Exemple #1
0
/* Subroutine */
int zhegv_(integer *itype, char *jobz, char *uplo, integer * n, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, doublereal *w, doublecomplex *work, integer *lwork, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
    /* Local variables */
    integer nb, neig;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */
    int zheev_(char *, char *, integer *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *, doublereal *, integer *);
    char trans[1];
    logical upper, wantz;
    extern /* Subroutine */
    int ztrmm_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), ztrsm_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *);
    extern /* Subroutine */
    int zhegst_(integer *, char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *);
    integer lwkopt;
    logical lquery;
    extern /* Subroutine */
    int zpotrf_(char *, integer *, doublecomplex *, integer *, integer *);
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --w;
    --work;
    --rwork;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    lquery = *lwork == -1;
    *info = 0;
    if (*itype < 1 || *itype > 3)
    {
        *info = -1;
    }
    else if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -2;
    }
    else if (! (upper || lsame_(uplo, "L")))
    {
        *info = -3;
    }
    else if (*n < 0)
    {
        *info = -4;
    }
    else if (*lda < max(1,*n))
    {
        *info = -6;
    }
    else if (*ldb < max(1,*n))
    {
        *info = -8;
    }
    if (*info == 0)
    {
        nb = ilaenv_(&c__1, "ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1);
        /* Computing MAX */
        i__1 = 1;
        i__2 = (nb + 1) * *n; // , expr subst
        lwkopt = max(i__1,i__2);
        work[1].r = (doublereal) lwkopt;
        work[1].i = 0.; // , expr subst
        /* Computing MAX */
        i__1 = 1;
        i__2 = (*n << 1) - 1; // , expr subst
        if (*lwork < max(i__1,i__2) && ! lquery)
        {
            *info = -11;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("ZHEGV ", &i__1);
        return 0;
    }
    else if (lquery)
    {
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    /* Form a Cholesky factorization of B. */
    zpotrf_(uplo, n, &b[b_offset], ldb, info);
    if (*info != 0)
    {
        *info = *n + *info;
        return 0;
    }
    /* Transform problem to standard eigenvalue problem and solve. */
    zhegst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
    zheev_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, &rwork[1] , info);
    if (wantz)
    {
        /* Backtransform eigenvectors to the original problem. */
        neig = *n;
        if (*info > 0)
        {
            neig = *info - 1;
        }
        if (*itype == 1 || *itype == 2)
        {
            /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
            */
            /* backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y */
            if (upper)
            {
                *(unsigned char *)trans = 'N';
            }
            else
            {
                *(unsigned char *)trans = 'C';
            }
            ztrsm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b1, &b[ b_offset], ldb, &a[a_offset], lda);
        }
        else if (*itype == 3)
        {
            /* For B*A*x=(lambda)*x;
            */
            /* backtransform eigenvectors: x = L*y or U**H *y */
            if (upper)
            {
                *(unsigned char *)trans = 'C';
            }
            else
            {
                *(unsigned char *)trans = 'N';
            }
            ztrmm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b1, &b[ b_offset], ldb, &a[a_offset], lda);
        }
    }
    work[1].r = (doublereal) lwkopt;
    work[1].i = 0.; // , expr subst
    return 0;
    /* End of ZHEGV */
}
Exemple #2
0
/* Subroutine */ int zhegvd_(integer *itype, char *jobz, char *uplo, integer *
	n, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, 
	doublereal *w, doublecomplex *work, integer *lwork, doublereal *rwork, 
	 integer *lrwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer lopt;
    extern logical lsame_(char *, char *);
    integer lwmin;
    char trans[1];
    integer liopt;
    logical upper;
    integer lropt;
    logical wantz;
    extern /* Subroutine */ int ztrmm_(char *, char *, char *, char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *, 
	     doublecomplex *, integer *), 
	    ztrsm_(char *, char *, char *, char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *), xerbla_(char *, 
	    integer *), zheevd_(char *, char *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublecomplex *, 
	    integer *, doublereal *, integer *, integer *, integer *, integer 
	    *);
    integer liwmin;
    extern /* Subroutine */ int zhegst_(integer *, char *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *);
    integer lrwmin;
    logical lquery;
    extern /* Subroutine */ int zpotrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *);


/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors */
/*  of a complex generalized Hermitian-definite eigenproblem, of the form */
/*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and */
/*  B are assumed to be Hermitian and B is also positive definite. */
/*  If eigenvectors are desired, it uses a divide and conquer algorithm. */

/*  The divide and conquer algorithm makes very mild assumptions about */
/*  floating point arithmetic. It will work on machines with a guard */
/*  digit in add/subtract, or on those binary machines without guard */
/*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none. */

/*  Arguments */
/*  ========= */

/*  ITYPE   (input) INTEGER */
/*          Specifies the problem type to be solved: */
/*          = 1:  A*x = (lambda)*B*x */
/*          = 2:  A*B*x = (lambda)*x */
/*          = 3:  B*A*x = (lambda)*x */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA, N) */
/*          On entry, the Hermitian matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */

/*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
/*          matrix Z of eigenvectors.  The eigenvectors are normalized */
/*          as follows: */
/*          if ITYPE = 1 or 2, Z**H*B*Z = I; */
/*          if ITYPE = 3, Z**H*inv(B)*Z = I. */
/*          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */
/*          or the lower triangle (if UPLO='L') of A, including the */
/*          diagonal, is destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB, N) */
/*          On entry, the Hermitian matrix B.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of B contains the */
/*          upper triangular part of the matrix B.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of B contains */
/*          the lower triangular part of the matrix B. */

/*          On exit, if INFO <= N, the part of B containing the matrix is */
/*          overwritten by the triangular factor U or L from the Cholesky */
/*          factorization B = U**H*U or B = L*L**H. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK. */
/*          If N <= 1,                LWORK >= 1. */
/*          If JOBZ  = 'N' and N > 1, LWORK >= N + 1. */
/*          If JOBZ  = 'V' and N > 1, LWORK >= 2*N + N**2. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal sizes of the WORK, RWORK and */
/*          IWORK arrays, returns these values as the first entries of */
/*          the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) */
/*          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */

/*  LRWORK  (input) INTEGER */
/*          The dimension of the array RWORK. */
/*          If N <= 1,                LRWORK >= 1. */
/*          If JOBZ  = 'N' and N > 1, LRWORK >= N. */
/*          If JOBZ  = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. */

/*          If LRWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of the array IWORK. */
/*          If N <= 1,                LIWORK >= 1. */
/*          If JOBZ  = 'N' and N > 1, LIWORK >= 1. */
/*          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N. */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  ZPOTRF or ZHEEVD returned an error code: */
/*             <= N:  if INFO = i and JOBZ = 'N', then the algorithm */
/*                    failed to converge; i off-diagonal elements of an */
/*                    intermediate tridiagonal form did not converge to */
/*                    zero; */
/*                    if INFO = i and JOBZ = 'V', then the algorithm */
/*                    failed to compute an eigenvalue while working on */
/*                    the submatrix lying in rows and columns INFO/(N+1) */
/*                    through mod(INFO,N+1); */
/*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading */
/*                    minor of order i of B is not positive definite. */
/*                    The factorization of B could not be completed and */
/*                    no eigenvalues or eigenvectors were computed. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */

/*  Modified so that no backsubstitution is performed if ZHEEVD fails to */
/*  converge (NEIG in old code could be greater than N causing out of */
/*  bounds reference to A - reported by Ralf Meyer).  Also corrected the */
/*  description of INFO and the test on ITYPE. Sven, 16 Feb 05. */
/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --w;
    --work;
    --rwork;
    --iwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;

    *info = 0;
    if (*n <= 1) {
	lwmin = 1;
	lrwmin = 1;
	liwmin = 1;
    } else if (wantz) {
	lwmin = (*n << 1) + *n * *n;
	lrwmin = *n * 5 + 1 + (*n << 1) * *n;
	liwmin = *n * 5 + 3;
    } else {
	lwmin = *n + 1;
	lrwmin = *n;
	liwmin = 1;
    }
    lopt = lwmin;
    lropt = lrwmin;
    liopt = liwmin;
    if (*itype < 1 || *itype > 3) {
	*info = -1;
    } else if (! (wantz || lsame_(jobz, "N"))) {
	*info = -2;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    }

    if (*info == 0) {
	work[1].r = (doublereal) lopt, work[1].i = 0.;
	rwork[1] = (doublereal) lropt;
	iwork[1] = liopt;

	if (*lwork < lwmin && ! lquery) {
	    *info = -11;
	} else if (*lrwork < lrwmin && ! lquery) {
	    *info = -13;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -15;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZHEGVD", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a Cholesky factorization of B. */

    zpotrf_(uplo, n, &b[b_offset], ldb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem and solve. */

    zhegst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
    zheevd_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, &rwork[
	    1], lrwork, &iwork[1], liwork, info);
/* Computing MAX */
    d__1 = (doublereal) lopt, d__2 = work[1].r;
    lopt = (integer) max(d__1,d__2);
/* Computing MAX */
    d__1 = (doublereal) lropt;
    lropt = (integer) max(d__1,rwork[1]);
/* Computing MAX */
    d__1 = (doublereal) liopt, d__2 = (doublereal) iwork[1];
    liopt = (integer) max(d__1,d__2);

    if (wantz && *info == 0) {

/*        Backtransform eigenvectors to the original problem. */

	if (*itype == 1 || *itype == 2) {

/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
/*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */

	    if (upper) {
		*(unsigned char *)trans = 'N';
	    } else {
		*(unsigned char *)trans = 'C';
	    }

	    ztrsm_("Left", uplo, trans, "Non-unit", n, n, &c_b1, &b[b_offset], 
		     ldb, &a[a_offset], lda);

	} else if (*itype == 3) {

/*           For B*A*x=(lambda)*x; */
/*           backtransform eigenvectors: x = L*y or U'*y */

	    if (upper) {
		*(unsigned char *)trans = 'C';
	    } else {
		*(unsigned char *)trans = 'N';
	    }

	    ztrmm_("Left", uplo, trans, "Non-unit", n, n, &c_b1, &b[b_offset], 
		     ldb, &a[a_offset], lda);
	}
    }

    work[1].r = (doublereal) lopt, work[1].i = 0.;
    rwork[1] = (doublereal) lropt;
    iwork[1] = liopt;

    return 0;

/*     End of ZHEGVD */

} /* zhegvd_ */
Exemple #3
0
int main(void)
{
    /* Local scalars */
    lapack_int itype, itype_i;
    char uplo, uplo_i;
    lapack_int n, n_i;
    lapack_int lda, lda_i;
    lapack_int lda_r;
    lapack_int ldb, ldb_i;
    lapack_int ldb_r;
    lapack_int info, info_i;
    lapack_int i;
    int failed;

    /* Local arrays */
    lapack_complex_double *a = NULL, *a_i = NULL;
    lapack_complex_double *b = NULL, *b_i = NULL;
    lapack_complex_double *a_save = NULL;
    lapack_complex_double *a_r = NULL;
    lapack_complex_double *b_r = NULL;

    /* Iniitialize the scalar parameters */
    init_scalars_zhegst( &itype, &uplo, &n, &lda, &ldb );
    lda_r = n+2;
    ldb_r = n+2;
    itype_i = itype;
    uplo_i = uplo;
    n_i = n;
    lda_i = lda;
    ldb_i = ldb;

    /* Allocate memory for the LAPACK routine arrays */
    a = (lapack_complex_double *)
        LAPACKE_malloc( lda*n * sizeof(lapack_complex_double) );
    b = (lapack_complex_double *)
        LAPACKE_malloc( ldb*n * sizeof(lapack_complex_double) );

    /* Allocate memory for the C interface function arrays */
    a_i = (lapack_complex_double *)
        LAPACKE_malloc( lda*n * sizeof(lapack_complex_double) );
    b_i = (lapack_complex_double *)
        LAPACKE_malloc( ldb*n * sizeof(lapack_complex_double) );

    /* Allocate memory for the backup arrays */
    a_save = (lapack_complex_double *)
        LAPACKE_malloc( lda*n * sizeof(lapack_complex_double) );

    /* Allocate memory for the row-major arrays */
    a_r = (lapack_complex_double *)
        LAPACKE_malloc( n*(n+2) * sizeof(lapack_complex_double) );
    b_r = (lapack_complex_double *)
        LAPACKE_malloc( n*(n+2) * sizeof(lapack_complex_double) );

    /* Initialize input arrays */
    init_a( lda*n, a );
    init_b( ldb*n, b );

    /* Backup the ouptut arrays */
    for( i = 0; i < lda*n; i++ ) {
        a_save[i] = a[i];
    }

    /* Call the LAPACK routine */
    zhegst_( &itype, &uplo, &n, a, &lda, b, &ldb, &info );

    /* Initialize input data, call the column-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < lda*n; i++ ) {
        a_i[i] = a_save[i];
    }
    for( i = 0; i < ldb*n; i++ ) {
        b_i[i] = b[i];
    }
    info_i = LAPACKE_zhegst_work( LAPACK_COL_MAJOR, itype_i, uplo_i, n_i, a_i,
                                  lda_i, b_i, ldb_i );

    failed = compare_zhegst( a, a_i, info, info_i, lda, n );
    if( failed == 0 ) {
        printf( "PASSED: column-major middle-level interface to zhegst\n" );
    } else {
        printf( "FAILED: column-major middle-level interface to zhegst\n" );
    }

    /* Initialize input data, call the column-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < lda*n; i++ ) {
        a_i[i] = a_save[i];
    }
    for( i = 0; i < ldb*n; i++ ) {
        b_i[i] = b[i];
    }
    info_i = LAPACKE_zhegst( LAPACK_COL_MAJOR, itype_i, uplo_i, n_i, a_i, lda_i,
                             b_i, ldb_i );

    failed = compare_zhegst( a, a_i, info, info_i, lda, n );
    if( failed == 0 ) {
        printf( "PASSED: column-major high-level interface to zhegst\n" );
    } else {
        printf( "FAILED: column-major high-level interface to zhegst\n" );
    }

    /* Initialize input data, call the row-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < lda*n; i++ ) {
        a_i[i] = a_save[i];
    }
    for( i = 0; i < ldb*n; i++ ) {
        b_i[i] = b[i];
    }

    LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, a_i, lda, a_r, n+2 );
    LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, b_i, ldb, b_r, n+2 );
    info_i = LAPACKE_zhegst_work( LAPACK_ROW_MAJOR, itype_i, uplo_i, n_i, a_r,
                                  lda_r, b_r, ldb_r );

    LAPACKE_zge_trans( LAPACK_ROW_MAJOR, n, n, a_r, n+2, a_i, lda );

    failed = compare_zhegst( a, a_i, info, info_i, lda, n );
    if( failed == 0 ) {
        printf( "PASSED: row-major middle-level interface to zhegst\n" );
    } else {
        printf( "FAILED: row-major middle-level interface to zhegst\n" );
    }

    /* Initialize input data, call the row-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < lda*n; i++ ) {
        a_i[i] = a_save[i];
    }
    for( i = 0; i < ldb*n; i++ ) {
        b_i[i] = b[i];
    }

    /* Init row_major arrays */
    LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, a_i, lda, a_r, n+2 );
    LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, b_i, ldb, b_r, n+2 );
    info_i = LAPACKE_zhegst( LAPACK_ROW_MAJOR, itype_i, uplo_i, n_i, a_r, lda_r,
                             b_r, ldb_r );

    LAPACKE_zge_trans( LAPACK_ROW_MAJOR, n, n, a_r, n+2, a_i, lda );

    failed = compare_zhegst( a, a_i, info, info_i, lda, n );
    if( failed == 0 ) {
        printf( "PASSED: row-major high-level interface to zhegst\n" );
    } else {
        printf( "FAILED: row-major high-level interface to zhegst\n" );
    }

    /* Release memory */
    if( a != NULL ) {
        LAPACKE_free( a );
    }
    if( a_i != NULL ) {
        LAPACKE_free( a_i );
    }
    if( a_r != NULL ) {
        LAPACKE_free( a_r );
    }
    if( a_save != NULL ) {
        LAPACKE_free( a_save );
    }
    if( b != NULL ) {
        LAPACKE_free( b );
    }
    if( b_i != NULL ) {
        LAPACKE_free( b_i );
    }
    if( b_r != NULL ) {
        LAPACKE_free( b_r );
    }

    return 0;
}
/* Subroutine */ int zhegv_(integer *itype, char *jobz, char *uplo, integer *
	n, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, 
	doublereal *w, doublecomplex *work, integer *lwork, doublereal *rwork, 
	 integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;

    /* Local variables */
    integer nb, neig;
    char trans[1];
    logical upper, wantz;
    integer lwkopt;
    logical lquery;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  ZHEGV computes all the eigenvalues, and optionally, the eigenvectors */
/*  of a complex generalized Hermitian-definite eigenproblem, of the form */
/*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x. */
/*  Here A and B are assumed to be Hermitian and B is also */
/*  positive definite. */

/*  Arguments */
/*  ========= */

/*  ITYPE   (input) INTEGER */
/*          Specifies the problem type to be solved: */
/*          = 1:  A*x = (lambda)*B*x */
/*          = 2:  A*B*x = (lambda)*x */
/*          = 3:  B*A*x = (lambda)*x */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA, N) */
/*          On entry, the Hermitian matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */

/*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
/*          matrix Z of eigenvectors.  The eigenvectors are normalized */
/*          as follows: */
/*          if ITYPE = 1 or 2, Z**H*B*Z = I; */
/*          if ITYPE = 3, Z**H*inv(B)*Z = I. */
/*          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */
/*          or the lower triangle (if UPLO='L') of A, including the */
/*          diagonal, is destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB, N) */
/*          On entry, the Hermitian positive definite matrix B. */
/*          If UPLO = 'U', the leading N-by-N upper triangular part of B */
/*          contains the upper triangular part of the matrix B. */
/*          If UPLO = 'L', the leading N-by-N lower triangular part of B */
/*          contains the lower triangular part of the matrix B. */

/*          On exit, if INFO <= N, the part of B containing the matrix is */
/*          overwritten by the triangular factor U or L from the Cholesky */
/*          factorization B = U**H*U or B = L*L**H. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK >= max(1,2*N-1). */
/*          For optimal efficiency, LWORK >= (NB+1)*N, */
/*          where NB is the blocksize for ZHETRD returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2)) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  ZPOTRF or ZHEEV returned an error code: */
/*             <= N:  if INFO = i, ZHEEV failed to converge; */
/*                    i off-diagonal elements of an intermediate */
/*                    tridiagonal form did not converge to zero; */
/*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading */
/*                    minor of order i of B is not positive definite. */
/*                    The factorization of B could not be completed and */
/*                    no eigenvalues or eigenvectors were computed. */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --w;
    --work;
    --rwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    lquery = *lwork == -1;

    *info = 0;
    if (*itype < 1 || *itype > 3) {
	*info = -1;
    } else if (! (wantz || lsame_(jobz, "N"))) {
	*info = -2;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    }

    if (*info == 0) {
	nb = ilaenv_(&c__1, "ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1);
/* Computing MAX */
	i__1 = 1, i__2 = (nb + 1) * *n;
	lwkopt = max(i__1,i__2);
	work[1].r = (doublereal) lwkopt, work[1].i = 0.;

/* Computing MAX */
	i__1 = 1, i__2 = (*n << 1) - 1;
	if (*lwork < max(i__1,i__2) && ! lquery) {
	    *info = -11;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZHEGV ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a Cholesky factorization of B. */

    zpotrf_(uplo, n, &b[b_offset], ldb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem and solve. */

    zhegst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
    zheev_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, &rwork[1]
, info);

    if (wantz) {

/*        Backtransform eigenvectors to the original problem. */

	neig = *n;
	if (*info > 0) {
	    neig = *info - 1;
	}
	if (*itype == 1 || *itype == 2) {

/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
/*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */

	    if (upper) {
		*(unsigned char *)trans = 'N';
	    } else {
		*(unsigned char *)trans = 'C';
	    }

	    ztrsm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b1, &b[
		    b_offset], ldb, &a[a_offset], lda);

	} else if (*itype == 3) {

/*           For B*A*x=(lambda)*x; */
/*           backtransform eigenvectors: x = L*y or U'*y */

	    if (upper) {
		*(unsigned char *)trans = 'C';
	    } else {
		*(unsigned char *)trans = 'N';
	    }

	    ztrmm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b1, &b[
		    b_offset], ldb, &a[a_offset], lda);
	}
    }

    work[1].r = (doublereal) lwkopt, work[1].i = 0.;

    return 0;

/*     End of ZHEGV */

} /* zhegv_ */
/* Subroutine */ int zhegv_(integer *itype, char *jobz, char *uplo, integer *
	n, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, 
	doublereal *w, doublecomplex *work, integer *lwork, doublereal *rwork,
	 integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    ZHEGV computes all the eigenvalues, and optionally, the eigenvectors   
    of a complex generalized Hermitian-definite eigenproblem, of the form   
    A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.   
    Here A and B are assumed to be Hermitian and B is also   
    positive definite.   

    Arguments   
    =========   

    ITYPE   (input) INTEGER   
            Specifies the problem type to be solved:   
            = 1:  A*x = (lambda)*B*x   
            = 2:  A*B*x = (lambda)*x   
            = 3:  B*A*x = (lambda)*x   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangles of A and B are stored;   
            = 'L':  Lower triangles of A and B are stored.   

    N       (input) INTEGER   
            The order of the matrices A and B.  N >= 0.   

    A       (input/output) COMPLEX*16 array, dimension (LDA, N)   
            On entry, the Hermitian matrix A.  If UPLO = 'U', the   
            leading N-by-N upper triangular part of A contains the   
            upper triangular part of the matrix A.  If UPLO = 'L',   
            the leading N-by-N lower triangular part of A contains   
            the lower triangular part of the matrix A.   

            On exit, if JOBZ = 'V', then if INFO = 0, A contains the   
            matrix Z of eigenvectors.  The eigenvectors are normalized   
            as follows:   
            if ITYPE = 1 or 2, Z**H*B*Z = I;   
            if ITYPE = 3, Z**H*inv(B)*Z = I.   
            If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')   
            or the lower triangle (if UPLO='L') of A, including the   
            diagonal, is destroyed.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    B       (input/output) COMPLEX*16 array, dimension (LDB, N)   
            On entry, the Hermitian positive definite matrix B.   
            If UPLO = 'U', the leading N-by-N upper triangular part of B   
            contains the upper triangular part of the matrix B.   
            If UPLO = 'L', the leading N-by-N lower triangular part of B   
            contains the lower triangular part of the matrix B.   

            On exit, if INFO <= N, the part of B containing the matrix is   
            overwritten by the triangular factor U or L from the Cholesky   
            factorization B = U**H*U or B = L*L**H.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    W       (output) DOUBLE PRECISION array, dimension (N)   
            If INFO = 0, the eigenvalues in ascending order.   

    WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The length of the array WORK.  LWORK >= max(1,2*N-1).   
            For optimal efficiency, LWORK >= (NB+1)*N,   
            where NB is the blocksize for ZHETRD returned by ILAENV.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  ZPOTRF or ZHEEV returned an error code:   
               <= N:  if INFO = i, ZHEEV failed to converge;   
                      i off-diagonal elements of an intermediate   
                      tridiagonal form did not converge to zero;   
               > N:   if INFO = N + i, for 1 <= i <= N, then the leading   
                      minor of order i of B is not positive definite.   
                      The factorization of B could not be completed and   
                      no eigenvalues or eigenvectors were computed.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static doublecomplex c_b1 = {1.,0.};
    static integer c__1 = 1;
    static integer c_n1 = -1;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
    /* Local variables */
    static integer neig;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int zheev_(char *, char *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublecomplex *, 
	    integer *, doublereal *, integer *);
    static char trans[1];
    static logical upper, wantz;
    extern /* Subroutine */ int ztrmm_(char *, char *, char *, char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
	     doublecomplex *, integer *), 
	    ztrsm_(char *, char *, char *, char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *);
    static integer nb;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int zhegst_(integer *, char *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *);
    static integer lwkopt;
    static logical lquery;
    extern /* Subroutine */ int zpotrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *);


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --w;
    --work;
    --rwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    lquery = *lwork == -1;

    *info = 0;
    if (*itype < 1 || *itype > 3) {
	*info = -1;
    } else if (! (wantz || lsame_(jobz, "N"))) {
	*info = -2;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = 1, i__2 = (*n << 1) - 1;
	if (*lwork < max(i__1,i__2) && ! lquery) {
	    *info = -11;
	}
    }

    if (*info == 0) {
	nb = ilaenv_(&c__1, "ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
		 (ftnlen)1);
	lwkopt = (nb + 1) * *n;
	work[1].r = (doublereal) lwkopt, work[1].i = 0.;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZHEGV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a Cholesky factorization of B. */

    zpotrf_(uplo, n, &b[b_offset], ldb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem and solve. */

    zhegst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
    zheev_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, &rwork[1]
	    , info);

    if (wantz) {

/*        Backtransform eigenvectors to the original problem. */

	neig = *n;
	if (*info > 0) {
	    neig = *info - 1;
	}
	if (*itype == 1 || *itype == 2) {

/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;   
             backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */

	    if (upper) {
		*(unsigned char *)trans = 'N';
	    } else {
		*(unsigned char *)trans = 'C';
	    }

	    ztrsm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b1, &b[
		    b_offset], ldb, &a[a_offset], lda);

	} else if (*itype == 3) {

/*           For B*A*x=(lambda)*x;   
             backtransform eigenvectors: x = L*y or U'*y */

	    if (upper) {
		*(unsigned char *)trans = 'C';
	    } else {
		*(unsigned char *)trans = 'N';
	    }

	    ztrmm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b1, &b[
		    b_offset], ldb, &a[a_offset], lda);
	}
    }

    work[1].r = (doublereal) lwkopt, work[1].i = 0.;

    return 0;

/*     End of ZHEGV */

} /* zhegv_ */