Exemple #1
0
pixel_t get_color(array_t *image, size_t bitdepth)
{
	uint32_t pixel_num = 0;
	lab_pixel_t *avg = NULL;
	for (size_t i = 0; i < image->size; i++)
	{
		array_t *row = ((array_t *) image->ptr);
		for (size_t j = 0; j < row->size; j++)
		{
			pixel_num++;
			pixel_t rgb = ((pixel_t *) row->ptr)[j];
			xyz_pixel_t xyz = rgb_to_xyz(rgb);
			lab_pixel_t lab = xyz_to_lab(xyz);
			if (avg == NULL)
			{
				avg = malloc(sizeof(lab_pixel_t));
				*avg = lab;
			}
			else
			{
				avg->L = running_avg(avg->L, lab->L, pixel_num);
				avg->a = running_avg(avg->a, lab->a, pixel_num);
				avg->b = running_avg(avg->b, lab->b, pixel_num);
			}
		}
	}
	xyz_pixel_t xyz_avg = lab_to_xyz(*avg);
	return xyz_to_rgb(xyz_avg);
}
Exemple #2
0
static void color_LinearRGB_to_Lab(struct color *c, uint8_t extra)
{
	double R, G, B, X, Y, Z;

	assert(c != NULL);
	assert(c->type == COLOR_LINEAR_RGB);
	
	R = c->LinearRGB.R;
	G = c->LinearRGB.G;
	B = c->LinearRGB.B;
	
	// linear sRGB -> normalized XYZ (X,Y,Z are all in 0...1)
	
	X = xyz_to_lab(R * (10135552.0/23359437.0) + G * (8788810.0/23359437.0) + B * (4435075.0/23359437.0));
	Y = xyz_to_lab(R * (871024.0/4096299.0)    + G * (8788810.0/12288897.0) + B * (887015.0/12288897.0));
	Z = xyz_to_lab(R * (158368.0/8920923.0)    + G * (8788810.0/80288307.0) + B * (70074185.0/80288307.0));

	// normalized XYZ -> Lab

	c->Lab.L = Y * 116.0 - 16.0;
	c->Lab.a = (X - Y) * 500.0;
	c->Lab.b = (Y - Z) * 200.0;
	c->type = COLOR_LAB;
}
/* Create a PDF Lab color space corresponding to a CIEBased color space. */
static int
lab_range(gs_range range_out[3] /* only [1] and [2] used */,
	  const gs_color_space *pcs, const gs_cie_common *pciec,
	  const gs_range *ranges, gs_memory_t *mem)
{
    /*
     * Determine the range of a* and b* by evaluating the color space
     * mapping at all of its extrema.
     */
    int ncomp = gs_color_space_num_components(pcs);
    gs_imager_state *pis;
    int code = gx_cie_to_xyz_alloc(&pis, pcs, mem);
    int i, j;

    if (code < 0)
	return code;
    for (j = 1; j < 3; ++j)
	range_out[j].rmin = 1000.0, range_out[j].rmax = -1000.0;
    for (i = 0; i < 1 << ncomp; ++i) {
	double in[4], xyz[3];

	for (j = 0; j < ncomp; ++j)
	    in[j] = (i & (1 << j) ? ranges[j].rmax : ranges[j].rmin);
	if (cie_to_xyz(in, xyz, pcs, pis) >= 0) {
	    double lab[3];

	    xyz_to_lab(xyz, lab, pciec);
	    for (j = 1; j < 3; ++j) {
		range_out[j].rmin = min(range_out[j].rmin, lab[j]);
		range_out[j].rmax = max(range_out[j].rmax, lab[j]);
	    }
	}
    }
    gx_cie_to_xyz_free(pis);
    return 0;
}
		inline value_type rgb_to_lab(const value_type& v) {
			return xyz_to_lab(rgb_to_xyz(v)) + value_type(0,128,128);
		}
Exemple #5
0
bool yee_compare(CompareArgs &args)
{
    if ((args.image_a_->get_width()  != args.image_b_->get_width()) or
        (args.image_a_->get_height() != args.image_b_->get_height()))
    {
        args.error_string_ = "Image dimensions do not match\n";
        return false;
    }

    const auto w = args.image_a_->get_width();
    const auto h = args.image_a_->get_height();
    const auto dim = w * h;

    auto identical = true;
    for (auto i = 0u; i < dim; i++)
    {
        if (args.image_a_->get(i) != args.image_b_->get(i))
        {
            identical = false;
            break;
        }
    }
    if (identical)
    {
        args.error_string_ = "Images are binary identical\n";
        return true;
    }

    // Assuming colorspaces are in Adobe RGB (1998) convert to XYZ.
    std::vector<float> a_lum(dim);
    std::vector<float> b_lum(dim);

    std::vector<float> a_a(dim);
    std::vector<float> b_a(dim);
    std::vector<float> a_b(dim);
    std::vector<float> b_b(dim);

    if (args.verbose_)
    {
        std::cout << "Converting RGB to XYZ\n";
    }

    const auto gamma = args.gamma_;
    const auto luminance = args.luminance_;

    #pragma omp parallel for shared(args, a_lum, b_lum, a_a, a_b, b_a, b_b)
    for (auto y = 0; y < static_cast<ptrdiff_t>(h); y++)
    {
        for (auto x = 0u; x < w; x++)
        {
            const auto i = x + y * w;
            const auto a_color_r = powf(args.image_a_->get_red(i) / 255.0f,
                                        gamma);
            const auto a_color_g = powf(args.image_a_->get_green(i) / 255.0f,
                                        gamma);
            const auto a_color_b = powf(args.image_a_->get_blue(i) / 255.0f,
                                        gamma);
            float a_x;
            float a_y;
            float a_z;
            adobe_rgb_to_xyz(a_color_r, a_color_g, a_color_b, a_x, a_y, a_z);
            float l;
            xyz_to_lab(a_x, a_y, a_z, l, a_a[i], a_b[i]);
            const auto b_color_r = powf(args.image_b_->get_red(i) / 255.0f,
                                        gamma);
            const auto b_color_g = powf(args.image_b_->get_green(i) / 255.0f,
                                        gamma);
            const auto b_color_b = powf(args.image_b_->get_blue(i) / 255.0f,
                                        gamma);
            float b_x;
            float b_y;
            float b_z;
            adobe_rgb_to_xyz(b_color_r, b_color_g, b_color_b, b_x, b_y, b_z);
            xyz_to_lab(b_x, b_y, b_z, l, b_a[i], b_b[i]);
            a_lum[i] = a_y * luminance;
            b_lum[i] = b_y * luminance;
        }
    }

    if (args.verbose_)
    {
        std::cout << "Constructing Laplacian Pyramids\n";
    }

    const LPyramid la(a_lum, w, h);
    const LPyramid lb(b_lum, w, h);

    const auto num_one_degree_pixels =
        to_degrees(2 *
                   std::tan(args.field_of_view_ * to_radians(.5f)));
    const auto pixels_per_degree = w / num_one_degree_pixels;

    if (args.verbose_)
    {
        std::cout << "Performing test\n";
    }

    const auto adaptation_level = adaptation(num_one_degree_pixels);

    float cpd[MAX_PYR_LEVELS];
    cpd[0] = 0.5f * pixels_per_degree;
    for (auto i = 1u; i < MAX_PYR_LEVELS; i++)
    {
        cpd[i] = 0.5f * cpd[i - 1];
    }
    const auto csf_max = csf(3.248f, 100.0f);

    static_assert(MAX_PYR_LEVELS > 2,
                  "MAX_PYR_LEVELS must be greater than 2");

    float f_freq[MAX_PYR_LEVELS - 2];
    for (auto i = 0u; i < MAX_PYR_LEVELS - 2; i++)
    {
        f_freq[i] = csf_max / csf(cpd[i], 100.0f);
    }

    auto pixels_failed = 0u;
    auto error_sum = 0.;

    #pragma omp parallel for reduction(+ : pixels_failed, error_sum) \
        shared(args, a_a, a_b, b_a, b_b, cpd, f_freq)
    for (auto y = 0; y < static_cast<ptrdiff_t>(h); y++)
    {
        for (auto x = 0u; x < w; x++)
        {
            const auto index = y * w + x;
            const auto adapt = std::max((la.get_value(x, y, adaptation_level) +
                                         lb.get_value(x, y, adaptation_level)) * 0.5f,
                                        1e-5f);
            auto sum_contrast = 0.f;
            auto factor = 0.f;
            for (auto i = 0u; i < MAX_PYR_LEVELS - 2; i++)
            {
                const auto n1 =
                    fabsf(la.get_value(x, y, i) - la.get_value(x, y, i + 1));
                const auto n2 =
                    fabsf(lb.get_value(x, y, i) - lb.get_value(x, y, i + 1));
                const auto numerator = std::max(n1, n2);
                const auto d1 = fabsf(la.get_value(x, y, i + 2));
                const auto d2 = fabsf(lb.get_value(x, y, i + 2));
                const auto denominator = std::max(std::max(d1, d2), 1e-5f);
                const auto contrast = numerator / denominator;
                const auto f_mask = mask(contrast * csf(cpd[i], adapt));
                factor += contrast * f_freq[i] * f_mask;
                sum_contrast += contrast;
            }
            sum_contrast = std::max(sum_contrast, 1e-5f);
            factor /= sum_contrast;
            factor = std::min(std::max(factor, 1.f), 10.f);
            const auto delta =
                fabsf(la.get_value(x, y, 0) - lb.get_value(x, y, 0));
            error_sum += delta;
            auto pass = true;

            // pure luminance test
            if (delta > factor * tvi(adapt))
            {
                pass = false;
            }

            if (not args.luminance_only_)
            {
                // CIE delta E test with modifications
                auto color_scale = args.color_factor_;
                // ramp down the color test in scotopic regions
                if (adapt < 10.0f)
                {
                    // Don't do color test at all.
                    color_scale = 0.0;
                }
                const auto da = a_a[index] - b_a[index];
                const auto db = a_b[index] - b_b[index];
                const auto delta_e = (da * da + db * db) * color_scale;
                error_sum += delta_e;
                if (delta_e > factor)
                {
                    pass = false;
                }
            }

            if (not pass)
            {
                pixels_failed++;
                if (args.image_difference_)
                {
                    args.image_difference_->set(255, 0, 0, 255, index);
                }
            }
            else
            {
                if (args.image_difference_)
                {
                    args.image_difference_->set(0, 0, 0, 255, index);
                }
            }
        }
    }

    const auto error_sum_buff =
        std::to_string(error_sum) + " error sum\n";

    const auto different =
        std::to_string(pixels_failed) + " pixels are different\n";

    // Always output image difference if requested.
    if (args.image_difference_)
    {
        args.image_difference_->write_to_file(args.image_difference_->get_name());

        args.error_string_ += "Wrote difference image to ";
        args.error_string_ += args.image_difference_->get_name();
        args.error_string_ += "\n";
    }

    if (pixels_failed < args.threshold_pixels_)
    {
        args.error_string_ = "Images are perceptually indistinguishable\n";
        args.error_string_ += different;
        return true;
    }

    args.error_string_ = "Images are visibly different\n";
    args.error_string_ += different;
    if (args.sum_errors_)
    {
        args.error_string_ += error_sum_buff;
    }

    return false;
}