xact,
                             doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(\002 *** In ZCHKGB, LA=\002,i5,\002 is too sm"
                             "all for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU=\002"
                             ",i4,/\002 ==> Increase LA to at least \002,i5)";
    static char fmt_9998[] = "(\002 *** In ZCHKGB, LAFAC=\002,i5,\002 is too"
                             " small for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU"
                             "=\002,i4,/\002 ==> Increase LAFAC to at least \002,i5)";
    static char fmt_9997[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, KL="
                             "\002,i5,\002, KU=\002,i5,\002, NB =\002,i4,\002, type \002,i1"
                             ",\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9996[] = "(\002 TRANS='\002,a1,\002', N=\002,i5,\002, "
                             "KL=\002,i5,\002, KU=\002,i5,\002, NRHS=\002,i3,\002, type \002,i"
                             "1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9995[] = "(\002 NORM ='\002,a1,\002', N=\002,i5,\002, "
                             "KL=\002,i5,\002, KU=\002,i5,\002,\002,10x,\002 type \002,i1,\002"
                             ", test(\002,i1,\002)=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10,
            i__11;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, m, n, i1, i2, nb, im, in, kl, ku, lda, ldb, inb, ikl,
            nkl, iku, nku, ioff, mode, koff, imat, info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char norm[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    doublereal rcond;
    extern /* Subroutine */ int zgbt01_(integer *, integer *, integer *,
                                        integer *, doublecomplex *, integer *, doublecomplex *, integer *,
                                        integer *, doublecomplex *, doublereal *);
    integer nimat, klval[4];
    extern /* Subroutine */ int zgbt02_(char *, integer *, integer *, integer
                                        *, integer *, integer *, doublecomplex *, integer *,
                                        doublecomplex *, integer *, doublecomplex *, integer *,
                                        doublereal *), zgbt05_(char *, integer *, integer *,
                                                integer *, integer *, doublecomplex *, integer *, doublecomplex *,
                                                integer *, doublecomplex *, integer *, doublecomplex *, integer *
                                                , doublereal *, doublereal *, doublereal *);
    doublereal anorm;
    integer itran;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *,
                                        integer *, doublecomplex *, integer *, doublereal *, doublereal *
                                       );
    integer kuval[4];
    char trans[1];
    integer izero, nerrs;
    logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
                                       doublecomplex *, integer *);
    char xtype[1];
    extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer
                                        *, char *, integer *, integer *, doublereal *, integer *,
                                        doublereal *, char *);
    integer ldafac;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *,
                                        char *, integer *, integer *, integer *, integer *, integer *,
                                        integer *, integer *, integer *, integer *);
    doublereal rcondc;
    extern doublereal zlangb_(char *, integer *, integer *, integer *,
                              doublecomplex *, integer *, doublereal *);
    doublereal rcondi;
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
                              integer *, doublereal *);
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer
                                        *, integer *);
    doublereal cndnum, anormi, rcondo;
    extern /* Subroutine */ int zgbcon_(char *, integer *, integer *, integer
                                        *, doublecomplex *, integer *, integer *, doublereal *,
                                        doublereal *, doublecomplex *, doublereal *, integer *);
    doublereal ainvnm;
    logical trfcon;
    doublereal anormo;
    extern /* Subroutine */ int xlaenv_(integer *, integer *), zerrge_(char *,
            integer *), zgbrfs_(char *, integer *, integer *,
                                integer *, integer *, doublecomplex *, integer *, doublecomplex *,
                                integer *, integer *, doublecomplex *, integer *, doublecomplex *
                                , integer *, doublereal *, doublereal *, doublecomplex *,
                                doublereal *, integer *), zgbtrf_(integer *, integer *,
                                        integer *, integer *, doublecomplex *, integer *, integer *,
                                        integer *), zlacpy_(char *, integer *, integer *, doublecomplex *,
                                                integer *, doublecomplex *, integer *), zlarhs_(char *,
                                                        char *, char *, char *, integer *, integer *, integer *, integer *
                                                        , integer *, doublecomplex *, integer *, doublecomplex *, integer
                                                        *, doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *,
                                                                doublecomplex *, doublecomplex *, doublecomplex *, integer *), zgbtrs_(char *, integer *, integer *, integer *, integer
                                                                        *, doublecomplex *, integer *, integer *, doublecomplex *,
                                                                        integer *, integer *), zlatms_(integer *, integer *, char
                                                                                *, integer *, char *, doublereal *, integer *, doublereal *,
                                                                                doublereal *, integer *, integer *, char *, doublecomplex *,
                                                                                integer *, doublecomplex *, integer *);
    doublereal result[7];

    /* Fortran I/O blocks */
    static cilist io___25 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___26 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9995, 0 };



    /*  -- LAPACK test routine (version 3.1) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     .. Scalar Arguments .. */
    /*     .. */
    /*     .. Array Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  ZCHKGB tests ZGBTRF, -TRS, -RFS, and -CON */

    /*  Arguments */
    /*  ========= */

    /*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
    /*          The matrix types to be used for testing.  Matrices of type j */
    /*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
    /*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

    /*  NM      (input) INTEGER */
    /*          The number of values of M contained in the vector MVAL. */

    /*  MVAL    (input) INTEGER array, dimension (NM) */
    /*          The values of the matrix row dimension M. */

    /*  NN      (input) INTEGER */
    /*          The number of values of N contained in the vector NVAL. */

    /*  NVAL    (input) INTEGER array, dimension (NN) */
    /*          The values of the matrix column dimension N. */

    /*  NNB     (input) INTEGER */
    /*          The number of values of NB contained in the vector NBVAL. */

    /*  NBVAL   (input) INTEGER array, dimension (NBVAL) */
    /*          The values of the blocksize NB. */

    /*  NNS     (input) INTEGER */
    /*          The number of values of NRHS contained in the vector NSVAL. */

    /*  NSVAL   (input) INTEGER array, dimension (NNS) */
    /*          The values of the number of right hand sides NRHS. */

    /*  THRESH  (input) DOUBLE PRECISION */
    /*          The threshold value for the test ratios.  A result is */
    /*          included in the output file if RESULT >= THRESH.  To have */
    /*          every test ratio printed, use THRESH = 0. */

    /*  TSTERR  (input) LOGICAL */
    /*          Flag that indicates whether error exits are to be tested. */

    /*  A       (workspace) COMPLEX*16 array, dimension (LA) */

    /*  LA      (input) INTEGER */
    /*          The length of the array A.  LA >= (KLMAX+KUMAX+1)*NMAX */
    /*          where KLMAX is the largest entry in the local array KLVAL, */
    /*                KUMAX is the largest entry in the local array KUVAL and */
    /*                NMAX is the largest entry in the input array NVAL. */

    /*  AFAC    (workspace) COMPLEX*16 array, dimension (LAFAC) */

    /*  LAFAC   (input) INTEGER */
    /*          The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX */
    /*          where KLMAX is the largest entry in the local array KLVAL, */
    /*                KUMAX is the largest entry in the local array KUVAL and */
    /*                NMAX is the largest entry in the input array NVAL. */

    /*  B       (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

    /*  X       (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

    /*  XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

    /*  WORK    (workspace) COMPLEX*16 array, dimension */
    /*                      (NMAX*max(3,NSMAX,NMAX)) */

    /*  RWORK   (workspace) DOUBLE PRECISION array, dimension */
    /*                      (max(NMAX,2*NSMAX)) */

    /*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

    /*  NOUT    (input) INTEGER */
    /*          The unit number for output. */

    /*  ===================================================================== */

    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. Local Arrays .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Scalars in Common .. */
    /*     .. */
    /*     .. Common blocks .. */
    /*     .. */
    /*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --afac;
    --a;
    --nsval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
    /*     .. */
    /*     .. Executable Statements .. */

    /*     Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
        iseed[i__ - 1] = iseedy[i__ - 1];
        /* L10: */
    }

    /*     Test the error exits */

    if (*tsterr) {
        zerrge_(path, nout);
    }
    infoc_1.infot = 0;

    /*     Initialize the first value for the lower and upper bandwidths. */

    klval[0] = 0;
    kuval[0] = 0;

    /*     Do for each value of M in MVAL */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
        m = mval[im];

        /*        Set values to use for the lower bandwidth. */

        klval[1] = m + (m + 1) / 4;

        /*        KLVAL( 2 ) = MAX( M-1, 0 ) */

        klval[2] = (m * 3 - 1) / 4;
        klval[3] = (m + 1) / 4;

        /*        Do for each value of N in NVAL */

        i__2 = *nn;
        for (in = 1; in <= i__2; ++in) {
            n = nval[in];
            *(unsigned char *)xtype = 'N';

            /*           Set values to use for the upper bandwidth. */

            kuval[1] = n + (n + 1) / 4;

            /*           KUVAL( 2 ) = MAX( N-1, 0 ) */

            kuval[2] = (n * 3 - 1) / 4;
            kuval[3] = (n + 1) / 4;

            /*           Set limits on the number of loop iterations. */

            /* Computing MIN */
            i__3 = m + 1;
            nkl = min(i__3,4);
            if (n == 0) {
                nkl = 2;
            }
            /* Computing MIN */
            i__3 = n + 1;
            nku = min(i__3,4);
            if (m == 0) {
                nku = 2;
            }
            nimat = 8;
            if (m <= 0 || n <= 0) {
                nimat = 1;
            }

            i__3 = nkl;
            for (ikl = 1; ikl <= i__3; ++ikl) {

                /*              Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This */
                /*              order makes it easier to skip redundant values for small */
                /*              values of M. */

                kl = klval[ikl - 1];
                i__4 = nku;
                for (iku = 1; iku <= i__4; ++iku) {

                    /*                 Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This */
                    /*                 order makes it easier to skip redundant values for */
                    /*                 small values of N. */

                    ku = kuval[iku - 1];

                    /*                 Check that A and AFAC are big enough to generate this */
                    /*                 matrix. */

                    lda = kl + ku + 1;
                    ldafac = (kl << 1) + ku + 1;
                    if (lda * n > *la || ldafac * n > *lafac) {
                        if (nfail == 0 && nerrs == 0) {
                            alahd_(nout, path);
                        }
                        if (n * (kl + ku + 1) > *la) {
                            io___25.ciunit = *nout;
                            s_wsfe(&io___25);
                            do_fio(&c__1, (char *)&(*la), (ftnlen)sizeof(
                                       integer));
                            do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
                            ;
                            do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
                            ;
                            do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)
                                  );
                            do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)
                                  );
                            i__5 = n * (kl + ku + 1);
                            do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof(
                                       integer));
                            e_wsfe();
                            ++nerrs;
                        }
                        if (n * ((kl << 1) + ku + 1) > *lafac) {
                            io___26.ciunit = *nout;
                            s_wsfe(&io___26);
                            do_fio(&c__1, (char *)&(*lafac), (ftnlen)sizeof(
                                       integer));
                            do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
                            ;
                            do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
                            ;
                            do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)
                                  );
                            do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)
                                  );
                            i__5 = n * ((kl << 1) + ku + 1);
                            do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof(
                                       integer));
                            e_wsfe();
                            ++nerrs;
                        }
                        goto L130;
                    }

                    i__5 = nimat;
                    for (imat = 1; imat <= i__5; ++imat) {

                        /*                    Do the tests only if DOTYPE( IMAT ) is true. */

                        if (! dotype[imat]) {
                            goto L120;
                        }

                        /*                    Skip types 2, 3, or 4 if the matrix size is too */
                        /*                    small. */

                        zerot = imat >= 2 && imat <= 4;
                        if (zerot && n < imat - 1) {
                            goto L120;
                        }

                        if (! zerot || ! dotype[1]) {

                            /*                       Set up parameters with ZLATB4 and generate a */
                            /*                       test matrix with ZLATMS. */

                            zlatb4_(path, &imat, &m, &n, type__, &kl, &ku, &
                                    anorm, &mode, &cndnum, dist);

                            /* Computing MAX */
                            i__6 = 1, i__7 = ku + 2 - n;
                            koff = max(i__6,i__7);
                            i__6 = koff - 1;
                            for (i__ = 1; i__ <= i__6; ++i__) {
                                i__7 = i__;
                                a[i__7].r = 0., a[i__7].i = 0.;
                                /* L20: */
                            }
                            s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (
                                       ftnlen)6);
                            zlatms_(&m, &n, dist, iseed, type__, &rwork[1], &
                                    mode, &cndnum, &anorm, &kl, &ku, "Z", &a[
                                        koff], &lda, &work[1], &info);

                            /*                       Check the error code from ZLATMS. */

                            if (info != 0) {
                                alaerh_(path, "ZLATMS", &info, &c__0, " ", &m,
                                        &n, &kl, &ku, &c_n1, &imat, &nfail, &
                                        nerrs, nout);
                                goto L120;
                            }
                        } else if (izero > 0) {

                            /*                       Use the same matrix for types 3 and 4 as for */
                            /*                       type 2 by copying back the zeroed out column. */

                            i__6 = i2 - i1 + 1;
                            zcopy_(&i__6, &b[1], &c__1, &a[ioff + i1], &c__1);
                        }

                        /*                    For types 2, 3, and 4, zero one or more columns of */
                        /*                    the matrix to test that INFO is returned correctly. */

                        izero = 0;
                        if (zerot) {
                            if (imat == 2) {
                                izero = 1;
                            } else if (imat == 3) {
                                izero = min(m,n);
                            } else {
                                izero = min(m,n) / 2 + 1;
                            }
                            ioff = (izero - 1) * lda;
                            if (imat < 4) {

                                /*                          Store the column to be zeroed out in B. */

                                /* Computing MAX */
                                i__6 = 1, i__7 = ku + 2 - izero;
                                i1 = max(i__6,i__7);
                                /* Computing MIN */
                                i__6 = kl + ku + 1, i__7 = ku + 1 + (m -
                                                                     izero);
                                i2 = min(i__6,i__7);
                                i__6 = i2 - i1 + 1;
                                zcopy_(&i__6, &a[ioff + i1], &c__1, &b[1], &
                                       c__1);

                                i__6 = i2;
                                for (i__ = i1; i__ <= i__6; ++i__) {
                                    i__7 = ioff + i__;
                                    a[i__7].r = 0., a[i__7].i = 0.;
                                    /* L30: */
                                }
                            } else {
                                i__6 = n;
                                for (j = izero; j <= i__6; ++j) {
                                    /* Computing MAX */
                                    i__7 = 1, i__8 = ku + 2 - j;
                                    /* Computing MIN */
                                    i__10 = kl + ku + 1, i__11 = ku + 1 + (m
                                                                           - j);
                                    i__9 = min(i__10,i__11);
                                    for (i__ = max(i__7,i__8); i__ <= i__9;
                                            ++i__) {
                                        i__7 = ioff + i__;
                                        a[i__7].r = 0., a[i__7].i = 0.;
                                        /* L40: */
                                    }
                                    ioff += lda;
                                    /* L50: */
                                }
                            }
                        }

                        /*                    These lines, if used in place of the calls in the */
                        /*                    loop over INB, cause the code to bomb on a Sun */
                        /*                    SPARCstation. */

                        /*                     ANORMO = ZLANGB( 'O', N, KL, KU, A, LDA, RWORK ) */
                        /*                     ANORMI = ZLANGB( 'I', N, KL, KU, A, LDA, RWORK ) */

                        /*                    Do for each blocksize in NBVAL */

                        i__6 = *nnb;
                        for (inb = 1; inb <= i__6; ++inb) {
                            nb = nbval[inb];
                            xlaenv_(&c__1, &nb);

                            /*                       Compute the LU factorization of the band matrix. */

                            if (m > 0 && n > 0) {
                                i__9 = kl + ku + 1;
                                zlacpy_("Full", &i__9, &n, &a[1], &lda, &afac[
                                            kl + 1], &ldafac);
                            }
                            s_copy(srnamc_1.srnamt, "ZGBTRF", (ftnlen)6, (
                                       ftnlen)6);
                            zgbtrf_(&m, &n, &kl, &ku, &afac[1], &ldafac, &
                                    iwork[1], &info);

                            /*                       Check error code from ZGBTRF. */

                            if (info != izero) {
                                alaerh_(path, "ZGBTRF", &info, &izero, " ", &
                                        m, &n, &kl, &ku, &nb, &imat, &nfail, &
                                        nerrs, nout);
                            }
                            trfcon = FALSE_;

                            /* +    TEST 1 */
                            /*                       Reconstruct matrix from factors and compute */
                            /*                       residual. */

                            zgbt01_(&m, &n, &kl, &ku, &a[1], &lda, &afac[1], &
                                    ldafac, &iwork[1], &work[1], result);

                            /*                       Print information about the tests so far that */
                            /*                       did not pass the threshold. */

                            if (result[0] >= *thresh) {
                                if (nfail == 0 && nerrs == 0) {
                                    alahd_(nout, path);
                                }
                                io___45.ciunit = *nout;
                                s_wsfe(&io___45);
                                do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(
                                           integer));
                                do_fio(&c__1, (char *)&result[0], (ftnlen)
                                       sizeof(doublereal));
                                e_wsfe();
                                ++nfail;
                            }
                            ++nrun;

                            /*                       Skip the remaining tests if this is not the */
                            /*                       first block size or if M .ne. N. */

                            if (inb > 1 || m != n) {
                                goto L110;
                            }

                            anormo = zlangb_("O", &n, &kl, &ku, &a[1], &lda, &
                                             rwork[1]);
                            anormi = zlangb_("I", &n, &kl, &ku, &a[1], &lda, &
                                             rwork[1]);

                            if (info == 0) {

                                /*                          Form the inverse of A so we can get a good */
                                /*                          estimate of CNDNUM = norm(A) * norm(inv(A)). */

                                ldb = max(1,n);
                                zlaset_("Full", &n, &n, &c_b61, &c_b62, &work[
                                            1], &ldb);
                                s_copy(srnamc_1.srnamt, "ZGBTRS", (ftnlen)6, (
                                           ftnlen)6);
                                zgbtrs_("No transpose", &n, &kl, &ku, &n, &
                                        afac[1], &ldafac, &iwork[1], &work[1],
                                        &ldb, &info);

                                /*                          Compute the 1-norm condition number of A. */

                                ainvnm = zlange_("O", &n, &n, &work[1], &ldb,
                                                 &rwork[1]);
                                if (anormo <= 0. || ainvnm <= 0.) {
                                    rcondo = 1.;
                                } else {
                                    rcondo = 1. / anormo / ainvnm;
                                }

                                /*                          Compute the infinity-norm condition number of */
                                /*                          A. */

                                ainvnm = zlange_("I", &n, &n, &work[1], &ldb,
                                                 &rwork[1]);
                                if (anormi <= 0. || ainvnm <= 0.) {
                                    rcondi = 1.;
                                } else {
                                    rcondi = 1. / anormi / ainvnm;
                                }
                            } else {

                                /*                          Do only the condition estimate if INFO.NE.0. */

                                trfcon = TRUE_;
                                rcondo = 0.;
                                rcondi = 0.;
                            }

                            /*                       Skip the solve tests if the matrix is singular. */

                            if (trfcon) {
                                goto L90;
                            }

                            i__9 = *nns;
                            for (irhs = 1; irhs <= i__9; ++irhs) {
                                nrhs = nsval[irhs];
                                *(unsigned char *)xtype = 'N';

                                for (itran = 1; itran <= 3; ++itran) {
                                    *(unsigned char *)trans = *(unsigned char
                                                                *)&transs[itran - 1];
                                    if (itran == 1) {
                                        rcondc = rcondo;
                                        *(unsigned char *)norm = 'O';
                                    } else {
                                        rcondc = rcondi;
                                        *(unsigned char *)norm = 'I';
                                    }

                                    /* +    TEST 2: */
                                    /*                             Solve and compute residual for A * X = B. */

                                    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)
                                           6, (ftnlen)6);
                                    zlarhs_(path, xtype, " ", trans, &n, &n, &
                                            kl, &ku, &nrhs, &a[1], &lda, &
                                            xact[1], &ldb, &b[1], &ldb, iseed,
                                            &info);
                                    *(unsigned char *)xtype = 'C';
                                    zlacpy_("Full", &n, &nrhs, &b[1], &ldb, &
                                            x[1], &ldb);

                                    s_copy(srnamc_1.srnamt, "ZGBTRS", (ftnlen)
                                           6, (ftnlen)6);
                                    zgbtrs_(trans, &n, &kl, &ku, &nrhs, &afac[
                                                1], &ldafac, &iwork[1], &x[1], &
                                            ldb, &info);

                                    /*                             Check error code from ZGBTRS. */

                                    if (info != 0) {
                                        alaerh_(path, "ZGBTRS", &info, &c__0,
                                                trans, &n, &n, &kl, &ku, &
                                                c_n1, &imat, &nfail, &nerrs,
                                                nout);
                                    }

                                    zlacpy_("Full", &n, &nrhs, &b[1], &ldb, &
                                            work[1], &ldb);
                                    zgbt02_(trans, &m, &n, &kl, &ku, &nrhs, &
                                            a[1], &lda, &x[1], &ldb, &work[1],
                                            &ldb, &result[1]);

                                    /* +    TEST 3: */
                                    /*                             Check solution from generated exact */
                                    /*                             solution. */

                                    zget04_(&n, &nrhs, &x[1], &ldb, &xact[1],
                                            &ldb, &rcondc, &result[2]);

                                    /* +    TESTS 4, 5, 6: */
                                    /*                             Use iterative refinement to improve the */
                                    /*                             solution. */

                                    s_copy(srnamc_1.srnamt, "ZGBRFS", (ftnlen)
                                           6, (ftnlen)6);
                                    zgbrfs_(trans, &n, &kl, &ku, &nrhs, &a[1],
                                            &lda, &afac[1], &ldafac, &iwork[
                                                1], &b[1], &ldb, &x[1], &ldb, &
                                            rwork[1], &rwork[nrhs + 1], &work[
                                                1], &rwork[(nrhs << 1) + 1], &
                                            info);

                                    /*                             Check error code from ZGBRFS. */

                                    if (info != 0) {
                                        alaerh_(path, "ZGBRFS", &info, &c__0,
                                                trans, &n, &n, &kl, &ku, &
                                                nrhs, &imat, &nfail, &nerrs,
                                                nout);
                                    }

                                    zget04_(&n, &nrhs, &x[1], &ldb, &xact[1],
                                            &ldb, &rcondc, &result[3]);
                                    zgbt05_(trans, &n, &kl, &ku, &nrhs, &a[1],
                                            &lda, &b[1], &ldb, &x[1], &ldb, &
                                            xact[1], &ldb, &rwork[1], &rwork[
                                                nrhs + 1], &result[4]);

                                    /*                             Print information about the tests that did */
                                    /*                             not pass the threshold. */

                                    for (k = 2; k <= 6; ++k) {
                                        if (result[k - 1] >= *thresh) {
                                            if (nfail == 0 && nerrs == 0) {
                                                alahd_(nout, path);
                                            }
                                            io___59.ciunit = *nout;
                                            s_wsfe(&io___59);
                                            do_fio(&c__1, trans, (ftnlen)1);
                                            do_fio(&c__1, (char *)&n, (ftnlen)
                                                   sizeof(integer));
                                            do_fio(&c__1, (char *)&kl, (
                                                       ftnlen)sizeof(integer));
                                            do_fio(&c__1, (char *)&ku, (
                                                       ftnlen)sizeof(integer));
                                            do_fio(&c__1, (char *)&nrhs, (
                                                       ftnlen)sizeof(integer));
                                            do_fio(&c__1, (char *)&imat, (
                                                       ftnlen)sizeof(integer));
                                            do_fio(&c__1, (char *)&k, (ftnlen)
                                                   sizeof(integer));
                                            do_fio(&c__1, (char *)&result[k -
                                                                          1], (ftnlen)sizeof(
                                                       doublereal));
                                            e_wsfe();
                                            ++nfail;
                                        }
                                        /* L60: */
                                    }
                                    nrun += 5;
                                    /* L70: */
                                }
                                /* L80: */
                            }

                            /* +    TEST 7: */
                            /*                          Get an estimate of RCOND = 1/CNDNUM. */

L90:
                            for (itran = 1; itran <= 2; ++itran) {
                                if (itran == 1) {
                                    anorm = anormo;
                                    rcondc = rcondo;
                                    *(unsigned char *)norm = 'O';
                                } else {
                                    anorm = anormi;
                                    rcondc = rcondi;
                                    *(unsigned char *)norm = 'I';
                                }
                                s_copy(srnamc_1.srnamt, "ZGBCON", (ftnlen)6, (
                                           ftnlen)6);
                                zgbcon_(norm, &n, &kl, &ku, &afac[1], &ldafac,
                                        &iwork[1], &anorm, &rcond, &work[1],
                                        &rwork[1], &info);

                                /*                             Check error code from ZGBCON. */

                                if (info != 0) {
                                    alaerh_(path, "ZGBCON", &info, &c__0,
                                            norm, &n, &n, &kl, &ku, &c_n1, &
                                            imat, &nfail, &nerrs, nout);
                                }

                                result[6] = dget06_(&rcond, &rcondc);

                                /*                          Print information about the tests that did */
                                /*                          not pass the threshold. */

                                if (result[6] >= *thresh) {
                                    if (nfail == 0 && nerrs == 0) {
                                        alahd_(nout, path);
                                    }
                                    io___61.ciunit = *nout;
                                    s_wsfe(&io___61);
                                    do_fio(&c__1, norm, (ftnlen)1);
                                    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
                                               integer));
                                    do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(
                                               integer));
                                    do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(
                                               integer));
                                    do_fio(&c__1, (char *)&imat, (ftnlen)
                                           sizeof(integer));
                                    do_fio(&c__1, (char *)&c__7, (ftnlen)
                                           sizeof(integer));
                                    do_fio(&c__1, (char *)&result[6], (ftnlen)
                                           sizeof(doublereal));
                                    e_wsfe();
                                    ++nfail;
                                }
                                ++nrun;
                                /* L100: */
                            }
L110:
                            ;
                        }
L120:
                        ;
                    }
L130:
                    ;
                }
                /* L140: */
            }
            /* L150: */
        }
        /* L160: */
    }

    /*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);


    return 0;

    /*     End of ZCHKGB */

} /* zchkgb_ */
Exemple #12
0
/* Subroutine */ int ctimtr_(char *line, integer *nn, integer *nval, integer *
	nns, integer *nsval, integer *nnb, integer *nbval, integer *nlda, 
	integer *ldaval, real *timmin, complex *a, complex *b, real *reslts, 
	integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, ftnlen 
	line_len)
{
    /* Initialized data */

    static char subnam[6*2] = "CTRTRI" "CTRTRS";
    static char uplos[1*2] = "U" "L";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)";
    static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops "
	    "***\002)";
    static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)";
    static char fmt_9996[] = "(5x,a6,\002 with UPLO = '\002,a1,\002'\002,/)";

    /* System generated locals */
    integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, 
	    i__3;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    static integer ilda, info;
    static char path[3];
    static real time;
    static integer isub, nrhs;
    static char uplo[1];
    static integer i__, n;
    static char cname[6];
    extern logical lsame_(char *, char *);
    extern doublereal sopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    static integer iuplo, i3;
    static real s1, s2;
    static integer ic, nb, in;
    extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer 
	    *, integer *, integer *, integer *, integer *, ftnlen);
    extern doublereal second_(void);
    extern /* Subroutine */ int ctimmg_(integer *, integer *, integer *, 
	    complex *, integer *, integer *, integer *), atimin_(char *, char 
	    *, integer *, char *, logical *, integer *, integer *, ftnlen, 
	    ftnlen, ftnlen), xlaenv_(integer *, integer *);
    extern doublereal smflop_(real *, real *, integer *);
    static real untime;
    static logical timsub[2];
    extern /* Subroutine */ int sprtbl_(char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, real *, integer *, integer *, 
	    integer *, ftnlen, ftnlen), ctrtri_(char *, char *, integer *, 
	    complex *, integer *, integer *), ctrtrs_(char *, 
	    char *, char *, integer *, integer *, complex *, integer *, 
	    complex *, integer *, integer *);
    static integer lda, ldb, icl, inb, mat;
    static real ops;

    /* Fortran I/O blocks */
    static cilist io___7 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___29 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___30 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___31 = { 0, 0, 0, 0, 0 };
    static cilist io___32 = { 0, 0, 0, fmt_9996, 0 };



#define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6]
#define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\
reslts_dim2 + (a_2))*reslts_dim1 + a_1]


/*  -- LAPACK timing routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    CTIMTR times CTRTRI and -TRS.   

    Arguments   
    =========   

    LINE    (input) CHARACTER*80   
            The input line that requested this routine.  The first six   
            characters contain either the name of a subroutine or a   
            generic path name.  The remaining characters may be used to   
            specify the individual routines to be timed.  See ATIMIN for   
            a full description of the format of the input line.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix size N.   

    NNS     (input) INTEGER   
            The number of values of NRHS contained in the vector NSVAL.   

    NSVAL   (input) INTEGER array, dimension (NNS)   
            The values of the number of right hand sides NRHS.   

    NNB     (input) INTEGER   
            The number of values of NB contained in the vector NBVAL.   

    NBVAL   (input) INTEGER array, dimension (NNB)   
            The values of the blocksize NB.   

    NLDA    (input) INTEGER   
            The number of values of LDA contained in the vector LDAVAL.   

    LDAVAL  (input) INTEGER array, dimension (NLDA)   
            The values of the leading dimension of the array A.   

    TIMMIN  (input) REAL   
            The minimum time a subroutine will be timed.   

    A       (workspace) COMPLEX array, dimension (LDAMAX*NMAX)   
            where LDAMAX and NMAX are the maximum values permitted   
            for LDA and N.   

    B       (workspace) COMPLEX array, dimension (LDAMAX*NMAX)   

    RESLTS  (output) REAL array, dimension   
                     (LDR1,LDR2,LDR3,NSUBS)   
            The timing results for each subroutine over the relevant   
            values of N, NB, and LDA.   

    LDR1    (input) INTEGER   
            The first dimension of RESLTS.  LDR1 >= max(1,NNB).   

    LDR2    (input) INTEGER   
            The second dimension of RESLTS.  LDR2 >= max(1,NN).   

    LDR3    (input) INTEGER   
            The third dimension of RESLTS.  LDR3 >= max(1,2*NLDA).   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --nval;
    --nsval;
    --nbval;
    --ldaval;
    --a;
    --b;
    reslts_dim1 = *ldr1;
    reslts_dim2 = *ldr2;
    reslts_dim3 = *ldr3;
    reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1)
	    );
    reslts -= reslts_offset;

    /* Function Body   

       Extract the timing request from the input line. */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "TR", (ftnlen)2, (ftnlen)2);
    atimin_(path, line, &c__2, subnam, timsub, nout, &info, (ftnlen)3, (
	    ftnlen)80, (ftnlen)6);
    if (info != 0) {
	goto L130;
    }

/*     Check that N <= LDA for the input values. */

    s_copy(cname, line, (ftnlen)6, (ftnlen)6);
    atimck_(&c__2, cname, nn, &nval[1], nlda, &ldaval[1], nout, &info, (
	    ftnlen)6);
    if (info > 0) {
	io___7.ciunit = *nout;
	s_wsfe(&io___7);
	do_fio(&c__1, cname, (ftnlen)6);
	e_wsfe();
	goto L130;
    }

/*     Do first for UPLO = 'U', then for UPLO = 'L' */

    for (iuplo = 1; iuplo <= 2; ++iuplo) {
	*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
	if (lsame_(uplo, "U")) {
	    mat = 11;
	} else {
	    mat = -11;
	}

/*        Do for each value of N: */

	i__1 = *nn;
	for (in = 1; in <= i__1; ++in) {
	    n = nval[in];

/*           Do for each value of LDA: */

	    i__2 = *nlda;
	    for (ilda = 1; ilda <= i__2; ++ilda) {
		lda = ldaval[ilda];
		i3 = (iuplo - 1) * *nlda + ilda;

/*              Do for each value of NB in NBVAL.  Only the blocked   
                routines are timed in this loop since the other routines   
                are independent of NB. */

		if (timsub[0]) {
		    i__3 = *nnb;
		    for (inb = 1; inb <= i__3; ++inb) {
			nb = nbval[inb];
			xlaenv_(&c__1, &nb);

/*                    Time CTRTRI */

			ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0);
			ic = 0;
			s1 = second_();
L10:
			ctrtri_(uplo, "Non-unit", &n, &a[1], &lda, &info);
			s2 = second_();
			time = s2 - s1;
			++ic;
			if (time < *timmin) {
			    ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0);
			    goto L10;
			}

/*                    Subtract the time used in CTIMMG. */

			icl = 1;
			s1 = second_();
L20:
			s2 = second_();
			untime = s2 - s1;
			++icl;
			if (icl <= ic) {
			    ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0);
			    goto L20;
			}

			time = (time - untime) / (real) ic;
			ops = sopla_("CTRTRI", &n, &n, &c__0, &c__0, &nb);
			reslts_ref(inb, in, i3, 1) = smflop_(&ops, &time, &
				info);
/* L30: */
		    }
		} else {

/*                 Generate a triangular matrix A. */

		    ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0);
		}

/*              Time CTRTRS */

		if (timsub[1]) {
		    i__3 = *nns;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			nrhs = nsval[i__];
			ldb = lda;
			ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &c__0);
			ic = 0;
			s1 = second_();
L40:
			ctrtrs_(uplo, "No transpose", "Non-unit", &n, &nrhs, &
				a[1], &lda, &b[1], &ldb, &info);
			s2 = second_();
			time = s2 - s1;
			++ic;
			if (time < *timmin) {
			    ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &
				    c__0);
			    goto L40;
			}

/*                    Subtract the time used in CTIMMG. */

			icl = 1;
			s1 = second_();
L50:
			s2 = second_();
			untime = s2 - s1;
			++icl;
			if (icl <= ic) {
			    ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &
				    c__0);
			    goto L50;
			}

			time = (time - untime) / (real) ic;
			ops = sopla_("CTRTRS", &n, &nrhs, &c__0, &c__0, &c__0);
			reslts_ref(i__, in, i3, 2) = smflop_(&ops, &time, &
				info);
/* L60: */
		    }
		}
/* L70: */
	    }
/* L80: */
	}
/* L90: */
    }

/*     Print a table of results. */

    for (isub = 1; isub <= 2; ++isub) {
	if (! timsub[isub - 1]) {
	    goto L120;
	}
	io___29.ciunit = *nout;
	s_wsfe(&io___29);
	do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	e_wsfe();
	if (*nlda > 1) {
	    i__1 = *nlda;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		io___30.ciunit = *nout;
		s_wsfe(&io___30);
		do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer));
		e_wsfe();
/* L100: */
	    }
	}
	io___31.ciunit = *nout;
	s_wsle(&io___31);
	e_wsle();
	for (iuplo = 1; iuplo <= 2; ++iuplo) {
	    io___32.ciunit = *nout;
	    s_wsfe(&io___32);
	    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	    do_fio(&c__1, uplos + (iuplo - 1), (ftnlen)1);
	    e_wsfe();
	    i3 = (iuplo - 1) * *nlda + 1;
	    if (isub == 1) {
		sprtbl_("NB", "N", nnb, &nbval[1], nn, &nval[1], nlda, &
			reslts_ref(1, 1, i3, 1), ldr1, ldr2, nout, (ftnlen)2, 
			(ftnlen)1);
	    } else if (isub == 2) {
		sprtbl_("NRHS", "N", nns, &nsval[1], nn, &nval[1], nlda, &
			reslts_ref(1, 1, i3, 2), ldr1, ldr2, nout, (ftnlen)4, 
			(ftnlen)1);
	    }
/* L110: */
	}
L120:
	;
    }

L130:
    return 0;

/*     End of CTIMTR */

} /* ctimtr_ */
Exemple #13
0
/* Subroutine */ int dtimpb_(char *line, integer *nn, integer *nval, integer *
	nk, integer *kval, integer *nns, integer *nsval, integer *nnb, 
	integer *nbval, integer *nlda, integer *ldaval, doublereal *timmin, 
	doublereal *a, doublereal *b, integer *iwork, doublereal *reslts, 
	integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, ftnlen 
	line_len)
{
    /* Initialized data */

    static char uplos[1*2] = "U" "L";
    static char subnam[6*2] = "DPBTRF" "DPBTRS";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)";
    static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops "
	    "***\002)";
    static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)";
    static char fmt_9996[] = "(5x,a6,\002 with M =\002,i6,\002, UPLO = '\002"
	    ",a1,\002'\002,/)";

    /* System generated locals */
    integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, 
	    i__3, i__4, i__5, i__6, i__7;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_cmp(char *, char *, ftnlen, ftnlen), s_wsle(cilist *), e_wsle(
	    void);

    /* Local variables */
    static integer ilda, info;
    static char path[3];
    static doublereal time;
    static integer isub, nrhs;
    static char uplo[1];
    static integer i__, k, n;
    static char cname[6];
    extern doublereal dopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    extern logical lsame_(char *, char *);
    static integer iuplo, i3;
    static doublereal s1, s2;
    static integer ic, nb, ik, in;
    extern doublereal dsecnd_(void);
    extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer 
	    *, integer *, integer *, integer *, integer *, ftnlen);
    extern doublereal dmflop_(doublereal *, doublereal *, integer *);
    extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, 
	    logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), dpbtrf_(
	    char *, integer *, integer *, doublereal *, integer *, integer *), dtimmg_(integer *, integer *, integer *, doublereal *, 
	    integer *, integer *, integer *), dprtbl_(char *, char *, integer 
	    *, integer *, integer *, integer *, integer *, doublereal *, 
	    integer *, integer *, integer *, ftnlen, ftnlen), dpbtrs_(char *, 
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, integer *), xlaenv_(integer *, 
	    integer *);
    static doublereal untime;
    static logical timsub[2];
    static integer lda, ldb, icl, inb, mat;
    static doublereal ops;

    /* Fortran I/O blocks */
    static cilist io___7 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___31 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___32 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___33 = { 0, 0, 0, 0, 0 };
    static cilist io___34 = { 0, 0, 0, fmt_9996, 0 };



#define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6]
#define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\
reslts_dim2 + (a_2))*reslts_dim1 + a_1]


/*  -- LAPACK timing routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    DTIMPB times DPBTRF and -TRS.   

    Arguments   
    =========   

    LINE    (input) CHARACTER*80   
            The input line that requested this routine.  The first six   
            characters contain either the name of a subroutine or a   
            generic path name.  The remaining characters may be used to   
            specify the individual routines to be timed.  See ATIMIN for   
            a full description of the format of the input line.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix size N.   

    NK      (input) INTEGER   
            The number of values of K contained in the vector KVAL.   

    KVAL    (input) INTEGER array, dimension (NK)   
            The values of the band width K.   

    NNS     (input) INTEGER   
            The number of values of NRHS contained in the vector NSVAL.   

    NSVAL   (input) INTEGER array, dimension (NNS)   
            The values of the number of right hand sides NRHS.   

    NNB     (input) INTEGER   
            The number of values of NB contained in the vector NBVAL.   

    NBVAL   (input) INTEGER array, dimension (NNB)   
            The values of the blocksize NB.   

    NLDA    (input) INTEGER   
            The number of values of LDA contained in the vector LDAVAL.   

    LDAVAL  (input) INTEGER array, dimension (NLDA)   
            The values of the leading dimension of the array A.   

    TIMMIN  (input) DOUBLE PRECISION   
            The minimum time a subroutine will be timed.   

    A       (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX)   
            where LDAMAX and NMAX are the maximum values permitted   
            for LDA and N.   

    B       (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX)   

    IWORK   (workspace) INTEGER array, dimension (NMAX)   

    RESLTS  (output) DOUBLE PRECISION array, dimension   
                     (LDR1,LDR2,LDR3,NSUBS)   
            The timing results for each subroutine over the relevant   
            values of N, K, NB, and LDA.   

    LDR1    (input) INTEGER   
            The first dimension of RESLTS.  LDR1 >= max(4,NNB).   

    LDR2    (input) INTEGER   
            The second dimension of RESLTS.  LDR2 >= max(1,NK).   

    LDR3    (input) INTEGER   
            The third dimension of RESLTS.  LDR3 >= max(1,2*NLDA).   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --nval;
    --kval;
    --nsval;
    --nbval;
    --ldaval;
    --a;
    --b;
    --iwork;
    reslts_dim1 = *ldr1;
    reslts_dim2 = *ldr2;
    reslts_dim3 = *ldr3;
    reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1)
	    );
    reslts -= reslts_offset;

    /* Function Body   

       Extract the timing request from the input line. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "PB", (ftnlen)2, (ftnlen)2);
    atimin_(path, line, &c__2, subnam, timsub, nout, &info, (ftnlen)3, (
	    ftnlen)80, (ftnlen)6);
    if (info != 0) {
	goto L140;
    }

/*     Check that K+1 <= LDA for the input values. */

    s_copy(cname, line, (ftnlen)6, (ftnlen)6);
    atimck_(&c__0, cname, nk, &kval[1], nlda, &ldaval[1], nout, &info, (
	    ftnlen)6);
    if (info > 0) {
	io___7.ciunit = *nout;
	s_wsfe(&io___7);
	do_fio(&c__1, cname, (ftnlen)6);
	e_wsfe();
	goto L140;
    }

/*     Do for each value of the matrix size N: */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];

/*        Do first for UPLO = 'U', then for UPLO = 'L' */

	for (iuplo = 1; iuplo <= 2; ++iuplo) {
	    *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
	    if (lsame_(uplo, "U")) {
		mat = 5;
	    } else {
		mat = -5;
	    }

/*           Do for each value of LDA: */

	    i__2 = *nlda;
	    for (ilda = 1; ilda <= i__2; ++ilda) {
		lda = ldaval[ilda];
		i3 = (iuplo - 1) * *nlda + ilda;

/*              Do for each value of the band width K: */

		i__3 = *nk;
		for (ik = 1; ik <= i__3; ++ik) {
		    k = kval[ik];
/* Computing MAX   
   Computing MIN */
		    i__6 = k, i__7 = n - 1;
		    i__4 = 0, i__5 = min(i__6,i__7);
		    k = max(i__4,i__5);

/*                 Time DPBTRF */

		    if (timsub[0]) {

/*                    Do for each value of NB in NBVAL.  Only DPBTRF is   
                      timed in this loop since the other routines are   
                      independent of NB. */

			i__4 = *nnb;
			for (inb = 1; inb <= i__4; ++inb) {
			    nb = nbval[inb];
			    xlaenv_(&c__1, &nb);
			    dtimmg_(&mat, &n, &n, &a[1], &lda, &k, &k);
			    ic = 0;
			    s1 = dsecnd_();
L10:
			    dpbtrf_(uplo, &n, &k, &a[1], &lda, &info);
			    s2 = dsecnd_();
			    time = s2 - s1;
			    ++ic;
			    if (time < *timmin) {
				dtimmg_(&mat, &n, &n, &a[1], &lda, &k, &k);
				goto L10;
			    }

/*                       Subtract the time used in DTIMMG. */

			    icl = 1;
			    s1 = dsecnd_();
L20:
			    dtimmg_(&mat, &n, &n, &a[1], &lda, &k, &k);
			    s2 = dsecnd_();
			    untime = s2 - s1;
			    ++icl;
			    if (icl <= ic) {
				goto L20;
			    }

			    time = (time - untime) / (doublereal) ic;
			    ops = dopla_("DPBTRF", &n, &n, &k, &k, &nb);
			    reslts_ref(inb, ik, i3, 1) = dmflop_(&ops, &time, 
				    &info);
/* L30: */
			}
		    } else {
			ic = 0;
			dtimmg_(&mat, &n, &n, &a[1], &lda, &k, &k);
		    }

/*                 Generate another matrix and factor it using DPBTRF so   
                   that the factored form can be used in timing the other   
                   routines. */

		    nb = 1;
		    xlaenv_(&c__1, &nb);
		    if (ic != 1) {
			dpbtrf_(uplo, &n, &k, &a[1], &lda, &info);
		    }

/*                 Time DPBTRS */

		    if (timsub[1]) {
			i__4 = *nns;
			for (i__ = 1; i__ <= i__4; ++i__) {
			    nrhs = nsval[i__];
			    ldb = n;
			    dtimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &
				    c__0);
			    ic = 0;
			    s1 = dsecnd_();
L40:
			    dpbtrs_(uplo, &n, &k, &nrhs, &a[1], &lda, &b[1], &
				    ldb, &info);
			    s2 = dsecnd_();
			    time = s2 - s1;
			    ++ic;
			    if (time < *timmin) {
				dtimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, 
					&c__0);
				goto L40;
			    }

/*                       Subtract the time used in DTIMMG. */

			    icl = 1;
			    s1 = dsecnd_();
L50:
			    s2 = dsecnd_();
			    untime = s2 - s1;
			    ++icl;
			    if (icl <= ic) {
				dtimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, 
					&c__0);
				goto L50;
			    }

			    time = (time - untime) / (doublereal) ic;
			    ops = dopla_("DPBTRS", &n, &nrhs, &k, &k, &c__0);
			    reslts_ref(i__, ik, i3, 2) = dmflop_(&ops, &time, 
				    &info);
/* L60: */
			}
		    }
/* L70: */
		}
/* L80: */
	    }
/* L90: */
	}

/*        Print tables of results for each timed routine. */

	for (isub = 1; isub <= 2; ++isub) {
	    if (! timsub[isub - 1]) {
		goto L120;
	    }

/*           Print header for routine names. */

	    if (in == 1 || s_cmp(cname, "DPB   ", (ftnlen)6, (ftnlen)6) == 0) 
		    {
		io___31.ciunit = *nout;
		s_wsfe(&io___31);
		do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
		e_wsfe();
		if (*nlda > 1) {
		    i__2 = *nlda;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			io___32.ciunit = *nout;
			s_wsfe(&io___32);
			do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(
				integer));
			e_wsfe();
/* L100: */
		    }
		}
	    }
	    io___33.ciunit = *nout;
	    s_wsle(&io___33);
	    e_wsle();
	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		io___34.ciunit = *nout;
		s_wsfe(&io___34);
		do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, uplos + (iuplo - 1), (ftnlen)1);
		e_wsfe();
		i3 = (iuplo - 1) * *nlda + 1;
		if (isub == 1) {
		    dprtbl_("NB", "K", nnb, &nbval[1], nk, &kval[1], nlda, &
			    reslts_ref(1, 1, i3, 1), ldr1, ldr2, nout, (
			    ftnlen)2, (ftnlen)1);
		} else if (isub == 2) {
		    dprtbl_("NRHS", "K", nns, &nsval[1], nk, &kval[1], nlda, &
			    reslts_ref(1, 1, i3, 2), ldr1, ldr2, nout, (
			    ftnlen)4, (ftnlen)1);
		}
/* L110: */
	    }
L120:
	    ;
	}
/* L130: */
    }

L140:
    return 0;

/*     End of DTIMPB */

} /* dtimpb_ */
Exemple #14
0
/* Subroutine */ int dchkq3_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
	nxval, doublereal *thresh, doublereal *a, doublereal *copya, 
	doublereal *s, doublereal *copys, doublereal *tau, doublereal *work, 
	integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 M =\002,i5,\002, N =\002,i5,\002, "
	    "NB =\002,i4,\002, type \002,i2,\002, test \002,i2,\002, ratio "
	    "=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5;
    doublereal d__1;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer mode, info;
    static char path[3];
    static integer ilow, nrun, i__;
    extern /* Subroutine */ int alahd_(integer *, char *);
    static integer k, m, n, ihigh, nfail, iseed[4], imode;
    extern doublereal dqpt01_(integer *, integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *), dqrt11_(integer *, integer *, doublereal *, integer *,
	     doublereal *, doublereal *, integer *), dqrt12_(integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *);
    static integer mnmin;
    extern /* Subroutine */ int icopy_(integer *, integer *, integer *, 
	    integer *, integer *);
    static integer istep, nerrs, lwork;
    extern /* Subroutine */ int dgeqp3_(integer *, integer *, doublereal *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    integer *);
    static integer nb, im, in;
    extern doublereal dlamch_(char *);
    static integer lw;
    extern /* Subroutine */ int dlaord_(char *, integer *, doublereal *, 
	    integer *);
    static integer nx;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *), alasum_(char *, integer *, 
	    integer *, integer *, integer *), dlatms_(integer *, 
	    integer *, char *, integer *, char *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, char *, 
	    doublereal *, integer *, doublereal *, integer *), xlaenv_(integer *, integer *);
    static doublereal result[3];
    static integer lda, inb;
    static doublereal eps;

    /* Fortran I/O blocks */
    static cilist io___28 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DCHKQ3 tests DGEQP3.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NM      (input) INTEGER   
            The number of values of M contained in the vector MVAL.   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix row dimension M.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix column dimension N.   

    NNB     (input) INTEGER   
            The number of values of NB and NX contained in the   
            vectors NBVAL and NXVAL.  The blocking parameters are used   
            in pairs (NB,NX).   

    NBVAL   (input) INTEGER array, dimension (NNB)   
            The values of the blocksize NB.   

    NXVAL   (input) INTEGER array, dimension (NNB)   
            The values of the crossover point NX.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    A       (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)   
            where MMAX is the maximum value of M in MVAL and NMAX is the   
            maximum value of N in NVAL.   

    COPYA   (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)   

    S       (workspace) DOUBLE PRECISION array, dimension   
                        (min(MMAX,NMAX))   

    COPYS   (workspace) DOUBLE PRECISION array, dimension   
                        (min(MMAX,NMAX))   

    TAU     (workspace) DOUBLE PRECISION array, dimension (MMAX)   

    WORK    (workspace) DOUBLE PRECISION array, dimension   
                        (MMAX*NMAX + 4*NMAX + MMAX)   

    IWORK   (workspace) INTEGER array, dimension (2*NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --work;
    --tau;
    --copys;
    --s;
    --copya;
    --a;
    --nxval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "Q3", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
    eps = dlamch_("Epsilon");
    infoc_1.infot = 0;

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {

/*        Do for each value of M in MVAL. */

	m = mval[im];
	lda = max(1,m);

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {

/*           Do for each value of N in NVAL. */

	    n = nval[in];
	    mnmin = min(m,n);
/* Computing MAX */
	    i__3 = 1, i__4 = m * max(m,n) + (mnmin << 2) + max(m,n);
	    lwork = max(i__3,i__4);

	    for (imode = 1; imode <= 6; ++imode) {
		if (! dotype[imode]) {
		    goto L70;
		}

/*              Do for each type of matrix   
                   1:  zero matrix   
                   2:  one small singular value   
                   3:  geometric distribution of singular values   
                   4:  first n/2 columns fixed   
                   5:  last n/2 columns fixed   
                   6:  every second column fixed */

		mode = imode;
		if (imode > 3) {
		    mode = 1;
		}

/*              Generate test matrix of size m by n using   
                singular value distribution indicated by `mode'. */

		i__3 = n;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    iwork[i__] = 0;
/* L20: */
		}
		if (imode == 1) {
		    dlaset_("Full", &m, &n, &c_b11, &c_b11, &copya[1], &lda);
		    i__3 = mnmin;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			copys[i__] = 0.;
/* L30: */
		    }
		} else {
		    d__1 = 1. / eps;
		    dlatms_(&m, &n, "Uniform", iseed, "Nonsymm", &copys[1], &
			    mode, &d__1, &c_b16, &m, &n, "No packing", &copya[
			    1], &lda, &work[1], &info);
		    if (imode >= 4) {
			if (imode == 4) {
			    ilow = 1;
			    istep = 1;
/* Computing MAX */
			    i__3 = 1, i__4 = n / 2;
			    ihigh = max(i__3,i__4);
			} else if (imode == 5) {
/* Computing MAX */
			    i__3 = 1, i__4 = n / 2;
			    ilow = max(i__3,i__4);
			    istep = 1;
			    ihigh = n;
			} else if (imode == 6) {
			    ilow = 1;
			    istep = 2;
			    ihigh = n;
			}
			i__3 = ihigh;
			i__4 = istep;
			for (i__ = ilow; i__4 < 0 ? i__ >= i__3 : i__ <= i__3;
				 i__ += i__4) {
			    iwork[i__] = 1;
/* L40: */
			}
		    }
		    dlaord_("Decreasing", &mnmin, &copys[1], &c__1);
		}

		i__4 = *nnb;
		for (inb = 1; inb <= i__4; ++inb) {

/*                 Do for each pair of values (NB,NX) in NBVAL and NXVAL. */

		    nb = nbval[inb];
		    xlaenv_(&c__1, &nb);
		    nx = nxval[inb];
		    xlaenv_(&c__3, &nx);

/*                 Get a working copy of COPYA into A and a copy of   
                   vector IWORK. */

		    dlacpy_("All", &m, &n, &copya[1], &lda, &a[1], &lda);
		    icopy_(&n, &iwork[1], &c__1, &iwork[n + 1], &c__1);

/*                 Compute the QR factorization with pivoting of A   

   Computing MAX */
		    i__3 = 1, i__5 = (n << 1) + nb * (n + 1);
		    lw = max(i__3,i__5);

/*                 Compute the QP3 factorization of A */

		    s_copy(srnamc_1.srnamt, "DGEQP3", (ftnlen)6, (ftnlen)6);
		    dgeqp3_(&m, &n, &a[1], &lda, &iwork[n + 1], &tau[1], &
			    work[1], &lw, &info);

/*                 Compute norm(svd(a) - svd(r)) */

		    result[0] = dqrt12_(&m, &n, &a[1], &lda, &copys[1], &work[
			    1], &lwork);

/*                 Compute norm( A*P - Q*R ) */

		    result[1] = dqpt01_(&m, &n, &mnmin, &copya[1], &a[1], &
			    lda, &tau[1], &iwork[n + 1], &work[1], &lwork);

/*                 Compute Q'*Q */

		    result[2] = dqrt11_(&m, &mnmin, &a[1], &lda, &tau[1], &
			    work[1], &lwork);

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    for (k = 1; k <= 3; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___28.ciunit = *nout;
			    s_wsfe(&io___28);
			    do_fio(&c__1, "DGEQP3", (ftnlen)6);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&imode, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L50: */
		    }
		    nrun += 3;

/* L60: */
		}
L70:
		;
	    }
/* L80: */
	}
/* L90: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);


/*     End of DCHKQ3 */

    return 0;
} /* dchkq3_ */
Exemple #15
0
/* Subroutine */ int dtimql_(char *line, integer *nm, integer *mval, integer *
	nval, integer *nk, integer *kval, integer *nnb, integer *nbval, 
	integer *nxval, integer *nlda, integer *ldaval, doublereal *timmin, 
	doublereal *a, doublereal *tau, doublereal *b, doublereal *work, 
	doublereal *reslts, integer *ldr1, integer *ldr2, integer *ldr3, 
	integer *nout, ftnlen line_len)
{
    /* Initialized data */

    static char subnam[6*3] = "DGEQLF" "DORGQL" "DORMQL";
    static char sides[1*2] = "L" "R";
    static char transs[1*2] = "N" "T";
    static integer iseed[4] = { 0,0,0,1 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)";
    static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops "
	    "***\002)";
    static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)";
    static char fmt_9996[] = "(5x,\002K = min(M,N)\002,/)";
    static char fmt_9995[] = "(/5x,a6,\002 with SIDE = '\002,a1,\002', TRANS"
	    " = '\002,a1,\002', \002,a1,\002 =\002,i6,/)";
    static char fmt_9994[] = "(\002 *** No pairs (M,N) found with M >= N: "
	    " \002,a6,\002 not timed\002)";

    /* System generated locals */
    integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, 
	    i__3, i__4, i__5, i__6;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    static integer ilda;
    static char labm[1], side[1];
    static integer info;
    static char path[3];
    static doublereal time;
    static integer isub, muse[12], nuse[12], i__, k, m, n;
    static char cname[6];
    static integer iside;
    extern doublereal dopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    static integer itoff, itran, minmn;
    extern /* Subroutine */ int icopy_(integer *, integer *, integer *, 
	    integer *, integer *);
    static char trans[1];
    static integer k1, i4, m1, n1;
    static doublereal s1, s2;
    extern /* Subroutine */ int dprtb4_(char *, char *, char *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    doublereal *, integer *, integer *, integer *, ftnlen, ftnlen, 
	    ftnlen), dprtb5_(char *, char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, doublereal *, integer 
	    *, integer *, integer *, ftnlen, ftnlen, ftnlen);
    static integer ic, nb, ik, im;
    extern doublereal dsecnd_(void);
    extern /* Subroutine */ int dgeqlf_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *);
    static integer lw, nx, reseed[4];
    extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer 
	    *, integer *, integer *, integer *, integer *, ftnlen), dlacpy_(
	    char *, integer *, integer *, doublereal *, integer *, doublereal 
	    *, integer *);
    extern doublereal dmflop_(doublereal *, doublereal *, integer *);
    extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, 
	    logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), dtimmg_(
	    integer *, integer *, integer *, doublereal *, integer *, integer 
	    *, integer *), dlatms_(integer *, integer *, char *, integer *, 
	    char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublereal *, integer *, doublereal 
	    *, integer *), dorgql_(integer *, integer 
	    *, integer *, doublereal *, integer *, doublereal *, doublereal *,
	     integer *, integer *), dormql_(char *, char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *), xlaenv_(integer *, integer *);
    static doublereal untime;
    static logical timsub[3];
    static integer lda, icl, inb, imx;
    static doublereal ops;

    /* Fortran I/O blocks */
    static cilist io___9 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___29 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___31 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___32 = { 0, 0, 0, 0, 0 };
    static cilist io___33 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___34 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9994, 0 };



#define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6]
#define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\
reslts_dim2 + (a_2))*reslts_dim1 + a_1]


/*  -- LAPACK timing routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    DTIMQL times the LAPACK routines to perform the QL factorization of   
    a DOUBLE PRECISION general matrix.   

    Arguments   
    =========   

    LINE    (input) CHARACTER*80   
            The input line that requested this routine.  The first six   
            characters contain either the name of a subroutine or a   
            generic path name.  The remaining characters may be used to   
            specify the individual routines to be timed.  See ATIMIN for   
            a full description of the format of the input line.   

    NM      (input) INTEGER   
            The number of values of M and N contained in the vectors   
            MVAL and NVAL.  The matrix sizes are used in pairs (M,N).   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix row dimension M.   

    NVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix column dimension N.   

    NK      (input) INTEGER   
            The number of values of K in the vector KVAL.   

    KVAL    (input) INTEGER array, dimension (NK)   
            The values of the matrix dimension K, used in DORMQL.   

    NNB     (input) INTEGER   
            The number of values of NB and NX contained in the   
            vectors NBVAL and NXVAL.  The blocking parameters are used   
            in pairs (NB,NX).   

    NBVAL   (input) INTEGER array, dimension (NNB)   
            The values of the blocksize NB.   

    NXVAL   (input) INTEGER array, dimension (NNB)   
            The values of the crossover point NX.   

    NLDA    (input) INTEGER   
            The number of values of LDA contained in the vector LDAVAL.   

    LDAVAL  (input) INTEGER array, dimension (NLDA)   
            The values of the leading dimension of the array A.   

    TIMMIN  (input) DOUBLE PRECISION   
            The minimum time a subroutine will be timed.   

    A       (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX)   
            where LDAMAX and NMAX are the maximum values of LDA and N.   

    TAU     (workspace) DOUBLE PRECISION array, dimension (min(M,N))   

    B       (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX)   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NBMAX)   
            where NBMAX is the maximum value of NB.   

    RESLTS  (workspace) DOUBLE PRECISION array, dimension   
                        (LDR1,LDR2,LDR3,2*NK)   
            The timing results for each subroutine over the relevant   
            values of (M,N), (NB,NX), and LDA.   

    LDR1    (input) INTEGER   
            The first dimension of RESLTS.  LDR1 >= max(1,NNB).   

    LDR2    (input) INTEGER   
            The second dimension of RESLTS.  LDR2 >= max(1,NM).   

    LDR3    (input) INTEGER   
            The third dimension of RESLTS.  LDR3 >= max(1,NLDA).   

    NOUT    (input) INTEGER   
            The unit number for output.   

    Internal Parameters   
    ===================   

    MODE    INTEGER   
            The matrix type.  MODE = 3 is a geometric distribution of   
            eigenvalues.  See DLATMS for further details.   

    COND    DOUBLE PRECISION   
            The condition number of the matrix.  The singular values are   
            set to values from DMAX to DMAX/COND.   

    DMAX    DOUBLE PRECISION   
            The magnitude of the largest singular value.   

    =====================================================================   

       Parameter adjustments */
    --mval;
    --nval;
    --kval;
    --nbval;
    --nxval;
    --ldaval;
    --a;
    --tau;
    --b;
    --work;
    reslts_dim1 = *ldr1;
    reslts_dim2 = *ldr2;
    reslts_dim3 = *ldr3;
    reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1)
	    );
    reslts -= reslts_offset;

    /* Function Body   

       Extract the timing request from the input line. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "QL", (ftnlen)2, (ftnlen)2);
    atimin_(path, line, &c__3, subnam, timsub, nout, &info, (ftnlen)3, (
	    ftnlen)80, (ftnlen)6);
    if (info != 0) {
	goto L230;
    }

/*     Check that M <= LDA for the input values. */

    s_copy(cname, line, (ftnlen)6, (ftnlen)6);
    atimck_(&c__1, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, (
	    ftnlen)6);
    if (info > 0) {
	io___9.ciunit = *nout;
	s_wsfe(&io___9);
	do_fio(&c__1, cname, (ftnlen)6);
	e_wsfe();
	goto L230;
    }

/*     Do for each pair of values (M,N): */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];
	n = nval[im];
	minmn = min(m,n);
	icopy_(&c__4, iseed, &c__1, reseed, &c__1);

/*        Do for each value of LDA: */

	i__2 = *nlda;
	for (ilda = 1; ilda <= i__2; ++ilda) {
	    lda = ldaval[ilda];

/*           Do for each pair of values (NB, NX) in NBVAL and NXVAL. */

	    i__3 = *nnb;
	    for (inb = 1; inb <= i__3; ++inb) {
		nb = nbval[inb];
		xlaenv_(&c__1, &nb);
		nx = nxval[inb];
		xlaenv_(&c__3, &nx);
/* Computing MAX */
		i__4 = 1, i__5 = n * max(1,nb);
		lw = max(i__4,i__5);

/*              Generate a test matrix of size M by N. */

		icopy_(&c__4, reseed, &c__1, iseed, &c__1);
		dlatms_(&m, &n, "Uniform", iseed, "Nonsymm", &tau[1], &c__3, &
			c_b24, &c_b25, &m, &n, "No packing", &b[1], &lda, &
			work[1], &info);

		if (timsub[0]) {

/*                 DGEQLF:  QL factorization */

		    dlacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda);
		    ic = 0;
		    s1 = dsecnd_();
L10:
		    dgeqlf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &
			    info);
		    s2 = dsecnd_();
		    time = s2 - s1;
		    ++ic;
		    if (time < *timmin) {
			dlacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda);
			goto L10;
		    }

/*                 Subtract the time used in DLACPY. */

		    icl = 1;
		    s1 = dsecnd_();
L20:
		    s2 = dsecnd_();
		    untime = s2 - s1;
		    ++icl;
		    if (icl <= ic) {
			dlacpy_("Full", &m, &n, &a[1], &lda, &b[1], &lda);
			goto L20;
		    }

		    time = (time - untime) / (doublereal) ic;
		    ops = dopla_("DGEQLF", &m, &n, &c__0, &c__0, &nb);
		    reslts_ref(inb, im, ilda, 1) = dmflop_(&ops, &time, &info)
			    ;
		} else {

/*                 If DGEQLF was not timed, generate a matrix and factor   
                   it using DGEQLF anyway so that the factored form of   
                   the matrix can be used in timing the other routines. */

		    dlacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda);
		    dgeqlf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &
			    info);
		}

		if (timsub[1]) {

/*                 DORGQL:  Generate orthogonal matrix Q from the QL   
                   factorization */

		    dlacpy_("Full", &m, &minmn, &a[1], &lda, &b[1], &lda);
		    ic = 0;
		    s1 = dsecnd_();
L30:
		    dorgql_(&m, &minmn, &minmn, &b[1], &lda, &tau[1], &work[1]
			    , &lw, &info);
		    s2 = dsecnd_();
		    time = s2 - s1;
		    ++ic;
		    if (time < *timmin) {
			dlacpy_("Full", &m, &minmn, &a[1], &lda, &b[1], &lda);
			goto L30;
		    }

/*                 Subtract the time used in DLACPY. */

		    icl = 1;
		    s1 = dsecnd_();
L40:
		    s2 = dsecnd_();
		    untime = s2 - s1;
		    ++icl;
		    if (icl <= ic) {
			dlacpy_("Full", &m, &minmn, &a[1], &lda, &b[1], &lda);
			goto L40;
		    }

		    time = (time - untime) / (doublereal) ic;
		    ops = dopla_("DORGQL", &m, &minmn, &minmn, &c__0, &nb);
		    reslts_ref(inb, im, ilda, 2) = dmflop_(&ops, &time, &info)
			    ;
		}

/* L50: */
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print tables of results */

    for (isub = 1; isub <= 2; ++isub) {
	if (! timsub[isub - 1]) {
	    goto L90;
	}
	io___29.ciunit = *nout;
	s_wsfe(&io___29);
	do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	e_wsfe();
	if (*nlda > 1) {
	    i__1 = *nlda;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		io___31.ciunit = *nout;
		s_wsfe(&io___31);
		do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer));
		e_wsfe();
/* L80: */
	    }
	}
	io___32.ciunit = *nout;
	s_wsle(&io___32);
	e_wsle();
	if (isub == 2) {
	    io___33.ciunit = *nout;
	    s_wsfe(&io___33);
	    e_wsfe();
	}
	dprtb4_("(  NB,  NX)", "M", "N", nnb, &nbval[1], &nxval[1], nm, &mval[
		1], &nval[1], nlda, &reslts_ref(1, 1, 1, isub), ldr1, ldr2, 
		nout, (ftnlen)11, (ftnlen)1, (ftnlen)1);
L90:
	;
    }

/*     Time DORMQL separately.  Here the starting matrix is M by N, and   
       K is the free dimension of the matrix multiplied by Q. */

    if (timsub[2]) {

/*        Check that K <= LDA for the input values. */

	atimck_(&c__3, cname, nk, &kval[1], nlda, &ldaval[1], nout, &info, (
		ftnlen)6);
	if (info > 0) {
	    io___34.ciunit = *nout;
	    s_wsfe(&io___34);
	    do_fio(&c__1, subnam_ref(0, 3), (ftnlen)6);
	    e_wsfe();
	    goto L230;
	}

/*        Use only the pairs (M,N) where M >= N. */

	imx = 0;
	i__1 = *nm;
	for (im = 1; im <= i__1; ++im) {
	    if (mval[im] >= nval[im]) {
		++imx;
		muse[imx - 1] = mval[im];
		nuse[imx - 1] = nval[im];
	    }
/* L100: */
	}

/*        DORMQL:  Multiply by Q stored as a product of elementary   
          transformations   

          Do for each pair of values (M,N): */

	i__1 = imx;
	for (im = 1; im <= i__1; ++im) {
	    m = muse[im - 1];
	    n = nuse[im - 1];

/*           Do for each value of LDA: */

	    i__2 = *nlda;
	    for (ilda = 1; ilda <= i__2; ++ilda) {
		lda = ldaval[ilda];

/*              Generate an M by N matrix and form its QL decomposition. */

		dlatms_(&m, &n, "Uniform", iseed, "Nonsymm", &tau[1], &c__3, &
			c_b24, &c_b25, &m, &n, "No packing", &a[1], &lda, &
			work[1], &info);
/* Computing MAX */
		i__3 = 1, i__4 = n * max(1,nb);
		lw = max(i__3,i__4);
		dgeqlf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &info);

/*              Do first for SIDE = 'L', then for SIDE = 'R' */

		i4 = 0;
		for (iside = 1; iside <= 2; ++iside) {
		    *(unsigned char *)side = *(unsigned char *)&sides[iside - 
			    1];

/*                 Do for each pair of values (NB, NX) in NBVAL and   
                   NXVAL. */

		    i__3 = *nnb;
		    for (inb = 1; inb <= i__3; ++inb) {
			nb = nbval[inb];
			xlaenv_(&c__1, &nb);
			nx = nxval[inb];
			xlaenv_(&c__3, &nx);

/*                    Do for each value of K in KVAL */

			i__4 = *nk;
			for (ik = 1; ik <= i__4; ++ik) {
			    k = kval[ik];

/*                       Sort out which variable is which */

			    if (iside == 1) {
				m1 = m;
				k1 = n;
				n1 = k;
/* Computing MAX */
				i__5 = 1, i__6 = n1 * max(1,nb);
				lw = max(i__5,i__6);
			    } else {
				n1 = m;
				k1 = n;
				m1 = k;
/* Computing MAX */
				i__5 = 1, i__6 = m1 * max(1,nb);
				lw = max(i__5,i__6);
			    }

/*                       Do first for TRANS = 'N', then for TRANS = 'T' */

			    itoff = 0;
			    for (itran = 1; itran <= 2; ++itran) {
				*(unsigned char *)trans = *(unsigned char *)&
					transs[itran - 1];
				dtimmg_(&c__0, &m1, &n1, &b[1], &lda, &c__0, &
					c__0);
				ic = 0;
				s1 = dsecnd_();
L110:
				dormql_(side, trans, &m1, &n1, &k1, &a[1], &
					lda, &tau[1], &b[1], &lda, &work[1], &
					lw, &info);
				s2 = dsecnd_();
				time = s2 - s1;
				++ic;
				if (time < *timmin) {
				    dtimmg_(&c__0, &m1, &n1, &b[1], &lda, &
					    c__0, &c__0);
				    goto L110;
				}

/*                          Subtract the time used in DTIMMG. */

				icl = 1;
				s1 = dsecnd_();
L120:
				s2 = dsecnd_();
				untime = s2 - s1;
				++icl;
				if (icl <= ic) {
				    dtimmg_(&c__0, &m1, &n1, &b[1], &lda, &
					    c__0, &c__0);
				    goto L120;
				}

				time = (time - untime) / (doublereal) ic;
				i__5 = iside - 1;
				ops = dopla_("DORMQL", &m1, &n1, &k1, &i__5, &
					nb);
				reslts_ref(inb, im, ilda, i4 + itoff + ik) = 
					dmflop_(&ops, &time, &info);
				itoff = *nk;
/* L130: */
			    }
/* L140: */
			}
/* L150: */
		    }
		    i4 = *nk << 1;
/* L160: */
		}
/* L170: */
	    }
/* L180: */
	}

/*        Print tables of results */

	isub = 3;
	i4 = 1;
	if (imx >= 1) {
	    for (iside = 1; iside <= 2; ++iside) {
		*(unsigned char *)side = *(unsigned char *)&sides[iside - 1];
		if (iside == 1) {
		    io___49.ciunit = *nout;
		    s_wsfe(&io___49);
		    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
		    e_wsfe();
		    if (*nlda > 1) {
			i__1 = *nlda;
			for (i__ = 1; i__ <= i__1; ++i__) {
			    io___50.ciunit = *nout;
			    s_wsfe(&io___50);
			    do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)
				    sizeof(integer));
			    e_wsfe();
/* L190: */
			}
		    }
		}
		for (itran = 1; itran <= 2; ++itran) {
		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];
		    i__1 = *nk;
		    for (ik = 1; ik <= i__1; ++ik) {
			if (iside == 1) {
			    n = kval[ik];
			    io___51.ciunit = *nout;
			    s_wsfe(&io___51);
			    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
			    do_fio(&c__1, side, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, "N", (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    e_wsfe();
			    *(unsigned char *)labm = 'M';
			} else {
			    m = kval[ik];
			    io___53.ciunit = *nout;
			    s_wsfe(&io___53);
			    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
			    do_fio(&c__1, side, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, "M", (ftnlen)1);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    e_wsfe();
			    *(unsigned char *)labm = 'N';
			}
			dprtb5_("NB", labm, "K", nnb, &nbval[1], &imx, muse, 
				nuse, nlda, &reslts_ref(1, 1, 1, i4), ldr1, 
				ldr2, nout, (ftnlen)2, (ftnlen)1, (ftnlen)1);
			++i4;
/* L200: */
		    }
/* L210: */
		}
/* L220: */
	    }
	} else {
	    io___54.ciunit = *nout;
	    s_wsfe(&io___54);
	    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	    e_wsfe();
	}
    }
L230:
    return 0;

/*     End of DTIMQL */

} /* dtimql_ */
Exemple #16
0
/* Subroutine */ int dchkps_(logical *dotype, integer *nn, integer *nval, 
	integer *nnb, integer *nbval, integer *nrank, integer *rankval, 
	doublereal *thresh, logical *tsterr, integer *nmax, doublereal *a, 
	doublereal *afac, doublereal *perm, integer *piv, doublereal *work, 
	doublereal *rwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "RANK =\002,i3,\002, Diff =\002,i5,\002, NB =\002,i4,\002, type"
	    " \002,i2,\002, Ratio =\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    doublereal d__1;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer i_dceiling(doublereal *), s_wsfe(cilist *), do_fio(integer *, 
	    char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer rankdiff, comprank, i__, n, nb, in, kl, ku, lda, inb;
    doublereal tol;
    integer mode, imat, info, rank;
    char path[3], dist[1], uplo[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer nfail, iseed[4], irank, nimat;
    extern /* Subroutine */ int dpst01_(char *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, doublereal *, integer *);
    doublereal anorm;
    integer iuplo, izero, nerrs;
    extern /* Subroutine */ int dlatb5_(char *, integer *, integer *, char *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, char 
	    *), alaerh_(char *, char *, integer *, 
	    integer *, char *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *), dlacpy_(char *, integer *, integer *, doublereal 
	    *, integer *, doublereal *, integer *), alasum_(char *, 
	    integer *, integer *, integer *, integer *);
    doublereal cndnum;
    extern /* Subroutine */ int dlatmt_(integer *, integer *, char *, integer 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, integer *, char *, doublereal *, integer *, 
	    doublereal *, integer *), xlaenv_(integer 
	    *, integer *), derrps_(char *, integer *), dpstrf_(char *, 
	     integer *, doublereal *, integer *, integer *, integer *, 
	    doublereal *, doublereal *, integer *);
    doublereal result;

    /* Fortran I/O blocks */
    static cilist io___33 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Craig Lucas, University of Manchester / NAG Ltd. */
/*     October, 2008 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DCHKPS tests DPSTRF. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB contained in the vector NBVAL. */

/*  NBVAL   (input) INTEGER array, dimension (NBVAL) */
/*          The values of the block size NB. */

/*  NRANK   (input) INTEGER */
/*          The number of values of RANK contained in the vector RANKVAL. */

/*  RANKVAL (input) INTEGER array, dimension (NBVAL) */
/*          The values of the block size NB. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  PERM    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */

/*  PIV     (workspace) INTEGER array, dimension (NMAX) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (NMAX*3) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --piv;
    --perm;
    --afac;
    --a;
    --rankval;
    --nbval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "PS", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L100: */
    }

/*     Test the error exits */

    if (*tsterr) {
	derrps_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	nimat = 9;
	if (n <= 0) {
	    nimat = 1;
	}

	izero = 0;
	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L140;
	    }

/*              Do for each value of RANK in RANKVAL */

	    i__3 = *nrank;
	    for (irank = 1; irank <= i__3; ++irank) {

/*              Only repeat test 3 to 5 for different ranks */
/*              Other tests use full rank */

		if ((imat < 3 || imat > 5) && irank > 1) {
		    goto L130;
		}

		d__1 = n * (doublereal) rankval[irank] / 100.;
		rank = i_dceiling(&d__1);


/*           Do first for UPLO = 'U', then for UPLO = 'L' */

		for (iuplo = 1; iuplo <= 2; ++iuplo) {
		    *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 
			    1];

/*              Set up parameters with DLATB5 and generate a test matrix */
/*              with DLATMT. */

		    dlatb5_(path, &imat, &n, type__, &kl, &ku, &anorm, &mode, 
			    &cndnum, dist);

		    s_copy(srnamc_1.srnamt, "DLATMT", (ftnlen)32, (ftnlen)6);
		    dlatmt_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			    cndnum, &anorm, &rank, &kl, &ku, uplo, &a[1], &
			    lda, &work[1], &info);

/*              Check error code from DLATMT. */

		    if (info != 0) {
			alaerh_(path, "DLATMT", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
			goto L120;
		    }

/*              Do for each value of NB in NBVAL */

		    i__4 = *nnb;
		    for (inb = 1; inb <= i__4; ++inb) {
			nb = nbval[inb];
			xlaenv_(&c__1, &nb);

/*                 Compute the pivoted L*L' or U'*U factorization */
/*                 of the matrix. */

			dlacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda);
			s_copy(srnamc_1.srnamt, "DPSTRF", (ftnlen)32, (ftnlen)
				6);

/*                 Use default tolerance */

			tol = -1.;
			dpstrf_(uplo, &n, &afac[1], &lda, &piv[1], &comprank, 
				&tol, &work[1], &info);

/*                 Check error code from DPSTRF. */

			if (info < izero || info != izero && rank == n || 
				info <= izero && rank < n) {
			    alaerh_(path, "DPSTRF", &info, &izero, uplo, &n, &
				    n, &c_n1, &c_n1, &nb, &imat, &nfail, &
				    nerrs, nout);
			    goto L110;
			}

/*                 Skip the test if INFO is not 0. */

			if (info != 0) {
			    goto L110;
			}

/*                 Reconstruct matrix from factors and compute residual. */

/*                 PERM holds permuted L*L^T or U^T*U */

			dpst01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &perm[
				1], &lda, &piv[1], &rwork[1], &result, &
				comprank);

/*                 Print information about the tests that did not pass */
/*                 the threshold or where computed rank was not RANK. */

			if (n == 0) {
			    comprank = 0;
			}
			rankdiff = rank - comprank;
			if (result >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___33.ciunit = *nout;
			    s_wsfe(&io___33);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&rank, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&rankdiff, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&result, (ftnlen)sizeof(
				    doublereal));
			    e_wsfe();
			    ++nfail;
			}
			++nrun;
L110:
			;
		    }

L120:
		    ;
		}
L130:
		;
	    }
L140:
	    ;
	}
/* L150: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DCHKPS */

} /* dchkps_ */
Exemple #17
0
/* Subroutine */ int cdrvsy_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, integer *nmax, complex *
	a, complex *afac, complex *ainv, complex *b, complex *x, complex *
	xact, complex *work, real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char facts[1*2] = "F" "N";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a"
	    "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, "
	    "ratio =\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6[2];
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static char fact[1];
    static integer ioff, mode, imat, info;
    static char path[3], dist[1], uplo[1], type__[1];
    static integer nrun, i__, j, k, n, ifact;
    extern /* Subroutine */ int cget04_(integer *, integer *, complex *, 
	    integer *, complex *, integer *, real *, real *);
    static integer nfail, iseed[4], nbmin;
    static real rcond;
    static integer nimat;
    extern doublereal sget06_(real *, real *);
    extern /* Subroutine */ int cpot05_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *, complex *, integer *, complex 
	    *, integer *, real *, real *, real *);
    static real anorm;
    extern /* Subroutine */ int csyt01_(char *, integer *, complex *, integer 
	    *, complex *, integer *, integer *, complex *, integer *, real *, 
	    real *), csyt02_(char *, integer *, integer *, complex *, 
	    integer *, complex *, integer *, complex *, integer *, real *, 
	    real *);
    static integer iuplo, izero, i1, i2, k1, lwork, nerrs;
    static logical zerot;
    extern /* Subroutine */ int csysv_(char *, integer *, integer *, complex *
	    , integer *, integer *, complex *, integer *, complex *, integer *
	    , integer *);
    static char xtype[1];
    extern /* Subroutine */ int clatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
	    ), aladhd_(integer *, char *);
    static integer nb, in, kl;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static integer ku, nt;
    static real rcondc;
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), clarhs_(char *, char 
	    *, char *, char *, integer *, integer *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, integer *, complex *, 
	    integer *, integer *, integer *), 
	    claset_(char *, integer *, integer *, complex *, complex *, 
	    complex *, integer *), alasvm_(char *, integer *, integer 
	    *, integer *, integer *);
    static real cndnum;
    extern /* Subroutine */ int clatms_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, integer *, integer *
	    , char *, complex *, integer *, complex *, integer *);
    static real ainvnm;
    extern doublereal clansy_(char *, char *, integer *, complex *, integer *,
	     real *);
    extern /* Subroutine */ int xlaenv_(integer *, integer *), clatsy_(char *,
	     integer *, complex *, integer *, integer *), cerrvx_(
	    char *, integer *), csytrf_(char *, integer *, complex *, 
	    integer *, integer *, complex *, integer *, integer *), 
	    csytri_(char *, integer *, complex *, integer *, integer *, 
	    complex *, integer *);
    static real result[6];
    extern /* Subroutine */ int csysvx_(char *, char *, integer *, integer *, 
	    complex *, integer *, complex *, integer *, integer *, complex *, 
	    integer *, complex *, integer *, real *, real *, real *, complex *
	    , integer *, real *, integer *);
    static integer lda;

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CDRVSY tests the driver routines CSYSV and -SVX.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    NRHS    (input) INTEGER   
            The number of right hand side vectors to be generated for   
            each linear system.   

    THRESH  (input) REAL   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) COMPLEX array, dimension (NMAX*NMAX)   

    AFAC    (workspace) COMPLEX array, dimension (NMAX*NMAX)   

    AINV    (workspace) COMPLEX array, dimension (NMAX*NMAX)   

    B       (workspace) COMPLEX array, dimension (NMAX*NRHS)   

    X       (workspace) COMPLEX array, dimension (NMAX*NRHS)   

    XACT    (workspace) COMPLEX array, dimension (NMAX*NRHS)   

    WORK    (workspace) COMPLEX array, dimension   
                        (NMAX*max(2,NRHS))   

    RWORK   (workspace) REAL array, dimension (NMAX+2*NRHS)   

    IWORK   (workspace) INTEGER array, dimension (NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "SY", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
/* Computing MAX */
    i__1 = *nmax << 1, i__2 = *nmax * *nrhs;
    lwork = max(i__1,i__2);

/*     Test the error exits */

    if (*tsterr) {
	cerrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 11;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L170;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L170;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];

		if (imat != 11) {

/*                 Set up parameters with CLATB4 and generate a test   
                   matrix with CLATMS. */

		    clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &
			    mode, &cndnum, dist);

		    s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)6, (ftnlen)6);
		    clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			    cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &
			    work[1], &info);

/*                 Check error code from CLATMS. */

		    if (info != 0) {
			alaerh_(path, "CLATMS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
			goto L160;
		    }

/*                 For types 3-6, zero one or more rows and columns of   
                   the matrix to test that INFO is returned correctly. */

		    if (zerot) {
			if (imat == 3) {
			    izero = 1;
			} else if (imat == 4) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}

			if (imat < 6) {

/*                       Set row and column IZERO to zero. */

			    if (iuplo == 1) {
				ioff = (izero - 1) * lda;
				i__3 = izero - 1;
				for (i__ = 1; i__ <= i__3; ++i__) {
				    i__4 = ioff + i__;
				    a[i__4].r = 0.f, a[i__4].i = 0.f;
/* L20: */
				}
				ioff += izero;
				i__3 = n;
				for (i__ = izero; i__ <= i__3; ++i__) {
				    i__4 = ioff;
				    a[i__4].r = 0.f, a[i__4].i = 0.f;
				    ioff += lda;
/* L30: */
				}
			    } else {
				ioff = izero;
				i__3 = izero - 1;
				for (i__ = 1; i__ <= i__3; ++i__) {
				    i__4 = ioff;
				    a[i__4].r = 0.f, a[i__4].i = 0.f;
				    ioff += lda;
/* L40: */
				}
				ioff -= izero;
				i__3 = n;
				for (i__ = izero; i__ <= i__3; ++i__) {
				    i__4 = ioff + i__;
				    a[i__4].r = 0.f, a[i__4].i = 0.f;
/* L50: */
				}
			    }
			} else {
			    if (iuplo == 1) {

/*                          Set the first IZERO rows to zero. */

				ioff = 0;
				i__3 = n;
				for (j = 1; j <= i__3; ++j) {
				    i2 = min(j,izero);
				    i__4 = i2;
				    for (i__ = 1; i__ <= i__4; ++i__) {
					i__5 = ioff + i__;
					a[i__5].r = 0.f, a[i__5].i = 0.f;
/* L60: */
				    }
				    ioff += lda;
/* L70: */
				}
			    } else {

/*                          Set the last IZERO rows to zero. */

				ioff = 0;
				i__3 = n;
				for (j = 1; j <= i__3; ++j) {
				    i1 = max(j,izero);
				    i__4 = n;
				    for (i__ = i1; i__ <= i__4; ++i__) {
					i__5 = ioff + i__;
					a[i__5].r = 0.f, a[i__5].i = 0.f;
/* L80: */
				    }
				    ioff += lda;
/* L90: */
				}
			    }
			}
		    } else {
			izero = 0;
		    }
		} else {

/*                 IMAT = NTYPES:  Use a special block diagonal matrix to   
                   test alternate code for the 2-by-2 blocks. */

		    clatsy_(uplo, &n, &a[1], &lda, iseed);
		}

		for (ifact = 1; ifact <= 2; ++ifact) {

/*                 Do first for FACT = 'F', then for other values. */

		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];

/*                 Compute the condition number for comparison with   
                   the value returned by CSYSVX. */

		    if (zerot) {
			if (ifact == 1) {
			    goto L150;
			}
			rcondc = 0.f;

		    } else if (ifact == 1) {

/*                    Compute the 1-norm of A. */

			anorm = clansy_("1", uplo, &n, &a[1], &lda, &rwork[1]);

/*                    Factor the matrix A. */

			clacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda);
			csytrf_(uplo, &n, &afac[1], &lda, &iwork[1], &work[1],
				 &lwork, &info);

/*                    Compute inv(A) and take its norm. */

			clacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda);
			csytri_(uplo, &n, &ainv[1], &lda, &iwork[1], &work[1],
				 &info);
			ainvnm = clansy_("1", uplo, &n, &ainv[1], &lda, &
				rwork[1]);

/*                    Compute the 1-norm condition number of A. */

			if (anorm <= 0.f || ainvnm <= 0.f) {
			    rcondc = 1.f;
			} else {
			    rcondc = 1.f / anorm / ainvnm;
			}
		    }

/*                 Form an exact solution and set the right hand side. */

		    s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)6, (ftnlen)6);
		    clarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';

/*                 --- Test CSYSV  --- */

		    if (ifact == 2) {
			clacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda);
			clacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                    Factor the matrix and solve the system using CSYSV. */

			s_copy(srnamc_1.srnamt, "CSYSV ", (ftnlen)6, (ftnlen)
				6);
			csysv_(uplo, &n, nrhs, &afac[1], &lda, &iwork[1], &x[
				1], &lda, &work[1], &lwork, &info);

/*                    Adjust the expected value of INFO to account for   
                      pivoting. */

			k = izero;
			if (k > 0) {
L100:
			    if (iwork[k] < 0) {
				if (iwork[k] != -k) {
				    k = -iwork[k];
				    goto L100;
				}
			    } else if (iwork[k] != k) {
				k = iwork[k];
				goto L100;
			    }
			}

/*                    Check error code from CSYSV . */

			if (info != k) {
			    alaerh_(path, "CSYSV ", &info, &k, uplo, &n, &n, &
				    c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				    nout);
			    goto L120;
			} else if (info != 0) {
			    goto L120;
			}

/*                    Reconstruct matrix from factors and compute   
                      residual. */

			csyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &iwork[
				1], &ainv[1], &lda, &rwork[1], result);

/*                    Compute residual of the computed solution. */

			clacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			csyt02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, &
				work[1], &lda, &rwork[1], &result[1]);

/*                    Check solution from generated exact solution. */

			cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;

/*                    Print information about the tests that did not pass   
                      the threshold. */

			i__3 = nt;
			for (k = 1; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "CSYSV ", (ftnlen)6);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(real));
				e_wsfe();
				++nfail;
			    }
/* L110: */
			}
			nrun += nt;
L120:
			;
		    }

/*                 --- Test CSYSVX --- */

		    if (ifact == 2) {
			claset_(uplo, &n, &n, &c_b49, &c_b49, &afac[1], &lda);
		    }
		    claset_("Full", &n, nrhs, &c_b49, &c_b49, &x[1], &lda);

/*                 Solve the system and compute the condition number and   
                   error bounds using CSYSVX. */

		    s_copy(srnamc_1.srnamt, "CSYSVX", (ftnlen)6, (ftnlen)6);
		    csysvx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], &lda,
			     &iwork[1], &b[1], &lda, &x[1], &lda, &rcond, &
			    rwork[1], &rwork[*nrhs + 1], &work[1], &lwork, &
			    rwork[(*nrhs << 1) + 1], &info);

/*                 Adjust the expected value of INFO to account for   
                   pivoting. */

		    k = izero;
		    if (k > 0) {
L130:
			if (iwork[k] < 0) {
			    if (iwork[k] != -k) {
				k = -iwork[k];
				goto L130;
			    }
			} else if (iwork[k] != k) {
			    k = iwork[k];
			    goto L130;
			}
		    }

/*                 Check the error code from CSYSVX. */

		    if (info != k) {
/* Writing concatenation */
			i__6[0] = 1, a__1[0] = fact;
			i__6[1] = 1, a__1[1] = uplo;
			s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2);
			alaerh_(path, "CSYSVX", &info, &k, ch__1, &n, &n, &
				c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				nout);
			goto L150;
		    }

		    if (info == 0) {
			if (ifact >= 2) {

/*                       Reconstruct matrix from factors and compute   
                         residual. */

			    csyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &ainv[1], &lda, &rwork[(*nrhs <<
				     1) + 1], result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

/*                    Compute residual of the computed solution. */

			clacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			csyt02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, &
				work[1], &lda, &rwork[(*nrhs << 1) + 1], &
				result[1]);

/*                    Check solution from generated exact solution. */

			cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			cpot05_(uplo, &n, nrhs, &a[1], &lda, &b[1], &lda, &x[
				1], &lda, &xact[1], &lda, &rwork[1], &rwork[*
				nrhs + 1], &result[3]);
		    } else {
			k1 = 6;
		    }

/*                 Compare RCOND from CSYSVX with the computed value   
                   in RCONDC. */

		    result[5] = sget06_(&rcond, &rcondc);

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    for (k = k1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___45.ciunit = *nout;
			    s_wsfe(&io___45);
			    do_fio(&c__1, "CSYSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L140: */
		    }
		    nrun = nrun + 7 - k1;

L150:
		    ;
		}

L160:
		;
	    }
L170:
	    ;
	}
/* L180: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of CDRVSY */

} /* cdrvsy_ */
Exemple #18
0
/* Subroutine */ int sdrvge_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, integer *nmax, real *a, 
	real *afac, real *asav, real *b, real *bsav, real *x, real *xact, 
	real *s, real *work, real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*4] = "N" "R" "C" "B";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, N =\002,i5,\002, type \002,i2,"
	    "\002, test(\002,i2,\002) =\002,g12.5)";
    static char fmt_9997[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002,"
	    "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i2,"
	    "\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002,"
	    "a1,\002', N=\002,i5,\002, type \002,i2,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    real r__1;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__, k, n, k1, nb, in, kl, ku, nt, lda;
    char fact[1];
    integer ioff, mode;
    real amax;
    char path[3];
    integer imat, info;
    char dist[1], type__[1];
    integer nrun, ifact, nfail, iseed[4], nfact;
    extern logical lsame_(char *, char *);
    char equed[1];
    integer nbmin;
    real rcond, roldc;
    extern /* Subroutine */ int sget01_(integer *, integer *, real *, integer 
	    *, real *, integer *, integer *, real *, real *);
    integer nimat;
    real roldi;
    extern doublereal sget06_(real *, real *);
    extern /* Subroutine */ int sget02_(char *, integer *, integer *, integer 
	    *, real *, integer *, real *, integer *, real *, integer *, real *
, real *);
    real anorm;
    integer itran;
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *);
    logical equil;
    real roldo;
    extern /* Subroutine */ int sget07_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
, real *, real *, real *);
    char trans[1];
    integer izero, nerrs;
    extern /* Subroutine */ int sgesv_(integer *, integer *, real *, integer *
, integer *, real *, integer *, integer *);
    integer lwork;
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
), aladhd_(integer *, char *), 
	    alaerh_(char *, char *, integer *, integer *, char *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *);
    logical prefac;
    real colcnd;
    extern doublereal slamch_(char *);
    real rcondc;
    extern doublereal slange_(char *, integer *, integer *, real *, integer *, 
	     real *);
    logical nofact;
    integer iequed;
    extern /* Subroutine */ int slaqge_(integer *, integer *, real *, integer 
	    *, real *, real *, real *, real *, real *, char *);
    real rcondi;
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    real cndnum, anormi, rcondo, ainvnm;
    extern /* Subroutine */ int sgeequ_(integer *, integer *, real *, integer 
	    *, real *, real *, real *, real *, real *, integer *);
    logical trfcon;
    real anormo, rowcnd;
    extern /* Subroutine */ int sgetrf_(integer *, integer *, real *, integer 
	    *, integer *, integer *), sgetri_(integer *, real *, integer *, 
	    integer *, real *, integer *, integer *), slacpy_(char *, integer 
	    *, integer *, real *, integer *, real *, integer *), 
	    slarhs_(char *, char *, char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, real *, integer *, real *, 
	    integer *, real *, integer *, integer *, integer *);
    extern doublereal slantr_(char *, char *, char *, integer *, integer *, 
	    real *, integer *, real *);
    extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *, 
	    real *, real *, integer *), slatms_(integer *, integer *, 
	    char *, integer *, char *, real *, integer *, real *, real *, 
	    integer *, integer *, char *, real *, integer *, real *, integer *
), xlaenv_(integer *, integer *);
    real result[7];
    extern /* Subroutine */ int sgesvx_(char *, char *, integer *, integer *, 
	    real *, integer *, real *, integer *, integer *, char *, real *, 
	    real *, real *, integer *, real *, integer *, real *, real *, 
	    real *, real *, integer *, integer *);
    real rpvgrw;
    extern /* Subroutine */ int serrvx_(char *, integer *);

    /* Fortran I/O blocks */
    static cilist io___55 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___62 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___63 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___64 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___65 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___66 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___67 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___68 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVGE tests the driver routines SGESV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  ASAV    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  S       (workspace) REAL array, dimension (2*NMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension (2*NRHS+NMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 11;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L80;
	    }

/*           Skip types 5, 6, or 7 if the matrix size is too small. */

	    zerot = imat >= 5 && imat <= 7;
	    if (zerot && n < imat - 4) {
		goto L80;
	    }

/*           Set up parameters with SLATB4 and generate a test matrix */
/*           with SLATMS. */

	    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cndnum, dist);
	    rcondc = 1.f / cndnum;

	    s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)6, (ftnlen)6);
	    slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cndnum, &
		    anorm, &kl, &ku, "No packing", &a[1], &lda, &work[1], &
		    info);

/*           Check error code from SLATMS. */

	    if (info != 0) {
		alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &c_n1, &
			c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		goto L80;
	    }

/*           For types 5-7, zero one or more columns of the matrix to */
/*           test that INFO is returned correctly. */

	    if (zerot) {
		if (imat == 5) {
		    izero = 1;
		} else if (imat == 6) {
		    izero = n;
		} else {
		    izero = n / 2 + 1;
		}
		ioff = (izero - 1) * lda;
		if (imat < 7) {
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			a[ioff + i__] = 0.f;
/* L20: */
		    }
		} else {
		    i__3 = n - izero + 1;
		    slaset_("Full", &n, &i__3, &c_b20, &c_b20, &a[ioff + 1], &
			    lda);
		}
	    } else {
		izero = 0;
	    }

/*           Save a copy of the matrix A in ASAV. */

	    slacpy_("Full", &n, &n, &a[1], &lda, &asav[1], &lda);

	    for (iequed = 1; iequed <= 4; ++iequed) {
		*(unsigned char *)equed = *(unsigned char *)&equeds[iequed - 
			1];
		if (iequed == 1) {
		    nfact = 3;
		} else {
		    nfact = 1;
		}

		i__3 = nfact;
		for (ifact = 1; ifact <= i__3; ++ifact) {
		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];
		    prefac = lsame_(fact, "F");
		    nofact = lsame_(fact, "N");
		    equil = lsame_(fact, "E");

		    if (zerot) {
			if (prefac) {
			    goto L60;
			}
			rcondo = 0.f;
			rcondi = 0.f;

		    } else if (! nofact) {

/*                    Compute the condition number for comparison with */
/*                    the value returned by SGESVX (FACT = 'N' reuses */
/*                    the condition number from the previous iteration */
/*                    with FACT = 'F'). */

			slacpy_("Full", &n, &n, &asav[1], &lda, &afac[1], &
				lda);
			if (equil || iequed > 1) {

/*                       Compute row and column scale factors to */
/*                       equilibrate the matrix A. */

			    sgeequ_(&n, &n, &afac[1], &lda, &s[1], &s[n + 1], 
				    &rowcnd, &colcnd, &amax, &info);
			    if (info == 0 && n > 0) {
				if (lsame_(equed, "R")) 
					{
				    rowcnd = 0.f;
				    colcnd = 1.f;
				} else if (lsame_(equed, "C")) {
				    rowcnd = 1.f;
				    colcnd = 0.f;
				} else if (lsame_(equed, "B")) {
				    rowcnd = 0.f;
				    colcnd = 0.f;
				}

/*                          Equilibrate the matrix. */

				slaqge_(&n, &n, &afac[1], &lda, &s[1], &s[n + 
					1], &rowcnd, &colcnd, &amax, equed);
			    }
			}

/*                    Save the condition number of the non-equilibrated */
/*                    system for use in SGET04. */

			if (equil) {
			    roldo = rcondo;
			    roldi = rcondi;
			}

/*                    Compute the 1-norm and infinity-norm of A. */

			anormo = slange_("1", &n, &n, &afac[1], &lda, &rwork[
				1]);
			anormi = slange_("I", &n, &n, &afac[1], &lda, &rwork[
				1]);

/*                    Factor the matrix A. */

			sgetrf_(&n, &n, &afac[1], &lda, &iwork[1], &info);

/*                    Form the inverse of A. */

			slacpy_("Full", &n, &n, &afac[1], &lda, &a[1], &lda);
			lwork = *nmax * max(3,*nrhs);
			sgetri_(&n, &a[1], &lda, &iwork[1], &work[1], &lwork, 
				&info);

/*                    Compute the 1-norm condition number of A. */

			ainvnm = slange_("1", &n, &n, &a[1], &lda, &rwork[1]);
			if (anormo <= 0.f || ainvnm <= 0.f) {
			    rcondo = 1.f;
			} else {
			    rcondo = 1.f / anormo / ainvnm;
			}

/*                    Compute the infinity-norm condition number of A. */

			ainvnm = slange_("I", &n, &n, &a[1], &lda, &rwork[1]);
			if (anormi <= 0.f || ainvnm <= 0.f) {
			    rcondi = 1.f;
			} else {
			    rcondi = 1.f / anormi / ainvnm;
			}
		    }

		    for (itran = 1; itran <= 3; ++itran) {

/*                    Do for each value of TRANS. */

			*(unsigned char *)trans = *(unsigned char *)&transs[
				itran - 1];
			if (itran == 1) {
			    rcondc = rcondo;
			} else {
			    rcondc = rcondi;
			}

/*                    Restore the matrix A. */

			slacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda);

/*                    Form an exact solution and set the right hand side. */

			s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)6, (ftnlen)
				6);
			slarhs_(path, xtype, "Full", trans, &n, &n, &kl, &ku, 
				nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
				lda, iseed, &info);
			*(unsigned char *)xtype = 'C';
			slacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda);

			if (nofact && itran == 1) {

/*                       --- Test SGESV  --- */

/*                       Compute the LU factorization of the matrix and */
/*                       solve the system. */

			    slacpy_("Full", &n, &n, &a[1], &lda, &afac[1], &
				    lda);
			    slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "SGESV ", (ftnlen)6, (
				    ftnlen)6);
			    sgesv_(&n, nrhs, &afac[1], &lda, &iwork[1], &x[1], 
				     &lda, &info);

/*                       Check error code from SGESV . */

			    if (info != izero) {
				alaerh_(path, "SGESV ", &info, &izero, " ", &
					n, &n, &c_n1, &c_n1, nrhs, &imat, &
					nfail, &nerrs, nout);
			    }

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    sget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[1], result);
			    nt = 1;
			    if (izero == 0) {

/*                          Compute residual of the computed solution. */

				slacpy_("Full", &n, nrhs, &b[1], &lda, &work[
					1], &lda);
				sget02_("No transpose", &n, &n, nrhs, &a[1], &
					lda, &x[1], &lda, &work[1], &lda, &
					rwork[1], &result[1]);

/*                          Check solution from generated exact solution. */

				sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
				nt = 3;
			    }

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    i__4 = nt;
			    for (k = 1; k <= i__4; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    io___55.ciunit = *nout;
				    s_wsfe(&io___55);
				    do_fio(&c__1, "SGESV ", (ftnlen)6);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(real));
				    e_wsfe();
				    ++nfail;
				}
/* L30: */
			    }
			    nrun += nt;
			}

/*                    --- Test SGESVX --- */

			if (! prefac) {
			    slaset_("Full", &n, &n, &c_b20, &c_b20, &afac[1], 
				    &lda);
			}
			slaset_("Full", &n, nrhs, &c_b20, &c_b20, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT = 'F' and */
/*                       EQUED = 'R', 'C', or 'B'. */

			    slaqge_(&n, &n, &a[1], &lda, &s[1], &s[n + 1], &
				    rowcnd, &colcnd, &amax, equed);
			}

/*                    Solve the system and compute the condition number */
/*                    and error bounds using SGESVX. */

			s_copy(srnamc_1.srnamt, "SGESVX", (ftnlen)6, (ftnlen)
				6);
			sgesvx_(fact, trans, &n, nrhs, &a[1], &lda, &afac[1], 
				&lda, &iwork[1], equed, &s[1], &s[n + 1], &b[
				1], &lda, &x[1], &lda, &rcond, &rwork[1], &
				rwork[*nrhs + 1], &work[1], &iwork[n + 1], &
				info);

/*                    Check the error code from SGESVX. */

			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = trans;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "SGESVX", &info, &izero, ch__1, &n, 
				    &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			}

/*                    Compare WORK(1) from SGESVX with the computed */
/*                    reciprocal pivot growth factor RPVGRW */

			if (info != 0) {
			    rpvgrw = slantr_("M", "U", "N", &info, &info, &
				    afac[1], &lda, &work[1]);
			    if (rpvgrw == 0.f) {
				rpvgrw = 1.f;
			    } else {
				rpvgrw = slange_("M", &n, &info, &a[1], &lda, 
					&work[1]) / rpvgrw;
			    }
			} else {
			    rpvgrw = slantr_("M", "U", "N", &n, &n, &afac[1], 
				    &lda, &work[1]);
			    if (rpvgrw == 0.f) {
				rpvgrw = 1.f;
			    } else {
				rpvgrw = slange_("M", &n, &n, &a[1], &lda, &
					work[1]) / rpvgrw;
			    }
			}
			result[6] = (r__1 = rpvgrw - work[1], dabs(r__1)) / 
				dmax(work[1],rpvgrw) / slamch_("E")
				;

			if (! prefac) {

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    sget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

			if (info == 0) {
			    trfcon = FALSE_;

/*                       Compute residual of the computed solution. */

			    slacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
, &lda);
			    sget02_(trans, &n, &n, nrhs, &asav[1], &lda, &x[1]
, &lda, &work[1], &lda, &rwork[(*nrhs << 
				    1) + 1], &result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
			    } else {
				if (itran == 1) {
				    roldc = roldo;
				} else {
				    roldc = roldi;
				}
				sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &roldc, &result[2]);
			    }

/*                       Check the error bounds from iterative */
/*                       refinement. */

			    sget07_(trans, &n, nrhs, &asav[1], &lda, &b[1], &
				    lda, &x[1], &lda, &xact[1], &lda, &rwork[
				    1], &rwork[*nrhs + 1], &result[3]);
			} else {
			    trfcon = TRUE_;
			}

/*                    Compare RCOND from SGESVX with the computed value */
/*                    in RCONDC. */

			result[5] = sget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			if (! trfcon) {
			    for (k = k1; k <= 7; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___61.ciunit = *nout;
					s_wsfe(&io___61);
					do_fio(&c__1, "SGESVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
				    } else {
					io___62.ciunit = *nout;
					s_wsfe(&io___62);
					do_fio(&c__1, "SGESVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L40: */
			    }
			    nrun = nrun + 7 - k1;
			} else {
			    if (result[0] >= *thresh && ! prefac) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___63.ciunit = *nout;
				    s_wsfe(&io___63);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				} else {
				    io___64.ciunit = *nout;
				    s_wsfe(&io___64);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[5] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___65.ciunit = *nout;
				    s_wsfe(&io___65);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				} else {
				    io___66.ciunit = *nout;
				    s_wsfe(&io___66);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[6] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___67.ciunit = *nout;
				    s_wsfe(&io___67);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				} else {
				    io___68.ciunit = *nout;
				    s_wsfe(&io___68);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }

			}

/* L50: */
		    }
L60:
		    ;
		}
/* L70: */
	    }
L80:
	    ;
	}
/* L90: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVGE */

} /* sdrvge_ */
Exemple #19
0
/* Subroutine */ int zdrvpb_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublecomplex *a, doublecomplex *afac, doublecomplex *asav, 
	doublecomplex *b, doublecomplex *bsav, doublecomplex *x, 
	doublecomplex *xact, doublereal *s, doublecomplex *work, doublereal *
	rwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*2] = "N" "Y";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, KD =\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";
    static char fmt_9997[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002',"
	    " \002,i5,\002, \002,i5,\002, ... ), EQUED='\002,a1,\002', type"
	    " \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002',"
	    " \002,i5,\002, \002,i5,\002, ... ), type \002,i1,\002, test(\002"
	    ",i1,\002)=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7[2];
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static integer ldab;
    static char fact[1];
    static integer ioff, mode, koff;
    static doublereal amax;
    static char path[3];
    static integer imat, info;
    static char dist[1], uplo[1], type__[1];
    static integer nrun, i__, k, n, ifact, nfail, iseed[4], nfact;
    extern doublereal dget06_(doublereal *, doublereal *);
    static integer kdval[4];
    extern logical lsame_(char *, char *);
    static char equed[1];
    static integer nbmin;
    static doublereal rcond, roldc, scond;
    static integer nimat;
    static doublereal anorm;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
	    );
    static logical equil;
    extern /* Subroutine */ int zpbt01_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *), zpbt02_(char *, integer *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
	    ), zpbt05_(char *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *);
    static integer iuplo, izero, i1, i2, k1, nerrs;
    static logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zpbsv_(char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
	     integer *), zswap_(integer *, doublecomplex *, integer *,
	     doublecomplex *, integer *);
    static char xtype[1];
    extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *), aladhd_(integer *, 
	    char *);
    static integer kd, nb, in, kl;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static logical prefac;
    static integer iw, ku, nt;
    static doublereal rcondc;
    static logical nofact;
    static char packit[1];
    static integer iequed;
    extern doublereal zlanhb_(char *, char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *), 
	    zlange_(char *, integer *, integer *, doublecomplex *, integer *, 
	    doublereal *);
    extern /* Subroutine */ int zlaqhb_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublereal *, char *), alasvm_(char *, integer *, 
	    integer *, integer *, integer *);
    static doublereal cndnum;
    extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *,
	     integer *);
    static doublereal ainvnm;
    extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
	    , integer *), zlarhs_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *), zpbequ_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *), zpbtrf_(char *, integer *, integer *, doublecomplex *, 
	    integer *, integer *), zlatms_(integer *, integer *, char 
	    *, integer *, char *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, char *, doublecomplex *, 
	    integer *, doublecomplex *, integer *);
    static doublereal result[6];
    extern /* Subroutine */ int zpbtrs_(char *, integer *, integer *, integer 
	    *, doublecomplex *, integer *, doublecomplex *, integer *, 
	    integer *), zpbsvx_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
	     char *, doublereal *, doublecomplex *, integer *, doublecomplex *
	    , integer *, doublereal *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *),
	     zerrvx_(char *, integer *);
    static integer lda, ikd, nkd;

    /* Fortran I/O blocks */
    static cilist io___57 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    ZDRVPB tests the driver routines ZPBSV and -SVX.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    NRHS    (input) INTEGER   
            The number of right hand side vectors to be generated for   
            each linear system.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)   

    AFAC    (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)   

    ASAV    (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)   

    B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    BSAV    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    S       (workspace) DOUBLE PRECISION array, dimension (NMAX)   

    WORK    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*max(3,NRHS))   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "PB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrvx_(path, nout);
    }
    infoc_1.infot = 0;
    kdval[0] = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';

/*        Set limits on the number of loop iterations.   

   Computing MAX */
	i__2 = 1, i__3 = min(n,4);
	nkd = max(i__2,i__3);
	nimat = 8;
	if (n == 0) {
	    nimat = 1;
	}

	kdval[1] = n + (n + 1) / 4;
	kdval[2] = (n * 3 - 1) / 4;
	kdval[3] = (n + 1) / 4;

	i__2 = nkd;
	for (ikd = 1; ikd <= i__2; ++ikd) {

/*           Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order   
             makes it easier to skip redundant values for small values   
             of N. */

	    kd = kdval[ikd - 1];
	    ldab = kd + 1;

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		koff = 1;
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
		    *(unsigned char *)packit = 'Q';
/* Computing MAX */
		    i__3 = 1, i__4 = kd + 2 - n;
		    koff = max(i__3,i__4);
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'B';
		}

		i__3 = nimat;
		for (imat = 1; imat <= i__3; ++imat) {

/*                 Do the tests only if DOTYPE( IMAT ) is true. */

		    if (! dotype[imat]) {
			goto L80;
		    }

/*                 Skip types 2, 3, or 4 if the matrix size is too small. */

		    zerot = imat >= 2 && imat <= 4;
		    if (zerot && n < imat - 1) {
			goto L80;
		    }

		    if (! zerot || ! dotype[1]) {

/*                    Set up parameters with ZLATB4 and generate a test   
                      matrix with ZLATMS. */

			zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm,
				 &mode, &cndnum, dist);

			s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)
				6);
			zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode,
				 &cndnum, &anorm, &kd, &kd, packit, &a[koff], 
				&ldab, &work[1], &info);

/*                    Check error code from ZLATMS. */

			if (info != 0) {
			    alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &
				    n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &
				    nerrs, nout);
			    goto L80;
			}
		    } else if (izero > 0) {

/*                    Use the same matrix for types 3 and 4 as for type   
                      2 by copying back the zeroed out column, */

			iw = (lda << 1) + 1;
			if (iuplo == 1) {
			    ioff = (izero - 1) * ldab + kd + 1;
			    i__4 = izero - i1;
			    zcopy_(&i__4, &work[iw], &c__1, &a[ioff - izero + 
				    i1], &c__1);
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    zcopy_(&i__4, &work[iw], &c__1, &a[ioff], &i__5);
			} else {
			    ioff = (i1 - 1) * ldab + 1;
			    i__4 = izero - i1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    zcopy_(&i__4, &work[iw], &c__1, &a[ioff + izero - 
				    i1], &i__5);
			    ioff = (izero - 1) * ldab + 1;
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
			    zcopy_(&i__4, &work[iw], &c__1, &a[ioff], &c__1);
			}
		    }

/*                 For types 2-4, zero one row and column of the matrix   
                   to test that INFO is returned correctly. */

		    izero = 0;
		    if (zerot) {
			if (imat == 2) {
			    izero = 1;
			} else if (imat == 3) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}

/*                    Save the zeroed out row and column in WORK(*,3) */

			iw = lda << 1;
/* Computing MIN */
			i__5 = (kd << 1) + 1;
			i__4 = min(i__5,n);
			for (i__ = 1; i__ <= i__4; ++i__) {
			    i__5 = iw + i__;
			    work[i__5].r = 0., work[i__5].i = 0.;
/* L20: */
			}
			++iw;
/* Computing MAX */
			i__4 = izero - kd;
			i1 = max(i__4,1);
/* Computing MIN */
			i__4 = izero + kd;
			i2 = min(i__4,n);

			if (iuplo == 1) {
			    ioff = (izero - 1) * ldab + kd + 1;
			    i__4 = izero - i1;
			    zswap_(&i__4, &a[ioff - izero + i1], &c__1, &work[
				    iw], &c__1);
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    zswap_(&i__4, &a[ioff], &i__5, &work[iw], &c__1);
			} else {
			    ioff = (i1 - 1) * ldab + 1;
			    i__4 = izero - i1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    zswap_(&i__4, &a[ioff + izero - i1], &i__5, &work[
				    iw], &c__1);
			    ioff = (izero - 1) * ldab + 1;
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
			    zswap_(&i__4, &a[ioff], &c__1, &work[iw], &c__1);
			}
		    }

/*                 Set the imaginary part of the diagonals. */

		    if (iuplo == 1) {
			zlaipd_(&n, &a[kd + 1], &ldab, &c__0);
		    } else {
			zlaipd_(&n, &a[1], &ldab, &c__0);
		    }

/*                 Save a copy of the matrix A in ASAV. */

		    i__4 = kd + 1;
		    zlacpy_("Full", &i__4, &n, &a[1], &ldab, &asav[1], &ldab);

		    for (iequed = 1; iequed <= 2; ++iequed) {
			*(unsigned char *)equed = *(unsigned char *)&equeds[
				iequed - 1];
			if (iequed == 1) {
			    nfact = 3;
			} else {
			    nfact = 1;
			}

			i__4 = nfact;
			for (ifact = 1; ifact <= i__4; ++ifact) {
			    *(unsigned char *)fact = *(unsigned char *)&facts[
				    ifact - 1];
			    prefac = lsame_(fact, "F");
			    nofact = lsame_(fact, "N");
			    equil = lsame_(fact, "E");

			    if (zerot) {
				if (prefac) {
				    goto L60;
				}
				rcondc = 0.;

			    } else if (! lsame_(fact, "N")) {

/*                          Compute the condition number for comparison   
                            with the value returned by ZPBSVX (FACT =   
                            'N' reuses the condition number from the   
                            previous iteration with FACT = 'F'). */

				i__5 = kd + 1;
				zlacpy_("Full", &i__5, &n, &asav[1], &ldab, &
					afac[1], &ldab);
				if (equil || iequed > 1) {

/*                             Compute row and column scale factors to   
                               equilibrate the matrix A. */

				    zpbequ_(uplo, &n, &kd, &afac[1], &ldab, &
					    s[1], &scond, &amax, &info);
				    if (info == 0 && n > 0) {
					if (iequed > 1) {
					    scond = 0.;
					}

/*                                Equilibrate the matrix. */

					zlaqhb_(uplo, &n, &kd, &afac[1], &
						ldab, &s[1], &scond, &amax, 
						equed);
				    }
				}

/*                          Save the condition number of the   
                            non-equilibrated system for use in ZGET04. */

				if (equil) {
				    roldc = rcondc;
				}

/*                          Compute the 1-norm of A. */

				anorm = zlanhb_("1", uplo, &n, &kd, &afac[1], 
					&ldab, &rwork[1]);

/*                          Factor the matrix A. */

				zpbtrf_(uplo, &n, &kd, &afac[1], &ldab, &info);

/*                          Form the inverse of A. */

				zlaset_("Full", &n, &n, &c_b47, &c_b48, &a[1],
					 &lda);
				s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)6, (
					ftnlen)6);
				zpbtrs_(uplo, &n, &kd, &n, &afac[1], &ldab, &
					a[1], &lda, &info);

/*                          Compute the 1-norm condition number of A. */

				ainvnm = zlange_("1", &n, &n, &a[1], &lda, &
					rwork[1]);
				if (anorm <= 0. || ainvnm <= 0.) {
				    rcondc = 1.;
				} else {
				    rcondc = 1. / anorm / ainvnm;
				}
			    }

/*                       Restore the matrix A. */

			    i__5 = kd + 1;
			    zlacpy_("Full", &i__5, &n, &asav[1], &ldab, &a[1],
				     &ldab);

/*                       Form an exact solution and set the right hand   
                         side. */

			    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (
				    ftnlen)6);
			    zlarhs_(path, xtype, uplo, " ", &n, &n, &kd, &kd, 
				    nrhs, &a[1], &ldab, &xact[1], &lda, &b[1],
				     &lda, iseed, &info);
			    *(unsigned char *)xtype = 'C';
			    zlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &
				    lda);

			    if (nofact) {

/*                          --- Test ZPBSV  ---   

                            Compute the L*L' or U'*U factorization of the   
                            matrix and solve the system. */

				i__5 = kd + 1;
				zlacpy_("Full", &i__5, &n, &a[1], &ldab, &
					afac[1], &ldab);
				zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], 
					&lda);

				s_copy(srnamc_1.srnamt, "ZPBSV ", (ftnlen)6, (
					ftnlen)6);
				zpbsv_(uplo, &n, &kd, nrhs, &afac[1], &ldab, &
					x[1], &lda, &info);

/*                          Check error code from ZPBSV . */

				if (info != izero) {
				    alaerh_(path, "ZPBSV ", &info, &izero, 
					    uplo, &n, &n, &kd, &kd, nrhs, &
					    imat, &nfail, &nerrs, nout);
				    goto L40;
				} else if (info != 0) {
				    goto L40;
				}

/*                          Reconstruct matrix from factors and compute   
                            residual. */

				zpbt01_(uplo, &n, &kd, &a[1], &ldab, &afac[1],
					 &ldab, &rwork[1], result);

/*                          Compute residual of the computed solution. */

				zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[
					1], &lda);
				zpbt02_(uplo, &n, &kd, nrhs, &a[1], &ldab, &x[
					1], &lda, &work[1], &lda, &rwork[1], &
					result[1]);

/*                          Check solution from generated exact solution. */

				zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda,
					 &rcondc, &result[2]);
				nt = 3;

/*                          Print information about the tests that did   
                            not pass the threshold. */

				i__5 = nt;
				for (k = 1; k <= i__5; ++k) {
				    if (result[k - 1] >= *thresh) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					io___57.ciunit = *nout;
					s_wsfe(&io___57);
					do_fio(&c__1, "ZPBSV ", (ftnlen)6);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
					++nfail;
				    }
/* L30: */
				}
				nrun += nt;
L40:
				;
			    }

/*                       --- Test ZPBSVX --- */

			    if (! prefac) {
				i__5 = kd + 1;
				zlaset_("Full", &i__5, &n, &c_b47, &c_b47, &
					afac[1], &ldab);
			    }
			    zlaset_("Full", &n, nrhs, &c_b47, &c_b47, &x[1], &
				    lda);
			    if (iequed > 1 && n > 0) {

/*                          Equilibrate the matrix if FACT='F' and   
                            EQUED='Y' */

				zlaqhb_(uplo, &n, &kd, &a[1], &ldab, &s[1], &
					scond, &amax, equed);
			    }

/*                       Solve the system and compute the condition   
                         number and error bounds using ZPBSVX. */

			    s_copy(srnamc_1.srnamt, "ZPBSVX", (ftnlen)6, (
				    ftnlen)6);
			    zpbsvx_(fact, uplo, &n, &kd, nrhs, &a[1], &ldab, &
				    afac[1], &ldab, equed, &s[1], &b[1], &lda,
				     &x[1], &lda, &rcond, &rwork[1], &rwork[*
				    nrhs + 1], &work[1], &rwork[(*nrhs << 1) 
				    + 1], &info);

/*                       Check the error code from ZPBSVX. */

			    if (info != izero) {
/* Writing concatenation */
				i__7[0] = 1, a__1[0] = fact;
				i__7[1] = 1, a__1[1] = uplo;
				s_cat(ch__1, a__1, i__7, &c__2, (ftnlen)2);
				alaerh_(path, "ZPBSVX", &info, &izero, ch__1, 
					&n, &n, &kd, &kd, nrhs, &imat, &nfail,
					 &nerrs, nout);
				goto L60;
			    }

			    if (info == 0) {
				if (! prefac) {

/*                             Reconstruct matrix from factors and   
                               compute residual. */

				    zpbt01_(uplo, &n, &kd, &a[1], &ldab, &
					    afac[1], &ldab, &rwork[(*nrhs << 
					    1) + 1], result);
				    k1 = 1;
				} else {
				    k1 = 2;
				}

/*                          Compute residual of the computed solution. */

				zlacpy_("Full", &n, nrhs, &bsav[1], &lda, &
					work[1], &lda);
				zpbt02_(uplo, &n, &kd, nrhs, &asav[1], &ldab, 
					&x[1], &lda, &work[1], &lda, &rwork[(*
					nrhs << 1) + 1], &result[1]);

/*                          Check solution from generated exact solution. */

				if (nofact || prefac && lsame_(equed, "N")) {
				    zget04_(&n, nrhs, &x[1], &lda, &xact[1], &
					    lda, &rcondc, &result[2]);
				} else {
				    zget04_(&n, nrhs, &x[1], &lda, &xact[1], &
					    lda, &roldc, &result[2]);
				}

/*                          Check the error bounds from iterative   
                            refinement. */

				zpbt05_(uplo, &n, &kd, nrhs, &asav[1], &ldab, 
					&b[1], &lda, &x[1], &lda, &xact[1], &
					lda, &rwork[1], &rwork[*nrhs + 1], &
					result[3]);
			    } else {
				k1 = 6;
			    }

/*                       Compare RCOND from ZPBSVX with the computed   
                         value in RCONDC. */

			    result[5] = dget06_(&rcond, &rcondc);

/*                       Print information about the tests that did not   
                         pass the threshold. */

			    for (k = k1; k <= 6; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___60.ciunit = *nout;
					s_wsfe(&io___60);
					do_fio(&c__1, "ZPBSVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    } else {
					io___61.ciunit = *nout;
					s_wsfe(&io___61);
					do_fio(&c__1, "ZPBSVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L50: */
			    }
			    nrun = nrun + 7 - k1;
L60:
			    ;
			}
/* L70: */
		    }
L80:
		    ;
		}
/* L90: */
	    }
/* L100: */
	}
/* L110: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZDRVPB */

} /* zdrvpb_ */
/* Subroutine */ int cchkpo_(logical *dotype, integer *nn, integer *nval, 
	integer *nnb, integer *nbval, integer *nns, integer *nsval, real *
	thresh, logical *tsterr, integer *nmax, complex *a, complex *afac, 
	complex *ainv, complex *b, complex *x, complex *xact, complex *work, 
	real *rwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "NB =\002,i4,\002, type \002,i2,\002, test \002,i2,\002, ratio "
	    "=\002,g12.5)";
    static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g"
	    "12.5)";
    static char fmt_9997[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002"
	    ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)"
	    ;

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, k, n, nb, in, kl, ku, lda, inb, ioff, mode, imat, info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char uplo[1], type__[1];
    integer nrun;
    integer nfail, iseed[4];
    real rcond;
    integer nimat;
    real anorm;
    integer iuplo, izero, nerrs;
    logical zerot;
    char xtype[1];
    real rcondc;
    real cndnum;
    real result[8];

    /* Fortran I/O blocks */
    static cilist io___33 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___36 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___38 = { 0, 0, 0, fmt_9997, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CCHKPO tests CPOTRF, -TRI, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB contained in the vector NBVAL. */

/*  NBVAL   (input) INTEGER array, dimension (NBVAL) */
/*          The values of the blocksize NB. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) COMPLEX array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) COMPLEX array, dimension (NMAX*NMAX) */

/*  AINV    (workspace) COMPLEX array, dimension (NMAX*NMAX) */

/*  B       (workspace) COMPLEX array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) COMPLEX array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) COMPLEX array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) COMPLEX array, dimension */
/*                      (NMAX*max(3,NSMAX)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (NMAX+2*NSMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nsval;
    --nbval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "PO", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	cerrpo_(path, nout);
    }
    infoc_1.infot = 0;

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 9;
	if (n <= 0) {
	    nimat = 1;
	}

	izero = 0;
	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L110;
	    }

/*           Skip types 3, 4, or 5 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 5;
	    if (zerot && n < imat - 2) {
		goto L110;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];

/*              Set up parameters with CLATB4 and generate a test matrix */
/*              with CLATMS. */

		clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)32, (ftnlen)6);
		clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &work[1], 
			 &info);

/*              Check error code from CLATMS. */

		if (info != 0) {
		    alaerh_(path, "CLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L100;
		}

/*              For types 3-5, zero one row and column of the matrix to */
/*              test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }
		    ioff = (izero - 1) * lda;

/*                 Set row and column IZERO of A to 0. */

		    if (iuplo == 1) {
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = ioff + i__;
			    a[i__4].r = 0.f, a[i__4].i = 0.f;
/* L20: */
			}
			ioff += izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    i__4 = ioff;
			    a[i__4].r = 0.f, a[i__4].i = 0.f;
			    ioff += lda;
/* L30: */
			}
		    } else {
			ioff = izero;
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = ioff;
			    a[i__4].r = 0.f, a[i__4].i = 0.f;
			    ioff += lda;
/* L40: */
			}
			ioff -= izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    i__4 = ioff + i__;
			    a[i__4].r = 0.f, a[i__4].i = 0.f;
/* L50: */
			}
		    }
		} else {
		    izero = 0;
		}

/*              Set the imaginary part of the diagonals. */

		i__3 = lda + 1;
		claipd_(&n, &a[1], &i__3, &c__0);

/*              Do for each value of NB in NBVAL */

		i__3 = *nnb;
		for (inb = 1; inb <= i__3; ++inb) {
		    nb = nbval[inb];
		    xlaenv_(&c__1, &nb);

/*                 Compute the L*L' or U'*U factorization of the matrix. */

		    clacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda);
		    s_copy(srnamc_1.srnamt, "CPOTRF", (ftnlen)32, (ftnlen)6);
		    cpotrf_(uplo, &n, &afac[1], &lda, &info);

/*                 Check error code from CPOTRF. */

		    if (info != izero) {
			alaerh_(path, "CPOTRF", &info, &izero, uplo, &n, &n, &
				c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout);
			goto L90;
		    }

/*                 Skip the tests if INFO is not 0. */

		    if (info != 0) {
			goto L90;
		    }

/* +    TEST 1 */
/*                 Reconstruct matrix from factors and compute residual. */

		    clacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda);
		    cpot01_(uplo, &n, &a[1], &lda, &ainv[1], &lda, &rwork[1], 
			    result);

/* +    TEST 2 */
/*                 Form the inverse and compute the residual. */

		    clacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda);
		    s_copy(srnamc_1.srnamt, "CPOTRI", (ftnlen)32, (ftnlen)6);
		    cpotri_(uplo, &n, &ainv[1], &lda, &info);

/*                 Check error code from CPOTRI. */

		    if (info != 0) {
			alaerh_(path, "CPOTRI", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    cpot03_(uplo, &n, &a[1], &lda, &ainv[1], &lda, &work[1], &
			    lda, &rwork[1], &rcondc, &result[1]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 1; k <= 2; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___33.ciunit = *nout;
			    s_wsfe(&io___33);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L60: */
		    }
		    nrun += 2;

/*                 Skip the rest of the tests unless this is the first */
/*                 blocksize. */

		    if (inb != 1) {
			goto L90;
		    }

		    i__4 = *nns;
		    for (irhs = 1; irhs <= i__4; ++irhs) {
			nrhs = nsval[irhs];

/* +    TEST 3 */
/*                 Solve and compute residual for A * X = B . */

			s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)32, (ftnlen)
				6);
			clarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &
				nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
				lda, iseed, &info);
			clacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);

			s_copy(srnamc_1.srnamt, "CPOTRS", (ftnlen)32, (ftnlen)
				6);
			cpotrs_(uplo, &n, &nrhs, &afac[1], &lda, &x[1], &lda, 
				&info);

/*                 Check error code from CPOTRS. */

			if (info != 0) {
			    alaerh_(path, "CPOTRS", &info, &c__0, uplo, &n, &
				    n, &c_n1, &c_n1, &nrhs, &imat, &nfail, &
				    nerrs, nout);
			}

			clacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &
				lda);
			cpot02_(uplo, &n, &nrhs, &a[1], &lda, &x[1], &lda, &
				work[1], &lda, &rwork[1], &result[2]);

/* +    TEST 4 */
/*                 Check solution from generated exact solution. */

			cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[3]);

/* +    TESTS 5, 6, and 7 */
/*                 Use iterative refinement to improve the solution. */

			s_copy(srnamc_1.srnamt, "CPORFS", (ftnlen)32, (ftnlen)
				6);
			cporfs_(uplo, &n, &nrhs, &a[1], &lda, &afac[1], &lda, 
				&b[1], &lda, &x[1], &lda, &rwork[1], &rwork[
				nrhs + 1], &work[1], &rwork[(nrhs << 1) + 1], 
				&info);

/*                 Check error code from CPORFS. */

			if (info != 0) {
			    alaerh_(path, "CPORFS", &info, &c__0, uplo, &n, &
				    n, &c_n1, &c_n1, &nrhs, &imat, &nfail, &
				    nerrs, nout);
			}

			cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[4]);
			cpot05_(uplo, &n, &nrhs, &a[1], &lda, &b[1], &lda, &x[
				1], &lda, &xact[1], &lda, &rwork[1], &rwork[
				nrhs + 1], &result[5]);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			for (k = 3; k <= 7; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___36.ciunit = *nout;
				s_wsfe(&io___36);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(real));
				e_wsfe();
				++nfail;
			    }
/* L70: */
			}
			nrun += 5;
/* L80: */
		    }

/* +    TEST 8 */
/*                 Get an estimate of RCOND = 1/CNDNUM. */

		    anorm = clanhe_("1", uplo, &n, &a[1], &lda, &rwork[1]);
		    s_copy(srnamc_1.srnamt, "CPOCON", (ftnlen)32, (ftnlen)6);
		    cpocon_(uplo, &n, &afac[1], &lda, &anorm, &rcond, &work[1]
, &rwork[1], &info);

/*                 Check error code from CPOCON. */

		    if (info != 0) {
			alaerh_(path, "CPOCON", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    result[7] = sget06_(&rcond, &rcondc);

/*                 Print the test ratio if it is .GE. THRESH. */

		    if (result[7] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___38.ciunit = *nout;
			s_wsfe(&io___38);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(real)
				);
			e_wsfe();
			++nfail;
		    }
		    ++nrun;
L90:
		    ;
		}
L100:
		;
	    }
L110:
	    ;
	}
/* L120: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of CCHKPO */

} /* cchkpo_ */
Exemple #21
0
/* Subroutine */ int cchkq3_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
	nxval, real *thresh, complex *a, complex *copya, real *s, real *copys, 
	 complex *tau, complex *work, real *rwork, integer *iwork, integer *
	nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 M =\002,i5,\002, N =\002,i5,\002, "
	    "NB =\002,i4,\002, type \002,i2,\002, test \002,i2,\002, ratio "
	    "=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    real r__1;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, k, m, n, nb, im, in, lw, nx, lda, inb;
    real eps;
    integer mode, info;
    char path[3];
    integer ilow, nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer ihigh, nfail, iseed[4], imode;
    extern doublereal cqpt01_(integer *, integer *, integer *, complex *, 
	    complex *, integer *, complex *, integer *, complex *, integer *),
	     cqrt11_(integer *, integer *, complex *, integer *, complex *, 
	    complex *, integer *), cqrt12_(integer *, integer *, complex *, 
	    integer *, real *, complex *, integer *, real *);
    integer mnmin;
    extern /* Subroutine */ int icopy_(integer *, integer *, integer *, 
	    integer *, integer *);
    integer istep, nerrs, lwork;
    extern /* Subroutine */ int cgeqp3_(integer *, integer *, complex *, 
	    integer *, integer *, complex *, complex *, integer *, real *, 
	    integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), claset_(char *, 
	    integer *, integer *, complex *, complex *, complex *, integer *), alasum_(char *, integer *, integer *, integer *, integer 
	    *), clatms_(integer *, integer *, char *, integer *, char 
	    *, real *, integer *, real *, real *, integer *, integer *, char *
, complex *, integer *, complex *, integer *), slaord_(char *, integer *, real *, integer *), 
	    xlaenv_(integer *, integer *);
    real result[3];

    /* Fortran I/O blocks */
    static cilist io___28 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CCHKQ3 tests CGEQP3. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB and NX contained in the */
/*          vectors NBVAL and NXVAL.  The blocking parameters are used */
/*          in pairs (NB,NX). */

/*  NBVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the blocksize NB. */

/*  NXVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the crossover point NX. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  A       (workspace) COMPLEX array, dimension (MMAX*NMAX) */
/*          where MMAX is the maximum value of M in MVAL and NMAX is the */
/*          maximum value of N in NVAL. */

/*  COPYA   (workspace) COMPLEX array, dimension (MMAX*NMAX) */

/*  S       (workspace) REAL array, dimension */
/*                      (min(MMAX,NMAX)) */

/*  COPYS   (workspace) REAL array, dimension */
/*                      (min(MMAX,NMAX)) */

/*  TAU     (workspace) COMPLEX array, dimension (MMAX) */

/*  WORK    (workspace) COMPLEX array, dimension */
/*                      (max(M*max(M,N) + 4*min(M,N) + max(M,N))) */

/*  RWORK   (workspace) REAL array, dimension (4*NMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --tau;
    --copys;
    --s;
    --copya;
    --a;
    --nxval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "Q3", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
    eps = slamch_("Epsilon");
    infoc_1.infot = 0;

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {

/*        Do for each value of M in MVAL. */

	m = mval[im];
	lda = max(1,m);

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {

/*           Do for each value of N in NVAL. */

	    n = nval[in];
	    mnmin = min(m,n);
/* Computing MAX */
	    i__3 = 1, i__4 = m * max(m,n) + (mnmin << 2) + max(m,n);
	    lwork = max(i__3,i__4);

	    for (imode = 1; imode <= 6; ++imode) {
		if (! dotype[imode]) {
		    goto L70;
		}

/*              Do for each type of matrix */
/*                 1:  zero matrix */
/*                 2:  one small singular value */
/*                 3:  geometric distribution of singular values */
/*                 4:  first n/2 columns fixed */
/*                 5:  last n/2 columns fixed */
/*                 6:  every second column fixed */

		mode = imode;
		if (imode > 3) {
		    mode = 1;
		}

/*              Generate test matrix of size m by n using */
/*              singular value distribution indicated by `mode'. */

		i__3 = n;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    iwork[i__] = 0;
/* L20: */
		}
		if (imode == 1) {
		    claset_("Full", &m, &n, &c_b1, &c_b1, &copya[1], &lda);
		    i__3 = mnmin;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			copys[i__] = 0.f;
/* L30: */
		    }
		} else {
		    r__1 = 1.f / eps;
		    clatms_(&m, &n, "Uniform", iseed, "Nonsymm", &copys[1], &
			    mode, &r__1, &c_b15, &m, &n, "No packing", &copya[
			    1], &lda, &work[1], &info);
		    if (imode >= 4) {
			if (imode == 4) {
			    ilow = 1;
			    istep = 1;
/* Computing MAX */
			    i__3 = 1, i__4 = n / 2;
			    ihigh = max(i__3,i__4);
			} else if (imode == 5) {
/* Computing MAX */
			    i__3 = 1, i__4 = n / 2;
			    ilow = max(i__3,i__4);
			    istep = 1;
			    ihigh = n;
			} else if (imode == 6) {
			    ilow = 1;
			    istep = 2;
			    ihigh = n;
			}
			i__3 = ihigh;
			i__4 = istep;
			for (i__ = ilow; i__4 < 0 ? i__ >= i__3 : i__ <= i__3;
				 i__ += i__4) {
			    iwork[i__] = 1;
/* L40: */
			}
		    }
		    slaord_("Decreasing", &mnmin, &copys[1], &c__1);
		}

		i__4 = *nnb;
		for (inb = 1; inb <= i__4; ++inb) {

/*                 Do for each pair of values (NB,NX) in NBVAL and NXVAL. */

		    nb = nbval[inb];
		    xlaenv_(&c__1, &nb);
		    nx = nxval[inb];
		    xlaenv_(&c__3, &nx);

/*                 Save A and its singular values and a copy of */
/*                 vector IWORK. */

		    clacpy_("All", &m, &n, &copya[1], &lda, &a[1], &lda);
		    icopy_(&n, &iwork[1], &c__1, &iwork[n + 1], &c__1);

/*                 Workspace needed. */

		    lw = nb * (n + 1);

		    s_copy(srnamc_1.srnamt, "CGEQP3", (ftnlen)6, (ftnlen)6);
		    cgeqp3_(&m, &n, &a[1], &lda, &iwork[n + 1], &tau[1], &
			    work[1], &lw, &rwork[1], &info);

/*                 Compute norm(svd(a) - svd(r)) */

		    result[0] = cqrt12_(&m, &n, &a[1], &lda, &copys[1], &work[
			    1], &lwork, &rwork[1]);

/*                 Compute norm( A*P - Q*R ) */

		    result[1] = cqpt01_(&m, &n, &mnmin, &copya[1], &a[1], &
			    lda, &tau[1], &iwork[n + 1], &work[1], &lwork);

/*                 Compute Q'*Q */

		    result[2] = cqrt11_(&m, &mnmin, &a[1], &lda, &tau[1], &
			    work[1], &lwork);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 1; k <= 3; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___28.ciunit = *nout;
			    s_wsfe(&io___28);
			    do_fio(&c__1, "CGEQP3", (ftnlen)6);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&imode, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L50: */
		    }
		    nrun += 3;

/* L60: */
		}
L70:
		;
	    }
/* L80: */
	}
/* L90: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);


/*     End of CCHKQ3 */

    return 0;
} /* cchkq3_ */
Exemple #22
0
/* Subroutine */ int zdrvls_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nns, integer *nsval, integer *
	nnb, integer *nbval, integer *nxval, doublereal *thresh, logical *
	tsterr, doublecomplex *a, doublecomplex *copya, doublecomplex *b, 
	doublecomplex *copyb, doublecomplex *c__, doublereal *s, doublereal *
	copys, doublecomplex *work, doublereal *rwork, integer *iwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 TRANS='\002,a1,\002', M=\002,i5,\002, N"
	    "=\002,i5,\002, NRHS=\002,i4,\002, NB=\002,i4,\002, type\002,i2"
	    ",\002, test(\002,i2,\002)=\002,g12.5)";
    static char fmt_9998[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, NRHS="
	    "\002,i4,\002, NB=\002,i4,\002, type\002,i2,\002, test(\002,i2"
	    ",\002)=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5, i__6;
    doublereal d__1;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, m, n, nb, im, in, lda, ldb, inb;
    doublereal eps;
    integer ins, info;
    char path[3];
    integer rank, nrhs, nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer nfail, iseed[4], crank, irank;
    doublereal rcond;
    extern doublereal dasum_(integer *, doublereal *, integer *);
    integer itran, mnmin, ncols;
    doublereal norma, normb;
    extern /* Subroutine */ int zgels_(char *, integer *, integer *, integer *
, doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *), daxpy_(integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *), 
	    zgemm_(char *, char *, integer *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *);
    char trans[1];
    integer nerrs, itype, lwork;
    extern doublereal zqrt12_(integer *, integer *, doublecomplex *, integer *
, doublereal *, doublecomplex *, integer *, doublereal *), 
	    zqrt14_(char *, integer *, integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *);
    extern /* Subroutine */ int zqrt13_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublereal *, integer *), zqrt15_(
	    integer *, integer *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublecomplex *, integer *);
    integer nrows;
    extern doublereal zqrt17_(char *, integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *, 
	     doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    integer lwlsy;
    extern /* Subroutine */ int zqrt16_(char *, integer *, integer *, integer 
	    *, doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *);
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    integer iscale;
    extern /* Subroutine */ int zdscal_(integer *, doublereal *, 
	    doublecomplex *, integer *), alasvm_(char *, integer *, integer *, 
	     integer *, integer *), zgelsd_(integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *, 
	     doublereal *, doublereal *, integer *, doublecomplex *, integer *
, doublereal *, integer *, integer *), xlaenv_(integer *, integer 
	    *);
    integer ldwork;
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zgelss_(integer *, integer *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, integer *, doublereal *, doublereal *, 
	    integer *, doublecomplex *, integer *, doublereal *, integer *), 
	    zgelsx_(integer *, integer *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, integer *, integer *, doublereal *, integer *, 
	     doublecomplex *, doublereal *, integer *), zgelsy_(integer *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     integer *, integer *, doublereal *, integer *, doublecomplex *, 
	    integer *, doublereal *, integer *);
    doublereal result[18];
    extern /* Subroutine */ int zlarnv_(integer *, integer *, integer *, 
	    doublecomplex *), zerrls_(char *, integer *);

    /* Fortran I/O blocks */
    static cilist io___34 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___39 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     January 2007 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZDRVLS tests the least squares driver routines ZGELS, CGELSX, CGELSS, */
/*  ZGELSY and CGELSD. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */
/*          The matrix of type j is generated as follows: */
/*          j=1: A = U*D*V where U and V are random unitary matrices */
/*               and D has random entries (> 0.1) taken from a uniform */
/*               distribution (0,1). A is full rank. */
/*          j=2: The same of 1, but A is scaled up. */
/*          j=3: The same of 1, but A is scaled down. */
/*          j=4: A = U*D*V where U and V are random unitary matrices */
/*               and D has 3*min(M,N)/4 random entries (> 0.1) taken */
/*               from a uniform distribution (0,1) and the remaining */
/*               entries set to 0. A is rank-deficient. */
/*          j=5: The same of 4, but A is scaled up. */
/*          j=6: The same of 5, but A is scaled down. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB and NX contained in the */
/*          vectors NBVAL and NXVAL.  The blocking parameters are used */
/*          in pairs (NB,NX). */

/*  NBVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the blocksize NB. */

/*  NXVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the crossover point NX. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) COMPLEX*16 array, dimension (MMAX*NMAX) */
/*          where MMAX is the maximum value of M in MVAL and NMAX is the */
/*          maximum value of N in NVAL. */

/*  COPYA   (workspace) COMPLEX*16 array, dimension (MMAX*NMAX) */

/*  B       (workspace) COMPLEX*16 array, dimension (MMAX*NSMAX) */
/*          where MMAX is the maximum value of M in MVAL and NSMAX is the */
/*          maximum value of NRHS in NSVAL. */

/*  COPYB   (workspace) COMPLEX*16 array, dimension (MMAX*NSMAX) */

/*  C       (workspace) COMPLEX*16 array, dimension (MMAX*NSMAX) */

/*  S       (workspace) DOUBLE PRECISION array, dimension */
/*                      (min(MMAX,NMAX)) */

/*  COPYS   (workspace) DOUBLE PRECISION array, dimension */
/*                      (min(MMAX,NMAX)) */

/*  WORK    (workspace) COMPLEX*16 array, dimension */
/*                      (MMAX*NMAX + 4*NMAX + MMAX). */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (5*NMAX-1) */

/*  IWORK   (workspace) INTEGER array, dimension (15*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --copys;
    --s;
    --c__;
    --copyb;
    --b;
    --copya;
    --a;
    --nxval;
    --nbval;
    --nsval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "LS", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
    eps = dlamch_("Epsilon");

/*     Threshold for rank estimation */

    rcond = sqrt(eps) - (sqrt(eps) - eps) / 2;

/*     Test the error exits */

    xlaenv_(&c__9, &c__25);
    if (*tsterr) {
	zerrls_(path, nout);
    }

/*     Print the header if NM = 0 or NN = 0 and THRESH = 0. */

    if ((*nm == 0 || *nn == 0) && *thresh == 0.) {
	alahd_(nout, path);
    }
    infoc_1.infot = 0;

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];
	lda = max(1,m);

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {
	    n = nval[in];
	    mnmin = min(m,n);
/* Computing MAX */
	    i__3 = max(1,m);
	    ldb = max(i__3,n);

	    i__3 = *nns;
	    for (ins = 1; ins <= i__3; ++ins) {
		nrhs = nsval[ins];
/* Computing MAX */
		i__4 = 1, i__5 = (m + nrhs) * (n + 2), i__4 = max(i__4,i__5), 
			i__5 = (n + nrhs) * (m + 2), i__4 = max(i__4,i__5), 
			i__5 = m * n + (mnmin << 2) + max(m,n), i__4 = max(
			i__4,i__5), i__5 = (n << 1) + m;
		lwork = max(i__4,i__5);

		for (irank = 1; irank <= 2; ++irank) {
		    for (iscale = 1; iscale <= 3; ++iscale) {
			itype = (irank - 1) * 3 + iscale;
			if (! dotype[itype]) {
			    goto L100;
			}

			if (irank == 1) {

/*                       Test ZGELS */

/*                       Generate a matrix of scaling type ISCALE */

			    zqrt13_(&iscale, &m, &n, &copya[1], &lda, &norma, 
				    iseed);
			    i__4 = *nnb;
			    for (inb = 1; inb <= i__4; ++inb) {
				nb = nbval[inb];
				xlaenv_(&c__1, &nb);
				xlaenv_(&c__3, &nxval[inb]);

				for (itran = 1; itran <= 2; ++itran) {
				    if (itran == 1) {
					*(unsigned char *)trans = 'N';
					nrows = m;
					ncols = n;
				    } else {
					*(unsigned char *)trans = 'C';
					nrows = n;
					ncols = m;
				    }
				    ldwork = max(1,ncols);

/*                             Set up a consistent rhs */

				    if (ncols > 0) {
					i__5 = ncols * nrhs;
					zlarnv_(&c__2, iseed, &i__5, &work[1])
						;
					i__5 = ncols * nrhs;
					d__1 = 1. / (doublereal) ncols;
					zdscal_(&i__5, &d__1, &work[1], &c__1)
						;
				    }
				    zgemm_(trans, "No transpose", &nrows, &
					    nrhs, &ncols, &c_b1, &copya[1], &
					    lda, &work[1], &ldwork, &c_b2, &b[
					    1], &ldb);
				    zlacpy_("Full", &nrows, &nrhs, &b[1], &
					    ldb, &copyb[1], &ldb);

/*                             Solve LS or overdetermined system */

				    if (m > 0 && n > 0) {
					zlacpy_("Full", &m, &n, &copya[1], &
						lda, &a[1], &lda);
					zlacpy_("Full", &nrows, &nrhs, &copyb[
						1], &ldb, &b[1], &ldb);
				    }
				    s_copy(srnamc_1.srnamt, "ZGELS ", (ftnlen)
					    6, (ftnlen)6);
				    zgels_(trans, &m, &n, &nrhs, &a[1], &lda, 
					    &b[1], &ldb, &work[1], &lwork, &
					    info);

				    if (info != 0) {
					alaerh_(path, "ZGELS ", &info, &c__0, 
						trans, &m, &n, &nrhs, &c_n1, &
						nb, &itype, &nfail, &nerrs, 
						nout);
				    }

/*                             Check correctness of results */

				    ldwork = max(1,nrows);
				    if (nrows > 0 && nrhs > 0) {
					zlacpy_("Full", &nrows, &nrhs, &copyb[
						1], &ldb, &c__[1], &ldb);
				    }
				    zqrt16_(trans, &m, &n, &nrhs, &copya[1], &
					    lda, &b[1], &ldb, &c__[1], &ldb, &
					    rwork[1], result);

				    if (itran == 1 && m >= n || itran == 2 && 
					    m < n) {

/*                                Solving LS system */

					result[1] = zqrt17_(trans, &c__1, &m, 
						&n, &nrhs, &copya[1], &lda, &
						b[1], &ldb, &copyb[1], &ldb, &
						c__[1], &work[1], &lwork);
				    } else {

/*                                Solving overdetermined system */

					result[1] = zqrt14_(trans, &m, &n, &
						nrhs, &copya[1], &lda, &b[1], 
						&ldb, &work[1], &lwork);
				    }

/*                             Print information about the tests that */
/*                             did not pass the threshold. */

				    for (k = 1; k <= 2; ++k) {
					if (result[k - 1] >= *thresh) {
					    if (nfail == 0 && nerrs == 0) {
			  alahd_(nout, path);
					    }
					    io___34.ciunit = *nout;
					    s_wsfe(&io___34);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&m, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&nrhs, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&nb, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&itype, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&k, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&result[k - 
						    1], (ftnlen)sizeof(
						    doublereal));
					    e_wsfe();
					    ++nfail;
					}
/* L20: */
				    }
				    nrun += 2;
/* L30: */
				}
/* L40: */
			    }
			}

/*                    Generate a matrix of scaling type ISCALE and rank */
/*                    type IRANK. */

			zqrt15_(&iscale, &irank, &m, &n, &nrhs, &copya[1], &
				lda, &copyb[1], &ldb, &copys[1], &rank, &
				norma, &normb, iseed, &work[1], &lwork);

/*                    workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M) */

			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    iwork[j] = 0;
/* L50: */
			}
			ldwork = max(1,m);

/*                    Test ZGELSX */

/*                    ZGELSX:  Compute the minimum-norm solution X */
/*                    to min( norm( A * X - B ) ) */
/*                    using a complete orthogonal factorization. */

			zlacpy_("Full", &m, &n, &copya[1], &lda, &a[1], &lda);
			zlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &b[1], &
				ldb);

			s_copy(srnamc_1.srnamt, "ZGELSX", (ftnlen)6, (ftnlen)
				6);
			zgelsx_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &
				iwork[1], &rcond, &crank, &work[1], &rwork[1], 
				 &info);

			if (info != 0) {
			    alaerh_(path, "ZGELSX", &info, &c__0, " ", &m, &n, 
				     &nrhs, &c_n1, &nb, &itype, &nfail, &
				    nerrs, nout);
			}

/*                    workspace used: MAX( MNMIN+3*N, 2*MNMIN+NRHS ) */

/*                    Test 3:  Compute relative error in svd */
/*                             workspace: M*N + 4*MIN(M,N) + MAX(M,N) */

			result[2] = zqrt12_(&crank, &crank, &a[1], &lda, &
				copys[1], &work[1], &lwork, &rwork[1]);

/*                    Test 4:  Compute error in solution */
/*                             workspace:  M*NRHS + M */

			zlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &work[1], 
				&ldwork);
			zqrt16_("No transpose", &m, &n, &nrhs, &copya[1], &
				lda, &b[1], &ldb, &work[1], &ldwork, &rwork[1]
, &result[3]);

/*                    Test 5:  Check norm of r'*A */
/*                             workspace: NRHS*(M+N) */

			result[4] = 0.;
			if (m > crank) {
			    result[4] = zqrt17_("No transpose", &c__1, &m, &n, 
				     &nrhs, &copya[1], &lda, &b[1], &ldb, &
				    copyb[1], &ldb, &c__[1], &work[1], &lwork);
			}

/*                    Test 6:  Check if x is in the rowspace of A */
/*                             workspace: (M+NRHS)*(N+2) */

			result[5] = 0.;

			if (n > crank) {
			    result[5] = zqrt14_("No transpose", &m, &n, &nrhs, 
				     &copya[1], &lda, &b[1], &ldb, &work[1], &
				    lwork);
			}

/*                    Print information about the tests that did not */
/*                    pass the threshold. */

			for (k = 3; k <= 6; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___39.ciunit = *nout;
				s_wsfe(&io___39);
				do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&c__0, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&itype, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L60: */
			}
			nrun += 4;

/*                    Loop for testing different block sizes. */

			i__4 = *nnb;
			for (inb = 1; inb <= i__4; ++inb) {
			    nb = nbval[inb];
			    xlaenv_(&c__1, &nb);
			    xlaenv_(&c__3, &nxval[inb]);

/*                       Test ZGELSY */

/*                       ZGELSY:  Compute the minimum-norm solution */
/*                       X to min( norm( A * X - B ) ) */
/*                       using the rank-revealing orthogonal */
/*                       factorization. */

			    zlacpy_("Full", &m, &n, &copya[1], &lda, &a[1], &
				    lda);
			    zlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &b[1], 
				     &ldb);

/*                       Initialize vector IWORK. */

			    i__5 = n;
			    for (j = 1; j <= i__5; ++j) {
				iwork[j] = 0;
/* L70: */
			    }

/*                       Set LWLSY to the adequate value. */

/* Computing MAX */
			    i__5 = mnmin << 1, i__6 = nb * (n + 1), i__5 = 
				    max(i__5,i__6), i__6 = mnmin + nb * nrhs;
			    lwlsy = mnmin + max(i__5,i__6);
			    lwlsy = max(1,lwlsy);

			    s_copy(srnamc_1.srnamt, "ZGELSY", (ftnlen)6, (
				    ftnlen)6);
			    zgelsy_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &
				    iwork[1], &rcond, &crank, &work[1], &
				    lwlsy, &rwork[1], &info);
			    if (info != 0) {
				alaerh_(path, "ZGELSY", &info, &c__0, " ", &m, 
					 &n, &nrhs, &c_n1, &nb, &itype, &
					nfail, &nerrs, nout);
			    }

/*                       workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS) */

/*                       Test 7:  Compute relative error in svd */
/*                                workspace: M*N + 4*MIN(M,N) + MAX(M,N) */

			    result[6] = zqrt12_(&crank, &crank, &a[1], &lda, &
				    copys[1], &work[1], &lwork, &rwork[1]);

/*                       Test 8:  Compute error in solution */
/*                                workspace:  M*NRHS + M */

			    zlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &work[
				    1], &ldwork);
			    zqrt16_("No transpose", &m, &n, &nrhs, &copya[1], 
				    &lda, &b[1], &ldb, &work[1], &ldwork, &
				    rwork[1], &result[7]);

/*                       Test 9:  Check norm of r'*A */
/*                                workspace: NRHS*(M+N) */

			    result[8] = 0.;
			    if (m > crank) {
				result[8] = zqrt17_("No transpose", &c__1, &m, 
					 &n, &nrhs, &copya[1], &lda, &b[1], &
					ldb, &copyb[1], &ldb, &c__[1], &work[
					1], &lwork);
			    }

/*                       Test 10:  Check if x is in the rowspace of A */
/*                                workspace: (M+NRHS)*(N+2) */

			    result[9] = 0.;

			    if (n > crank) {
				result[9] = zqrt14_("No transpose", &m, &n, &
					nrhs, &copya[1], &lda, &b[1], &ldb, &
					work[1], &lwork);
			    }

/*                       Test ZGELSS */

/*                       ZGELSS:  Compute the minimum-norm solution */
/*                       X to min( norm( A * X - B ) ) */
/*                       using the SVD. */

			    zlacpy_("Full", &m, &n, &copya[1], &lda, &a[1], &
				    lda);
			    zlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &b[1], 
				     &ldb);
			    s_copy(srnamc_1.srnamt, "ZGELSS", (ftnlen)6, (
				    ftnlen)6);
			    zgelss_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &
				    s[1], &rcond, &crank, &work[1], &lwork, &
				    rwork[1], &info);

			    if (info != 0) {
				alaerh_(path, "ZGELSS", &info, &c__0, " ", &m, 
					 &n, &nrhs, &c_n1, &nb, &itype, &
					nfail, &nerrs, nout);
			    }

/*                       workspace used: 3*min(m,n) + */
/*                                       max(2*min(m,n),nrhs,max(m,n)) */

/*                       Test 11:  Compute relative error in svd */

			    if (rank > 0) {
				daxpy_(&mnmin, &c_b91, &copys[1], &c__1, &s[1]
, &c__1);
				result[10] = dasum_(&mnmin, &s[1], &c__1) / 
					dasum_(&mnmin, &copys[1], &c__1) / (
					eps * (doublereal) mnmin);
			    } else {
				result[10] = 0.;
			    }

/*                       Test 12:  Compute error in solution */

			    zlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &work[
				    1], &ldwork);
			    zqrt16_("No transpose", &m, &n, &nrhs, &copya[1], 
				    &lda, &b[1], &ldb, &work[1], &ldwork, &
				    rwork[1], &result[11]);

/*                       Test 13:  Check norm of r'*A */

			    result[12] = 0.;
			    if (m > crank) {
				result[12] = zqrt17_("No transpose", &c__1, &
					m, &n, &nrhs, &copya[1], &lda, &b[1], 
					&ldb, &copyb[1], &ldb, &c__[1], &work[
					1], &lwork);
			    }

/*                       Test 14:  Check if x is in the rowspace of A */

			    result[13] = 0.;
			    if (n > crank) {
				result[13] = zqrt14_("No transpose", &m, &n, &
					nrhs, &copya[1], &lda, &b[1], &ldb, &
					work[1], &lwork);
			    }

/*                       Test ZGELSD */

/*                       ZGELSD:  Compute the minimum-norm solution X */
/*                       to min( norm( A * X - B ) ) using a */
/*                       divide and conquer SVD. */

			    xlaenv_(&c__9, &c__25);

			    zlacpy_("Full", &m, &n, &copya[1], &lda, &a[1], &
				    lda);
			    zlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &b[1], 
				     &ldb);

			    s_copy(srnamc_1.srnamt, "ZGELSD", (ftnlen)6, (
				    ftnlen)6);
			    zgelsd_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &
				    s[1], &rcond, &crank, &work[1], &lwork, &
				    rwork[1], &iwork[1], &info);
			    if (info != 0) {
				alaerh_(path, "ZGELSD", &info, &c__0, " ", &m, 
					 &n, &nrhs, &c_n1, &nb, &itype, &
					nfail, &nerrs, nout);
			    }

/*                       Test 15:  Compute relative error in svd */

			    if (rank > 0) {
				daxpy_(&mnmin, &c_b91, &copys[1], &c__1, &s[1]
, &c__1);
				result[14] = dasum_(&mnmin, &s[1], &c__1) / 
					dasum_(&mnmin, &copys[1], &c__1) / (
					eps * (doublereal) mnmin);
			    } else {
				result[14] = 0.;
			    }

/*                       Test 16:  Compute error in solution */

			    zlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &work[
				    1], &ldwork);
			    zqrt16_("No transpose", &m, &n, &nrhs, &copya[1], 
				    &lda, &b[1], &ldb, &work[1], &ldwork, &
				    rwork[1], &result[15]);

/*                       Test 17:  Check norm of r'*A */

			    result[16] = 0.;
			    if (m > crank) {
				result[16] = zqrt17_("No transpose", &c__1, &
					m, &n, &nrhs, &copya[1], &lda, &b[1], 
					&ldb, &copyb[1], &ldb, &c__[1], &work[
					1], &lwork);
			    }

/*                       Test 18:  Check if x is in the rowspace of A */

			    result[17] = 0.;
			    if (n > crank) {
				result[17] = zqrt14_("No transpose", &m, &n, &
					nrhs, &copya[1], &lda, &b[1], &ldb, &
					work[1], &lwork);
			    }

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    for (k = 7; k <= 18; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					alahd_(nout, path);
				    }
				    io___41.ciunit = *nout;
				    s_wsfe(&io___41);
				    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&nrhs, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&itype, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				    ++nfail;
				}
/* L80: */
			    }
			    nrun += 12;

/* L90: */
			}
L100:
			;
		    }
/* L110: */
		}
/* L120: */
	    }
/* L130: */
	}
/* L140: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZDRVLS */

} /* zdrvls_ */