/* Subroutine */ int zchkgt_(logical *dotype, integer *nn, integer *nval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, doublecomplex *a, doublecomplex *af, doublecomplex *b, doublecomplex * x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 0,0,0,1 }; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(12x,\002N =\002,i5,\002,\002,10x,\002 type" " \002,i2,\002, test(\002,i2,\002) = \002,g12.5)"; static char fmt_9997[] = "(\002 NORM ='\002,a1,\002', N =\002,i5,\002" ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) = \002,g12." "5)"; static char fmt_9998[] = "(\002 TRANS='\002,a1,\002', N =\002,i5,\002, N" "RHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) = \002,g" "12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; doublereal d__1, d__2; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, k, m, n; doublecomplex z__[3]; integer in, kl, ku, ix, lda; doublereal cond; integer mode, koff, imat, info; char path[3], dist[1]; integer irhs, nrhs; char norm[1], type__[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); doublereal rcond; integer nimat; doublereal anorm; integer itran; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); char trans[1]; integer izero, nerrs; extern /* Subroutine */ int zgtt01_(integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zgtt02_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zgtt05_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); doublereal rcondc, rcondi; extern /* Subroutine */ int zdscal_(integer *, doublereal *, doublecomplex *, integer *), alasum_(char *, integer *, integer *, integer *, integer *); doublereal rcondo, ainvnm; logical trfcon; extern /* Subroutine */ int zerrge_(char *, integer *); extern doublereal zlangt_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *); extern /* Subroutine */ int zlagtm_(char *, integer *, integer *, doublereal *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dzasum_(integer *, doublecomplex *, integer *); extern /* Subroutine */ int zgtcon_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *), zlarnv_(integer *, integer *, integer *, doublecomplex *); doublereal result[7]; extern /* Subroutine */ int zgtrfs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zgttrf_(integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, integer *), zgttrs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___29 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___39 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKGT tests ZGTTRF, -TRS, -RFS, and -CON */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* A (workspace) COMPLEX*16 array, dimension (NMAX*4) */ /* AF (workspace) COMPLEX*16 array, dimension (NMAX*4) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(3,NSMAX)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension */ /* (max(NMAX)+2*NSMAX) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --af; --a; --nsval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrge_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL. */ n = nval[in]; /* Computing MAX */ i__2 = n - 1; m = max(i__2,0); lda = max(1,n); nimat = 12; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L100; } /* Set up parameters with ZLATB4. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, & cond, dist); zerot = imat >= 8 && imat <= 10; if (imat <= 6) { /* Types 1-6: generate matrices of known condition number. */ /* Computing MAX */ i__3 = 2 - ku, i__4 = 3 - max(1,n); koff = max(i__3,i__4); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, &anorm, &kl, &ku, "Z", &af[koff], &c__3, &work[1], & info); /* Check the error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, " ", &n, &n, &kl, & ku, &c_n1, &imat, &nfail, &nerrs, nout); goto L100; } izero = 0; if (n > 1) { i__3 = n - 1; zcopy_(&i__3, &af[4], &c__3, &a[1], &c__1); i__3 = n - 1; zcopy_(&i__3, &af[3], &c__3, &a[n + m + 1], &c__1); } zcopy_(&n, &af[2], &c__3, &a[m + 1], &c__1); } else { /* Types 7-12: generate tridiagonal matrices with */ /* unknown condition numbers. */ if (! zerot || ! dotype[7]) { /* Generate a matrix with elements whose real and */ /* imaginary parts are from [-1,1]. */ i__3 = n + (m << 1); zlarnv_(&c__2, iseed, &i__3, &a[1]); if (anorm != 1.) { i__3 = n + (m << 1); zdscal_(&i__3, &anorm, &a[1], &c__1); } } else if (izero > 0) { /* Reuse the last matrix by copying back the zeroed out */ /* elements. */ if (izero == 1) { i__3 = n; a[i__3].r = z__[1].r, a[i__3].i = z__[1].i; if (n > 1) { a[1].r = z__[2].r, a[1].i = z__[2].i; } } else if (izero == n) { i__3 = n * 3 - 2; a[i__3].r = z__[0].r, a[i__3].i = z__[0].i; i__3 = (n << 1) - 1; a[i__3].r = z__[1].r, a[i__3].i = z__[1].i; } else { i__3 = (n << 1) - 2 + izero; a[i__3].r = z__[0].r, a[i__3].i = z__[0].i; i__3 = n - 1 + izero; a[i__3].r = z__[1].r, a[i__3].i = z__[1].i; i__3 = izero; a[i__3].r = z__[2].r, a[i__3].i = z__[2].i; } } /* If IMAT > 7, set one column of the matrix to 0. */ if (! zerot) { izero = 0; } else if (imat == 8) { izero = 1; i__3 = n; z__[1].r = a[i__3].r, z__[1].i = a[i__3].i; i__3 = n; a[i__3].r = 0., a[i__3].i = 0.; if (n > 1) { z__[2].r = a[1].r, z__[2].i = a[1].i; a[1].r = 0., a[1].i = 0.; } } else if (imat == 9) { izero = n; i__3 = n * 3 - 2; z__[0].r = a[i__3].r, z__[0].i = a[i__3].i; i__3 = (n << 1) - 1; z__[1].r = a[i__3].r, z__[1].i = a[i__3].i; i__3 = n * 3 - 2; a[i__3].r = 0., a[i__3].i = 0.; i__3 = (n << 1) - 1; a[i__3].r = 0., a[i__3].i = 0.; } else { izero = (n + 1) / 2; i__3 = n - 1; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = (n << 1) - 2 + i__; a[i__4].r = 0., a[i__4].i = 0.; i__4 = n - 1 + i__; a[i__4].r = 0., a[i__4].i = 0.; i__4 = i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } i__3 = n * 3 - 2; a[i__3].r = 0., a[i__3].i = 0.; i__3 = (n << 1) - 1; a[i__3].r = 0., a[i__3].i = 0.; } } /* + TEST 1 */ /* Factor A as L*U and compute the ratio */ /* norm(L*U - A) / (n * norm(A) * EPS ) */ i__3 = n + (m << 1); zcopy_(&i__3, &a[1], &c__1, &af[1], &c__1); s_copy(srnamc_1.srnamt, "ZGTTRF", (ftnlen)32, (ftnlen)6); zgttrf_(&n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &info); /* Check error code from ZGTTRF. */ if (info != izero) { alaerh_(path, "ZGTTRF", &info, &izero, " ", &n, &n, &c__1, & c__1, &c_n1, &imat, &nfail, &nerrs, nout); } trfcon = info != 0; zgtt01_(&n, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &af[m + 1], & af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &work[1], &lda, &rwork[1], result); /* Print the test ratio if it is .GE. THRESH. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___29.ciunit = *nout; s_wsfe(&io___29); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } ++nrun; for (itran = 1; itran <= 2; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1] ; if (itran == 1) { *(unsigned char *)norm = 'O'; } else { *(unsigned char *)norm = 'I'; } anorm = zlangt_(norm, &n, &a[1], &a[m + 1], &a[n + m + 1]); if (! trfcon) { /* Use ZGTTRS to solve for one column at a time of */ /* inv(A), computing the maximum column sum as we go. */ ainvnm = 0.; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = n; for (j = 1; j <= i__4; ++j) { i__5 = j; x[i__5].r = 0., x[i__5].i = 0.; /* L30: */ } i__4 = i__; x[i__4].r = 1., x[i__4].i = 0.; zgttrs_(trans, &n, &c__1, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &x[ 1], &lda, &info); /* Computing MAX */ d__1 = ainvnm, d__2 = dzasum_(&n, &x[1], &c__1); ainvnm = max(d__1,d__2); /* L40: */ } /* Compute RCONDC = 1 / (norm(A) * norm(inv(A)) */ if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } if (itran == 1) { rcondo = rcondc; } else { rcondi = rcondc; } } else { rcondc = 0.; } /* + TEST 7 */ /* Estimate the reciprocal of the condition number of the */ /* matrix. */ s_copy(srnamc_1.srnamt, "ZGTCON", (ftnlen)32, (ftnlen)6); zgtcon_(norm, &n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &anorm, &rcond, &work[1], & info); /* Check error code from ZGTCON. */ if (info != 0) { alaerh_(path, "ZGTCON", &info, &c__0, norm, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } result[6] = dget06_(&rcond, &rcondc); /* Print the test ratio if it is .GE. THRESH. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; /* L50: */ } /* Skip the remaining tests if the matrix is singular. */ if (trfcon) { goto L100; } i__3 = *nns; for (irhs = 1; irhs <= i__3; ++irhs) { nrhs = nsval[irhs]; /* Generate NRHS random solution vectors. */ ix = 1; i__4 = nrhs; for (j = 1; j <= i__4; ++j) { zlarnv_(&c__2, iseed, &n, &xact[ix]); ix += lda; /* L60: */ } for (itran = 1; itran <= 3; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; if (itran == 1) { rcondc = rcondo; } else { rcondc = rcondi; } /* Set the right hand side. */ zlagtm_(trans, &n, &nrhs, &c_b63, &a[1], &a[m + 1], &a[n + m + 1], &xact[1], &lda, &c_b64, &b[1], &lda); /* + TEST 2 */ /* Solve op(A) * X = B and compute the residual. */ zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZGTTRS", (ftnlen)32, (ftnlen)6); zgttrs_(trans, &n, &nrhs, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &x[1], &lda, &info); /* Check error code from ZGTTRS. */ if (info != 0) { alaerh_(path, "ZGTTRS", &info, &c__0, trans, &n, &n, & c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } zlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda); zgtt02_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], &x[1], &lda, &work[1], &lda, &rwork[1], &result[ 1]); /* + TEST 3 */ /* Check solution from generated exact solution. */ zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[2]); /* + TESTS 4, 5, and 6 */ /* Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "ZGTRFS", (ftnlen)32, (ftnlen)6); zgtrfs_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &b[1], &lda, &x[1], &lda, & rwork[1], &rwork[nrhs + 1], &work[1], &rwork[( nrhs << 1) + 1], &info); /* Check error code from ZGTRFS. */ if (info != 0) { alaerh_(path, "ZGTRFS", &info, &c__0, trans, &n, &n, & c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[3]); zgtt05_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[ 1], &rwork[nrhs + 1], &result[4]); /* Print information about the tests that did not pass the */ /* threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___44.ciunit = *nout; s_wsfe(&io___44); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L70: */ } nrun += 5; /* L80: */ } /* L90: */ } L100: ; } /* L110: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKGT */ } /* zchkgt_ */
/* Subroutine */ int zdrvgt_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, doublecomplex *a, doublecomplex *af, doublecomplex *b, doublecomplex *x, doublecomplex * xact, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 0,0,0,1 }; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002, N =\002,i5,\002, type \002,i2," "\002, test \002,i2,\002, ratio = \002,g12.5)"; static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002," "a1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002," " ratio = \002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5, i__6[2]; doublereal d__1, d__2; char ch__1[2]; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ static char fact[1]; static doublereal cond; static integer mode, koff, imat, info; static char path[3], dist[1], type__[1]; static integer nrun, i__, j, k, m, n, ifact, nfail, iseed[4]; static doublereal z__[3]; extern doublereal dget06_(doublereal *, doublereal *); static doublereal rcond; static integer nimat; static doublereal anorm; static integer itran; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); static char trans[1]; static integer izero, nerrs; extern /* Subroutine */ int zgtt01_(integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *); static integer k1; extern /* Subroutine */ int zgtt02_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , integer *, doublecomplex *, integer *, doublereal *, doublereal *), zgtt05_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); static logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zgtsv_(integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , integer *, integer *), zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *); static integer in, kl; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); static integer ku, ix, nt; static doublereal rcondc, rcondi; extern /* Subroutine */ int zdscal_(integer *, doublereal *, doublecomplex *, integer *), alasvm_(char *, integer *, integer *, integer *, integer *); static doublereal rcondo, anormi, ainvnm; static logical trfcon; static doublereal anormo; extern /* Subroutine */ int zlagtm_(char *, integer *, integer *, doublereal *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *); extern doublereal zlangt_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *); extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dzasum_(integer *, doublecomplex *, integer *); extern /* Subroutine */ int zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *), zlarnv_(integer *, integer *, integer *, doublecomplex *); static doublereal result[6]; extern /* Subroutine */ int zgttrf_(integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, integer *), zgttrs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zerrvx_(char *, integer *), zgtsvx_(char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *); static integer lda; /* Fortran I/O blocks */ static cilist io___42 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___46 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___47 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZDRVGT tests ZGTSV and -SVX. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix dimension N. THRESH (input) DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. A (workspace) COMPLEX*16 array, dimension (NMAX*4) AF (workspace) COMPLEX*16 array, dimension (NMAX*4) B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) WORK (workspace) COMPLEX*16 array, dimension (NMAX*max(3,NRHS)) RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) IWORK (workspace) INTEGER array, dimension (2*NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --af; --a; --nval; --dotype; /* Function Body */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrvx_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL. */ n = nval[in]; /* Computing MAX */ i__2 = n - 1; m = max(i__2,0); lda = max(1,n); nimat = 12; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L130; } /* Set up parameters with ZLATB4. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, & cond, dist); zerot = imat >= 8 && imat <= 10; if (imat <= 6) { /* Types 1-6: generate matrices of known condition number. Computing MAX */ i__3 = 2 - ku, i__4 = 3 - max(1,n); koff = max(i__3,i__4); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, &anorm, &kl, &ku, "Z", &af[koff], &c__3, &work[1], & info); /* Check the error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, " ", &n, &n, &kl, & ku, &c_n1, &imat, &nfail, &nerrs, nout); goto L130; } izero = 0; if (n > 1) { i__3 = n - 1; zcopy_(&i__3, &af[4], &c__3, &a[1], &c__1); i__3 = n - 1; zcopy_(&i__3, &af[3], &c__3, &a[n + m + 1], &c__1); } zcopy_(&n, &af[2], &c__3, &a[m + 1], &c__1); } else { /* Types 7-12: generate tridiagonal matrices with unknown condition numbers. */ if (! zerot || ! dotype[7]) { /* Generate a matrix with elements from [-1,1]. */ i__3 = n + (m << 1); zlarnv_(&c__2, iseed, &i__3, &a[1]); if (anorm != 1.) { i__3 = n + (m << 1); zdscal_(&i__3, &anorm, &a[1], &c__1); } } else if (izero > 0) { /* Reuse the last matrix by copying back the zeroed out elements. */ if (izero == 1) { i__3 = n; a[i__3].r = z__[1], a[i__3].i = 0.; if (n > 1) { a[1].r = z__[2], a[1].i = 0.; } } else if (izero == n) { i__3 = n * 3 - 2; a[i__3].r = z__[0], a[i__3].i = 0.; i__3 = (n << 1) - 1; a[i__3].r = z__[1], a[i__3].i = 0.; } else { i__3 = (n << 1) - 2 + izero; a[i__3].r = z__[0], a[i__3].i = 0.; i__3 = n - 1 + izero; a[i__3].r = z__[1], a[i__3].i = 0.; i__3 = izero; a[i__3].r = z__[2], a[i__3].i = 0.; } } /* If IMAT > 7, set one column of the matrix to 0. */ if (! zerot) { izero = 0; } else if (imat == 8) { izero = 1; i__3 = n; z__[1] = a[i__3].r; i__3 = n; a[i__3].r = 0., a[i__3].i = 0.; if (n > 1) { z__[2] = a[1].r; a[1].r = 0., a[1].i = 0.; } } else if (imat == 9) { izero = n; i__3 = n * 3 - 2; z__[0] = a[i__3].r; i__3 = (n << 1) - 1; z__[1] = a[i__3].r; i__3 = n * 3 - 2; a[i__3].r = 0., a[i__3].i = 0.; i__3 = (n << 1) - 1; a[i__3].r = 0., a[i__3].i = 0.; } else { izero = (n + 1) / 2; i__3 = n - 1; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = (n << 1) - 2 + i__; a[i__4].r = 0., a[i__4].i = 0.; i__4 = n - 1 + i__; a[i__4].r = 0., a[i__4].i = 0.; i__4 = i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } i__3 = n * 3 - 2; a[i__3].r = 0., a[i__3].i = 0.; i__3 = (n << 1) - 1; a[i__3].r = 0., a[i__3].i = 0.; } } for (ifact = 1; ifact <= 2; ++ifact) { if (ifact == 1) { *(unsigned char *)fact = 'F'; } else { *(unsigned char *)fact = 'N'; } /* Compute the condition number for comparison with the value returned by ZGTSVX. */ if (zerot) { if (ifact == 1) { goto L120; } rcondo = 0.; rcondi = 0.; } else if (ifact == 1) { i__3 = n + (m << 1); zcopy_(&i__3, &a[1], &c__1, &af[1], &c__1); /* Compute the 1-norm and infinity-norm of A. */ anormo = zlangt_("1", &n, &a[1], &a[m + 1], &a[n + m + 1]); anormi = zlangt_("I", &n, &a[1], &a[m + 1], &a[n + m + 1]); /* Factor the matrix A. */ zgttrf_(&n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + ( m << 1) + 1], &iwork[1], &info); /* Use ZGTTRS to solve for one column at a time of inv(A), computing the maximum column sum as we go. */ ainvnm = 0.; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = n; for (j = 1; j <= i__4; ++j) { i__5 = j; x[i__5].r = 0., x[i__5].i = 0.; /* L30: */ } i__4 = i__; x[i__4].r = 1., x[i__4].i = 0.; zgttrs_("No transpose", &n, &c__1, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], & iwork[1], &x[1], &lda, &info); /* Computing MAX */ d__1 = ainvnm, d__2 = dzasum_(&n, &x[1], &c__1); ainvnm = max(d__1,d__2); /* L40: */ } /* Compute the 1-norm condition number of A. */ if (anormo <= 0. || ainvnm <= 0.) { rcondo = 1.; } else { rcondo = 1. / anormo / ainvnm; } /* Use ZGTTRS to solve for one column at a time of inv(A'), computing the maximum column sum as we go. */ ainvnm = 0.; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = n; for (j = 1; j <= i__4; ++j) { i__5 = j; x[i__5].r = 0., x[i__5].i = 0.; /* L50: */ } i__4 = i__; x[i__4].r = 1., x[i__4].i = 0.; zgttrs_("Conjugate transpose", &n, &c__1, &af[1], &af[ m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &x[1], &lda, &info); /* Computing MAX */ d__1 = ainvnm, d__2 = dzasum_(&n, &x[1], &c__1); ainvnm = max(d__1,d__2); /* L60: */ } /* Compute the infinity-norm condition number of A. */ if (anormi <= 0. || ainvnm <= 0.) { rcondi = 1.; } else { rcondi = 1. / anormi / ainvnm; } } for (itran = 1; itran <= 3; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; if (itran == 1) { rcondc = rcondo; } else { rcondc = rcondi; } /* Generate NRHS random solution vectors. */ ix = 1; i__3 = *nrhs; for (j = 1; j <= i__3; ++j) { zlarnv_(&c__2, iseed, &n, &xact[ix]); ix += lda; /* L70: */ } /* Set the right hand side. */ zlagtm_(trans, &n, nrhs, &c_b43, &a[1], &a[m + 1], &a[n + m + 1], &xact[1], &lda, &c_b44, &b[1], &lda); if (ifact == 2 && itran == 1) { /* --- Test ZGTSV --- Solve the system using Gaussian elimination with partial pivoting. */ i__3 = n + (m << 1); zcopy_(&i__3, &a[1], &c__1, &af[1], &c__1); zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZGTSV ", (ftnlen)6, (ftnlen) 6); zgtsv_(&n, nrhs, &af[1], &af[m + 1], &af[n + m + 1], & x[1], &lda, &info); /* Check error code from ZGTSV . */ if (info != izero) { alaerh_(path, "ZGTSV ", &info, &izero, " ", &n, & n, &c__1, &c__1, nrhs, &imat, &nfail, & nerrs, nout); } nt = 1; if (izero == 0) { /* Check residual of computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], & lda); zgtt02_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 1], &x[1], &lda, &work[1], &lda, & rwork[1], &result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; } /* Print information about the tests that did not pass the threshold. */ i__3 = nt; for (k = 2; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, "ZGTSV ", (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L80: */ } nrun = nrun + nt - 1; } /* --- Test ZGTSVX --- */ if (ifact > 1) { /* Initialize AF to zero. */ i__3 = n * 3 - 2; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__; af[i__4].r = 0., af[i__4].i = 0.; /* L90: */ } } zlaset_("Full", &n, nrhs, &c_b65, &c_b65, &x[1], &lda); /* Solve the system and compute the condition number and error bounds using ZGTSVX. */ s_copy(srnamc_1.srnamt, "ZGTSVX", (ftnlen)6, (ftnlen)6); zgtsvx_(fact, trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &b[1], &lda, &x[1], & lda, &rcond, &rwork[1], &rwork[*nrhs + 1], &work[ 1], &rwork[(*nrhs << 1) + 1], &info); /* Check the error code from ZGTSVX. */ if (info != izero) { /* Writing concatenation */ i__6[0] = 1, a__1[0] = fact; i__6[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2); alaerh_(path, "ZGTSVX", &info, &izero, ch__1, &n, &n, &c__1, &c__1, nrhs, &imat, &nfail, &nerrs, nout); } if (ifact >= 2) { /* Reconstruct matrix from factors and compute residual. */ zgtt01_(&n, &a[1], &a[m + 1], &a[n + m + 1], &af[1], & af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &work[1], &lda, &rwork[1], result); k1 = 1; } else { k1 = 2; } if (info == 0) { trfcon = FALSE_; /* Check residual of computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); zgtt02_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 1], &x[1], &lda, &work[1], &lda, &rwork[1], & result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* Check the error bounds from iterative refinement. */ zgtt05_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 1], &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs + 1], &result[3]); nt = 5; } /* Print information about the tests that did not pass the threshold. */ i__3 = nt; for (k = k1; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___46.ciunit = *nout; s_wsfe(&io___46); do_fio(&c__1, "ZGTSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L100: */ } /* Check the reciprocal of the condition number. */ result[5] = dget06_(&rcond, &rcondc); if (result[5] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___47.ciunit = *nout; s_wsfe(&io___47); do_fio(&c__1, "ZGTSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } nrun = nrun + nt - k1 + 2; /* L110: */ } L120: ; } L130: ; } /* L140: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZDRVGT */ } /* zdrvgt_ */