Exemple #1
0
inline void
TrsvUN( UnitOrNonUnit diag, const DistMatrix<F>& U, DistMatrix<F>& x )
{
#ifndef RELEASE
    PushCallStack("internal::TrsvUN");
    if( U.Grid() != x.Grid() )
        throw std::logic_error("{U,x} must be distributed over the same grid");
    if( U.Height() != U.Width() )
        throw std::logic_error("U must be square");
    if( x.Width() != 1 && x.Height() != 1 )
        throw std::logic_error("x must be a vector");
    const int xLength = ( x.Width() == 1 ? x.Height() : x.Width() );
    if( U.Width() != xLength )
        throw std::logic_error("Nonconformal TrsvUN");
#endif
    const Grid& g = U.Grid();

    if( x.Width() == 1 )
    {
        // Matrix views 
        DistMatrix<F> U01(g),
                      U11(g);
        DistMatrix<F> 
            xT(g),  x0(g),
            xB(g),  x1(g),
                    x2(g);

        // Temporary distributions
        DistMatrix<F,STAR,STAR> U11_STAR_STAR(g);
        DistMatrix<F,STAR,STAR> x1_STAR_STAR(g);
        DistMatrix<F,MR,  STAR> x1_MR_STAR(g);
        DistMatrix<F,MC,  STAR> z_MC_STAR(g);

        // Views of z[MC,* ], which will store updates to x
        DistMatrix<F,MC,STAR> z0_MC_STAR(g),
                              z1_MC_STAR(g);

        z_MC_STAR.AlignWith( U );
        Zeros( x.Height(), 1, z_MC_STAR );

        // Start the algorithm
        PartitionUp
        ( x, xT,
             xB, 0 );
        while( xT.Height() > 0 )
        {
            RepartitionUp
            ( xT,  x0,
                   x1,
             /**/ /**/
              xB,  x2 );

            const int n0 = x0.Height();
            const int n1 = x1.Height();
            LockedView( U01, U, 0,  n0, n0, n1 );
            LockedView( U11, U, n0, n0, n1, n1 );
            View( z0_MC_STAR, z_MC_STAR, 0,  0, n0, 1 );
            View( z1_MC_STAR, z_MC_STAR, n0, 0, n1, 1 );

            x1_MR_STAR.AlignWith( U01 );
            //----------------------------------------------------------------//
            if( x2.Height() != 0 )
                x1.SumScatterUpdate( F(1), z1_MC_STAR );

            x1_STAR_STAR = x1;
            U11_STAR_STAR = U11;
            Trsv
            ( UPPER, NORMAL, diag,
              U11_STAR_STAR.LockedLocalMatrix(),
              x1_STAR_STAR.LocalMatrix() );
            x1 = x1_STAR_STAR;

            x1_MR_STAR = x1_STAR_STAR;
            Gemv
            ( NORMAL, F(-1), 
              U01.LockedLocalMatrix(), 
              x1_MR_STAR.LockedLocalMatrix(),
              F(1), z0_MC_STAR.LocalMatrix() );
            //----------------------------------------------------------------//
            x1_MR_STAR.FreeAlignments();

            SlidePartitionUp
            ( xT,  x0,
             /**/ /**/
                   x1,
              xB,  x2 );
        }
    }
    else
    {
        // Matrix views 
        DistMatrix<F> U01(g),
                      U11(g);
        DistMatrix<F> 
            xL(g), xR(g),
            x0(g), x1(g), x2(g);

        // Temporary distributions
        DistMatrix<F,STAR,STAR> U11_STAR_STAR(g);
        DistMatrix<F,STAR,STAR> x1_STAR_STAR(g);
        DistMatrix<F,STAR,MR  > x1_STAR_MR(g);
        DistMatrix<F,MC,  MR  > z1(g);
        DistMatrix<F,MR,  MC  > z1_MR_MC(g);
        DistMatrix<F,STAR,MC  > z_STAR_MC(g);

        // Views of z[* ,MC]
        DistMatrix<F,STAR,MC>  z0_STAR_MC(g),
                               z1_STAR_MC(g);

        z_STAR_MC.AlignWith( U );
        Zeros( 1, x.Width(), z_STAR_MC );

        // Start the algorithm
        PartitionLeft( x,  xL, xR, 0 );
        while( xL.Width() > 0 )
        {
            RepartitionLeft
            ( xL,     /**/ xR,
              x0, x1, /**/ x2 );

            const int n0 = x0.Width();
            const int n1 = x1.Width();
            LockedView( U01, U, 0,  n0, n0, n1 );
            LockedView( U11, U, n0, n0, n1, n1 );
            View( z0_STAR_MC, z_STAR_MC, 0, 0,  1, n0 );
            View( z1_STAR_MC, z_STAR_MC, 0, n0, 1, n1 );

            x1_STAR_MR.AlignWith( U01 );
            z1.AlignWith( x1 );
            //----------------------------------------------------------------//
            if( x2.Width() != 0 )
            {
                z1_MR_MC.SumScatterFrom( z1_STAR_MC );
                z1 = z1_MR_MC;
                Axpy( F(1), z1, x1 );
            }

            x1_STAR_STAR = x1;
            U11_STAR_STAR = U11;
            Trsv
            ( UPPER, NORMAL, diag,
              U11_STAR_STAR.LockedLocalMatrix(),
              x1_STAR_STAR.LocalMatrix() );
            x1 = x1_STAR_STAR;

            x1_STAR_MR = x1_STAR_STAR;
            Gemv
            ( NORMAL, F(-1), 
              U01.LockedLocalMatrix(), 
              x1_STAR_MR.LockedLocalMatrix(),
              F(1), z0_STAR_MC.LocalMatrix() );
            //----------------------------------------------------------------//
            x1_STAR_MR.FreeAlignments();
            z1.FreeAlignments(); 

            SlidePartitionLeft
            ( xL, /**/ xR,
              x0, /**/ x1, x2 );
        }
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #2
0
inline void
Symv
( UpperOrLower uplo,
  T alpha, const DistMatrix<T>& A,
           const DistMatrix<T>& x,
  T beta,        DistMatrix<T>& y,
  bool conjugate=false )
{
#ifndef RELEASE
    CallStackEntry entry("Symv");
    if( A.Grid() != x.Grid() || x.Grid() != y.Grid() )
        throw std::logic_error
        ("{A,x,y} must be distributed over the same grid");
    if( A.Height() != A.Width() )
        throw std::logic_error("A must be square");
    if( ( x.Width() != 1 && x.Height() != 1 ) ||
        ( y.Width() != 1 && y.Height() != 1 ) )
        throw std::logic_error("x and y are assumed to be vectors");
    const int xLength = ( x.Width()==1 ? x.Height() : x.Width() );
    const int yLength = ( y.Width()==1 ? y.Height() : y.Width() );
    if( A.Height() != xLength || A.Height() != yLength )
    {
        std::ostringstream msg;
        msg << "Nonconformal Symv: \n"
            << "  A ~ " << A.Height() << " x " << A.Width() << "\n"
            << "  x ~ " << x.Height() << " x " << x.Width() << "\n"
            << "  y ~ " << y.Height() << " x " << y.Width() << "\n";
        throw std::logic_error( msg.str() );
    }
#endif
    const Grid& g = A.Grid();

    if( x.Width() == 1 && y.Width() == 1 )
    {
        // Temporary distributions
        DistMatrix<T,MC,STAR> x_MC_STAR(g), z_MC_STAR(g);
        DistMatrix<T,MR,STAR> x_MR_STAR(g), z_MR_STAR(g);
        DistMatrix<T,MR,MC  > z_MR_MC(g);
        DistMatrix<T> z(g);

        // Begin the algoritm
        Scale( beta, y );
        x_MC_STAR.AlignWith( A );
        x_MR_STAR.AlignWith( A );
        z_MC_STAR.AlignWith( A );
        z_MR_STAR.AlignWith( A );
        z.AlignWith( y );
        Zeros( z_MC_STAR, y.Height(), 1 );
        Zeros( z_MR_STAR, y.Height(), 1 );
        //--------------------------------------------------------------------//
        x_MC_STAR = x;
        x_MR_STAR = x_MC_STAR;
        if( uplo == LOWER )
        {
            internal::LocalSymvColAccumulateL
            ( alpha, A, x_MC_STAR, x_MR_STAR, z_MC_STAR, z_MR_STAR, conjugate );
        }
        else
        {
            internal::LocalSymvColAccumulateU
            ( alpha, A, x_MC_STAR, x_MR_STAR, z_MC_STAR, z_MR_STAR, conjugate );
        }

        z_MR_MC.SumScatterFrom( z_MR_STAR );
        z = z_MR_MC;
        z.SumScatterUpdate( T(1), z_MC_STAR );
        Axpy( T(1), z, y );
        //--------------------------------------------------------------------//
        x_MC_STAR.FreeAlignments();
        x_MR_STAR.FreeAlignments();
        z_MC_STAR.FreeAlignments();
        z_MR_STAR.FreeAlignments();
        z.FreeAlignments();
    }
    else if( x.Width() == 1 )
    {
        // Temporary distributions
        DistMatrix<T,MC,STAR> x_MC_STAR(g), z_MC_STAR(g);
        DistMatrix<T,MR,STAR> x_MR_STAR(g), z_MR_STAR(g);
        DistMatrix<T,MR,MC  > z_MR_MC(g);
        DistMatrix<T> z(g), zTrans(g);

        // Begin the algoritm
        Scale( beta, y );
        x_MC_STAR.AlignWith( A );
        x_MR_STAR.AlignWith( A );
        z_MC_STAR.AlignWith( A );
        z_MR_STAR.AlignWith( A );
        z.AlignWith( y );
        z_MR_MC.AlignWith( y );
        Zeros( z_MC_STAR, y.Width(), 1 );
        Zeros( z_MR_STAR, y.Width(), 1 );
        //--------------------------------------------------------------------//
        x_MC_STAR = x;
        x_MR_STAR = x_MC_STAR;
        if( uplo == LOWER )
        {
            internal::LocalSymvColAccumulateL
            ( alpha, A, x_MC_STAR, x_MR_STAR, z_MC_STAR, z_MR_STAR, conjugate );
        }
        else
        {
            internal::LocalSymvColAccumulateU
            ( alpha, A, x_MC_STAR, x_MR_STAR, z_MC_STAR, z_MR_STAR, conjugate );
        }

        z.SumScatterFrom( z_MC_STAR );
        z_MR_MC = z;
        z_MR_MC.SumScatterUpdate( T(1), z_MR_STAR );
        Transpose( z_MR_MC, zTrans );
        Axpy( T(1), zTrans, y );
        //--------------------------------------------------------------------//
        x_MC_STAR.FreeAlignments();
        x_MR_STAR.FreeAlignments();
        z_MC_STAR.FreeAlignments();
        z_MR_STAR.FreeAlignments();
        z.FreeAlignments();
        z_MR_MC.FreeAlignments();
    }
    else if( y.Width() == 1 )
    {
        // Temporary distributions
        DistMatrix<T,STAR,MC> x_STAR_MC(g), z_STAR_MC(g);
        DistMatrix<T,STAR,MR> x_STAR_MR(g), z_STAR_MR(g);
        DistMatrix<T,MR,  MC> z_MR_MC(g);
        DistMatrix<T> z(g), zTrans(g);

        // Begin the algoritm
        Scale( beta, y );
        x_STAR_MC.AlignWith( A );
        x_STAR_MR.AlignWith( A );
        z_STAR_MC.AlignWith( A );
        z_STAR_MR.AlignWith( A );
        z.AlignWith( y );
        z_MR_MC.AlignWith( y );
        Zeros( z_STAR_MC, 1, y.Height() );
        Zeros( z_STAR_MR, 1, y.Height() );
        //--------------------------------------------------------------------//
        x_STAR_MR = x;
        x_STAR_MC = x_STAR_MR;
        if( uplo == LOWER )
        {
            internal::LocalSymvRowAccumulateL
            ( alpha, A, x_STAR_MC, x_STAR_MR, z_STAR_MC, z_STAR_MR, conjugate );
        }
        else
        {
            internal::LocalSymvRowAccumulateU
            ( alpha, A, x_STAR_MC, x_STAR_MR, z_STAR_MC, z_STAR_MR, conjugate );
        }

        z.SumScatterFrom( z_STAR_MR );
        z_MR_MC = z;
        z_MR_MC.SumScatterUpdate( T(1), z_STAR_MC );
        Transpose( z_MR_MC, zTrans );
        Axpy( T(1), zTrans, y );
        //--------------------------------------------------------------------//
        x_STAR_MC.FreeAlignments();
        x_STAR_MR.FreeAlignments();
        z_STAR_MC.FreeAlignments();
        z_STAR_MR.FreeAlignments();
        z.FreeAlignments();
        z_MR_MC.FreeAlignments();
    }
    else
    {
        // Temporary distributions
        DistMatrix<T,STAR,MC> x_STAR_MC(g), z_STAR_MC(g);
        DistMatrix<T,STAR,MR> x_STAR_MR(g), z_STAR_MR(g);
        DistMatrix<T,MR,  MC> z_MR_MC(g);
        DistMatrix<T> z(g);

        // Begin the algoritm
        Scale( beta, y );
        x_STAR_MC.AlignWith( A );
        x_STAR_MR.AlignWith( A );
        z_STAR_MC.AlignWith( A );
        z_STAR_MR.AlignWith( A );
        z.AlignWith( y );
        z_MR_MC.AlignWith( y );
        Zeros( z_STAR_MC, 1, y.Width() );
        Zeros( z_STAR_MR, 1, y.Width() );
        //--------------------------------------------------------------------//
        x_STAR_MR = x;
        x_STAR_MC = x_STAR_MR;
        if( uplo == LOWER )
        {
            internal::LocalSymvRowAccumulateL
            ( alpha, A, x_STAR_MC, x_STAR_MR, z_STAR_MC, z_STAR_MR, conjugate );
        }
        else
        {
            internal::LocalSymvRowAccumulateU
            ( alpha, A, x_STAR_MC, x_STAR_MR, z_STAR_MC, z_STAR_MR, conjugate );
        }

        z_MR_MC.SumScatterFrom( z_STAR_MC );
        z = z_MR_MC;
        z.SumScatterUpdate( T(1), z_STAR_MR );
        Axpy( T(1), z, y );
        //--------------------------------------------------------------------//
        x_STAR_MC.FreeAlignments();
        x_STAR_MR.FreeAlignments();
        z_STAR_MC.FreeAlignments();
        z_STAR_MR.FreeAlignments();
        z.FreeAlignments();
        z_MR_MC.FreeAlignments();
    }
}
Exemple #3
0
inline void
PanelLQ( DistMatrix<Real>& A )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLQ");
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<Real>
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  aTopRow(g), ABottomPan(g),
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),
                         A20(g), a21(g),     A22(g);

    // Temporary distributions
    DistMatrix<Real,STAR,MR> aTopRow_STAR_MR(g);
    DistMatrix<Real,MC,STAR> z_MC_STAR(g);

    PushBlocksizeStack( 1 );
    PartitionDownLeftDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        aTopRow.View1x2( alpha11, a12 );
        ABottomPan.View1x2( a21, A22 );

        aTopRow_STAR_MR.AlignWith( ABottomPan );
        z_MC_STAR.AlignWith( ABottomPan );
        Zeros( ABottomPan.Height(), 1, z_MC_STAR );
        //--------------------------------------------------------------------//
        const Real tau = Reflector( alpha11, a12 );

        const bool myDiagonalEntry = ( g.Row() == alpha11.ColAlignment() &&
                                       g.Col() == alpha11.RowAlignment() );
        Real alpha = 0;
        if( myDiagonalEntry )
        {
            alpha = alpha11.GetLocal(0,0);
            alpha11.SetLocal(0,0,1);
        }

        aTopRow_STAR_MR = aTopRow;

        Gemv
        ( NORMAL,
          Real(1), ABottomPan.LockedLocalMatrix(),
                   aTopRow_STAR_MR.LockedLocalMatrix(),
          Real(0), z_MC_STAR.LocalMatrix() );
        z_MC_STAR.SumOverRow();

        Ger
        ( -tau,
          z_MC_STAR.LockedLocalMatrix(),
          aTopRow_STAR_MR.LockedLocalMatrix(),
          ABottomPan.LocalMatrix() );

        if( myDiagonalEntry )
            alpha11.SetLocal(0,0,alpha);
        //--------------------------------------------------------------------//
        aTopRow_STAR_MR.FreeAlignments();
        z_MC_STAR.FreeAlignments();

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
inline void
PanelHouseholder( DistMatrix<F>& A, DistMatrix<F,MD,STAR>& t )
{
#ifndef RELEASE
    CallStackEntry entry("lq::PanelHouseholder");
    if( A.Grid() != t.Grid() )
        LogicError("{A,t} must be distributed over the same grid");
    if( t.Height() != Min(A.Height(),A.Width()) || t.Width() != 1 )
        LogicError
        ("t must be a vector of height equal to the minimum dimension of A");
    if( !t.AlignedWithDiagonal( A, 0 ) )
        LogicError("t must be aligned with A's main diagonal");
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<F>
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  aTopRow(g), ABottomPan(g),
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),
                         A20(g), a21(g),     A22(g);
    DistMatrix<F,MD,STAR>
        tT(g),  t0(g),
        tB(g),  tau1(g),
                t2(g);

    // Temporary distributions
    DistMatrix<F> aTopRowConj(g);
    DistMatrix<F,STAR,MR  > aTopRowConj_STAR_MR(g);
    DistMatrix<F,MC,  STAR> z_MC_STAR(g);

    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    PartitionDown
    ( t, tT,
         tB, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22, 1 );

        RepartitionDown
        ( tT,  t0,
         /**/ /****/
               tau1,
          tB,  t2, 1 );

        View1x2( aTopRow, alpha11, a12 );
        View1x2( ABottomPan, a21, A22 );

        aTopRowConj_STAR_MR.AlignWith( ABottomPan );
        z_MC_STAR.AlignWith( ABottomPan );
        //--------------------------------------------------------------------//
        // Compute the Householder reflector
        const F tau = Reflector( alpha11, a12 );
        tau1.Set( 0, 0, tau );

        // Apply the Householder reflector
        const bool myDiagonalEntry = ( g.Row() == alpha11.ColAlignment() &&
                                       g.Col() == alpha11.RowAlignment() );
        F alpha = 0;
        if( myDiagonalEntry )
        {
            alpha = alpha11.GetLocal(0,0);
            alpha11.SetLocal(0,0,1);
        }
        Conjugate( aTopRow, aTopRowConj );
        aTopRowConj_STAR_MR = aTopRowConj;
        Zeros( z_MC_STAR, ABottomPan.Height(), 1 );
        LocalGemv
        ( NORMAL, F(1), ABottomPan, aTopRowConj_STAR_MR, F(0), z_MC_STAR );
        z_MC_STAR.SumOverRow();
        Ger
        ( -Conj(tau),
          z_MC_STAR.LockedMatrix(),
          aTopRowConj_STAR_MR.LockedMatrix(),
          ABottomPan.Matrix() );
        if( myDiagonalEntry )
            alpha11.SetLocal(0,0,alpha);
        //--------------------------------------------------------------------//

        SlidePartitionDown
        ( tT,  t0,
               tau1,
         /**/ /****/
          tB,  t2 );

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
}
Exemple #5
0
inline void
PanelLQ
( DistMatrix<Complex<Real> >& A,
  DistMatrix<Complex<Real>,MD,STAR>& t )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLQ");
    if( A.Grid() != t.Grid() )
        throw std::logic_error("{A,t} must be distributed over the same grid");
    if( t.Height() != std::min(A.Height(),A.Width()) || t.Width() != 1 )
        throw std::logic_error
        ("t must be a vector of height equal to the minimum dimension of A");
    if( !t.AlignedWithDiagonal( A, 0 ) )
        throw std::logic_error("t must be aligned with A's main diagonal");
#endif
    typedef Complex<Real> C;
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<C>
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  aTopRow(g), ABottomPan(g),
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),
                         A20(g), a21(g),     A22(g);
    DistMatrix<C,MD,STAR>
        tT(g),  t0(g),
        tB(g),  tau1(g),
                t2(g);

    // Temporary distributions
    DistMatrix<C> aTopRowConj(g);
    DistMatrix<C,STAR,MR  > aTopRowConj_STAR_MR(g);
    DistMatrix<C,MC,  STAR> z_MC_STAR(g);

    PushBlocksizeStack( 1 );
    PartitionDownLeftDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    PartitionDown
    ( t, tT,
         tB, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        RepartitionDown
        ( tT,  t0,
         /**/ /****/
               tau1,
          tB,  t2 );

        aTopRow.View1x2( alpha11, a12 );
        ABottomPan.View1x2( a21, A22 );

        aTopRowConj_STAR_MR.AlignWith( ABottomPan );
        z_MC_STAR.AlignWith( ABottomPan );
        Zeros( ABottomPan.Height(), 1, z_MC_STAR );
        //--------------------------------------------------------------------//
        const C tau = Reflector( alpha11, a12 );
        tau1.Set( 0, 0, tau );

        const bool myDiagonalEntry = ( g.Row() == alpha11.ColAlignment() &&
                                       g.Col() == alpha11.RowAlignment() );
        C alpha = 0;
        if( myDiagonalEntry )
        {
            alpha = alpha11.GetLocal(0,0);
            alpha11.SetLocal(0,0,1);
        }

        Conjugate( aTopRow, aTopRowConj );
        aTopRowConj_STAR_MR = aTopRowConj;

        Gemv
        ( NORMAL,
          C(1), ABottomPan.LockedLocalMatrix(),
                aTopRowConj_STAR_MR.LockedLocalMatrix(),
          C(0), z_MC_STAR.LocalMatrix() );
        z_MC_STAR.SumOverRow();

        Ger
        ( -Conj(tau),
          z_MC_STAR.LockedLocalMatrix(),
          aTopRowConj_STAR_MR.LockedLocalMatrix(),
          ABottomPan.LocalMatrix() );

        if( myDiagonalEntry )
            alpha11.SetLocal(0,0,alpha);
        //--------------------------------------------------------------------//
        aTopRowConj_STAR_MR.FreeAlignments();
        z_MC_STAR.FreeAlignments();

        SlidePartitionDown
        ( tT,  t0,
               tau1,
         /**/ /****/
          tB,  t2 );

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}