Exemple #1
0
void
vdev_queue_io_done(zio_t *zio)
{
	vdev_queue_t *vq = &zio->io_vd->vdev_queue;

	if (zio_injection_enabled)
		delay(SEC_TO_TICK(zio_handle_io_delay(zio)));

	mutex_enter(&vq->vq_lock);

	vdev_queue_pending_remove(vq, zio);

	vq->vq_io_complete_ts = gethrtime();

	for (int i = 0; i < zfs_vdev_ramp_rate; i++) {
		zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
		if (nio == NULL)
			break;
		mutex_exit(&vq->vq_lock);
		if (nio->io_done == vdev_queue_agg_io_done) {
			zio_nowait(nio);
		} else {
			zio_vdev_io_reissue(nio);
			zio_execute(nio);
		}
		mutex_enter(&vq->vq_lock);
	}

	mutex_exit(&vq->vq_lock);
}
Exemple #2
0
void
vdev_queue_io_done(zio_t *zio)
{
	vdev_queue_t *vq = &zio->io_vd->vdev_queue;

	mutex_enter(&vq->vq_lock);

	avl_remove(&vq->vq_pending_tree, zio);

	for (int i = 0; i < zfs_vdev_ramp_rate; i++) {
		zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
		if (nio == NULL)
			break;
		mutex_exit(&vq->vq_lock);
		if (nio->io_done == vdev_queue_agg_io_done) {
			zio_nowait(nio);
		} else {
			zio_vdev_io_reissue(nio);
			zio_execute(nio);
		}
		mutex_enter(&vq->vq_lock);
	}

	mutex_exit(&vq->vq_lock);
}
Exemple #3
0
static void
trim_map_vdev_commit_done(spa_t *spa, vdev_t *vd)
{
	trim_map_t *tm = vd->vdev_trimmap;
	trim_seg_t *ts;
	list_t pending_writes;
	zio_t *zio;
	uint64_t start, size;
	void *cookie;

	ASSERT(vd->vdev_ops->vdev_op_leaf);

	if (tm == NULL)
		return;

	mutex_enter(&tm->tm_lock);
	if (!avl_is_empty(&tm->tm_inflight_frees)) {
		cookie = NULL;
		while ((ts = avl_destroy_nodes(&tm->tm_inflight_frees,
		    &cookie)) != NULL) {
			kmem_free(ts, sizeof (*ts));
		}
	}
	list_create(&pending_writes, sizeof (zio_t), offsetof(zio_t,
	    io_trim_link));
	list_move_tail(&pending_writes, &tm->tm_pending_writes);
	mutex_exit(&tm->tm_lock);

	while ((zio = list_remove_head(&pending_writes)) != NULL) {
		zio_vdev_io_reissue(zio);
		zio_execute(zio);
	}
	list_destroy(&pending_writes);
}
static void
vdev_queue_agg_io_done(zio_t *aio)
{
	zio_t *dio;
	uint64_t offset = 0;

	while ((dio = aio->io_delegate_list) != NULL) {
		if (aio->io_type == ZIO_TYPE_READ)
			bcopy((char *)aio->io_data + offset, dio->io_data,
			    dio->io_size);
		offset += dio->io_size;
		aio->io_delegate_list = dio->io_delegate_next;
		dio->io_delegate_next = NULL;
		dio->io_error = aio->io_error;
		zio_execute(dio);
	}
	ASSERT3U(offset, ==, aio->io_size);

	zio_buf_free(aio->io_data, aio->io_size);
}
/*
 * Fill a previously allocated cache entry with data.
 */
static void
vdev_cache_fill(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;
	vdev_cache_t *vc = &vd->vdev_cache;
	vdev_cache_entry_t *ve = zio->io_private;
	zio_t *dio;

	ASSERT(zio->io_size == VCBS);

	/*
	 * Add data to the cache.
	 */
	mutex_enter(&vc->vc_lock);

	ASSERT(ve->ve_fill_io == zio);
	ASSERT(ve->ve_offset == zio->io_offset);
	ASSERT(ve->ve_data == zio->io_data);

	ve->ve_fill_io = NULL;

	/*
	 * Even if this cache line was invalidated by a missed write update,
	 * any reads that were queued up before the missed update are still
	 * valid, so we can satisfy them from this line before we evict it.
	 */
	for (dio = zio->io_delegate_list; dio; dio = dio->io_delegate_next)
		vdev_cache_hit(vc, ve, dio);

	if (zio->io_error || ve->ve_missed_update)
		vdev_cache_evict(vc, ve);

	mutex_exit(&vc->vc_lock);

	while ((dio = zio->io_delegate_list) != NULL) {
		zio->io_delegate_list = dio->io_delegate_next;
		dio->io_delegate_next = NULL;
		dio->io_error = zio->io_error;
		zio_execute(dio);
	}
}
Exemple #6
0
static void
vdev_disk_io_start(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;
	vdev_disk_t *dvd = vd->vdev_tsd;
	struct buf *bp;
	vfs_context_t context;
	int flags, error = 0;

	/*
	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
	 * Nothing to be done here but return failure.
	 */
	if (dvd == NULL || (dvd->vd_offline) || dvd->vd_devvp == NULL) {
		zio->io_error = ENXIO;
		zio_interrupt(zio);
		return;
	}

	switch (zio->io_type) {
		case ZIO_TYPE_IOCTL:

			if (!vdev_readable(vd)) {
				zio->io_error = SET_ERROR(ENXIO);
				zio_interrupt(zio);
				return;
			}

			switch (zio->io_cmd) {

				case DKIOCFLUSHWRITECACHE:

					if (zfs_nocacheflush)
						break;

					if (vd->vdev_nowritecache) {
						zio->io_error = SET_ERROR(ENOTSUP);
						break;
					}

					context = vfs_context_create(spl_vfs_context_kernel());
					error = VNOP_IOCTL(dvd->vd_devvp, DKIOCSYNCHRONIZECACHE,
									   NULL, FWRITE, context);
					(void) vfs_context_rele(context);

					if (error == 0)
						vdev_disk_ioctl_done(zio, error);
					else
						error = ENOTSUP;

					if (error == 0) {
						/*
						 * The ioctl will be done asychronously,
						 * and will call vdev_disk_ioctl_done()
						 * upon completion.
						 */
						return;
					} else if (error == ENOTSUP || error == ENOTTY) {
						/*
						 * If we get ENOTSUP or ENOTTY, we know that
						 * no future attempts will ever succeed.
						 * In this case we set a persistent bit so
						 * that we don't bother with the ioctl in the
						 * future.
						 */
						vd->vdev_nowritecache = B_TRUE;
					}
					zio->io_error = error;

					break;

				default:
					zio->io_error = SET_ERROR(ENOTSUP);
			} /* io_cmd */

			zio_execute(zio);
			return;

	case ZIO_TYPE_WRITE:
		if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
			flags = B_WRITE;
		else
			flags = B_WRITE | B_ASYNC;
		break;

	case ZIO_TYPE_READ:
		if (zio->io_priority == ZIO_PRIORITY_SYNC_READ)
			flags = B_READ;
		else
			flags = B_READ | B_ASYNC;
		break;

		default:
			zio->io_error = SET_ERROR(ENOTSUP);
			zio_interrupt(zio);
			return;
	} /* io_type */

	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);

	/* Stop OSX from also caching our data */
	flags |= B_NOCACHE;

	if (zio->io_flags & ZIO_FLAG_FAILFAST)
		flags |= B_FAILFAST;

	zio->io_target_timestamp = zio_handle_io_delay(zio);

	bp = buf_alloc(dvd->vd_devvp);

	ASSERT(bp != NULL);
	ASSERT(zio->io_data != NULL);
	ASSERT(zio->io_size != 0);

	buf_setflags(bp, flags);
	buf_setcount(bp, zio->io_size);
	buf_setdataptr(bp, (uintptr_t)zio->io_data);

	/*
	 * Map offset to blcknumber, based on physical block number.
	 * (512, 4096, ..). If we fail to map, default back to
	 * standard 512. lbtodb() is fixed at 512.
	 */
	buf_setblkno(bp, zio->io_offset >> dvd->vd_ashift);
	buf_setlblkno(bp, zio->io_offset >> dvd->vd_ashift);

	buf_setsize(bp, zio->io_size);
	if (buf_setcallback(bp, vdev_disk_io_intr, zio) != 0)
		panic("vdev_disk_io_start: buf_setcallback failed\n");

	if (zio->io_type == ZIO_TYPE_WRITE) {
		vnode_startwrite(dvd->vd_devvp);
	}
	error = VNOP_STRATEGY(bp);
	ASSERT(error == 0);

	if (error) {
		zio->io_error = error;
		zio_interrupt(zio);
		return;
	}
}
Exemple #7
0
static zio_t *
vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
{
	zio_t *fio, *lio, *aio, *dio, *nio, *mio;
	avl_tree_t *t;
	int flags;
	uint64_t maxspan = zfs_vdev_aggregation_limit;
	uint64_t maxgap;
	int stretch;

again:
	ASSERT(MUTEX_HELD(&vq->vq_lock));

	if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
	    avl_numnodes(&vq->vq_deadline_tree) == 0)
		return (NULL);

	fio = lio = avl_first(&vq->vq_deadline_tree);

	t = fio->io_vdev_tree;
	flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
	maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;

	if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
		/*
		 * We can aggregate I/Os that are sufficiently adjacent and of
		 * the same flavor, as expressed by the AGG_INHERIT flags.
		 * The latter requirement is necessary so that certain
		 * attributes of the I/O, such as whether it's a normal I/O
		 * or a scrub/resilver, can be preserved in the aggregate.
		 * We can include optional I/Os, but don't allow them
		 * to begin a range as they add no benefit in that situation.
		 */

		/*
		 * We keep track of the last non-optional I/O.
		 */
		mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;

		/*
		 * Walk backwards through sufficiently contiguous I/Os
		 * recording the last non-option I/O.
		 */
		while ((dio = AVL_PREV(t, fio)) != NULL &&
		    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
		    IO_SPAN(dio, lio) <= maxspan &&
		    IO_GAP(dio, fio) <= maxgap) {
			fio = dio;
			if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
				mio = fio;
		}

		/*
		 * Skip any initial optional I/Os.
		 */
		while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
			fio = AVL_NEXT(t, fio);
			ASSERT(fio != NULL);
		}

		/*
		 * Walk forward through sufficiently contiguous I/Os.
		 */
		while ((dio = AVL_NEXT(t, lio)) != NULL &&
		    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
		    IO_SPAN(fio, dio) <= maxspan &&
		    IO_GAP(lio, dio) <= maxgap) {
			lio = dio;
			if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
				mio = lio;
		}

		/*
		 * Now that we've established the range of the I/O aggregation
		 * we must decide what to do with trailing optional I/Os.
		 * For reads, there's nothing to do. While we are unable to
		 * aggregate further, it's possible that a trailing optional
		 * I/O would allow the underlying device to aggregate with
		 * subsequent I/Os. We must therefore determine if the next
		 * non-optional I/O is close enough to make aggregation
		 * worthwhile.
		 */
		stretch = B_FALSE;
		if (t != &vq->vq_read_tree && mio != NULL) {
			nio = lio;
			while ((dio = AVL_NEXT(t, nio)) != NULL &&
			    IO_GAP(nio, dio) == 0 &&
			    IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
				nio = dio;
				if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
					stretch = B_TRUE;
					break;
				}
			}
		}

		if (stretch) {
			/* This may be a no-op. */
			VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
			dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
		} else {
			while (lio != mio && lio != fio) {
				ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
				lio = AVL_PREV(t, lio);
				ASSERT(lio != NULL);
			}
		}
	}

	if (fio != lio) {
		uint64_t size = IO_SPAN(fio, lio);
		ASSERT(size <= zfs_vdev_aggregation_limit);

		aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
		    zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG,
		    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
		    vdev_queue_agg_io_done, NULL);
		aio->io_timestamp = fio->io_timestamp;

		nio = fio;
		do {
			dio = nio;
			nio = AVL_NEXT(t, dio);
			ASSERT(dio->io_type == aio->io_type);
			ASSERT(dio->io_vdev_tree == t);

			if (dio->io_flags & ZIO_FLAG_NODATA) {
				ASSERT(dio->io_type == ZIO_TYPE_WRITE);
				bzero((char *)aio->io_data + (dio->io_offset -
				    aio->io_offset), dio->io_size);
			} else if (dio->io_type == ZIO_TYPE_WRITE) {
				bcopy(dio->io_data, (char *)aio->io_data +
				    (dio->io_offset - aio->io_offset),
				    dio->io_size);
			}

			zio_add_child(dio, aio);
			vdev_queue_io_remove(vq, dio);
			zio_vdev_io_bypass(dio);
			zio_execute(dio);
		} while (dio != lio);

		vdev_queue_pending_add(vq, aio);

		return (aio);
	}

	ASSERT(fio->io_vdev_tree == t);
	vdev_queue_io_remove(vq, fio);

	/*
	 * If the I/O is or was optional and therefore has no data, we need to
	 * simply discard it. We need to drop the vdev queue's lock to avoid a
	 * deadlock that we could encounter since this I/O will complete
	 * immediately.
	 */
	if (fio->io_flags & ZIO_FLAG_NODATA) {
		mutex_exit(&vq->vq_lock);
		zio_vdev_io_bypass(fio);
		zio_execute(fio);
		mutex_enter(&vq->vq_lock);
		goto again;
	}

	vdev_queue_pending_add(vq, fio);

	return (fio);
}
Exemple #8
0
static zio_t *
vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
{
	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
	uint64_t maxgap = 0;
	uint64_t size;
	boolean_t stretch;
	avl_tree_t *t;
	enum zio_flag flags;

	ASSERT(MUTEX_HELD(&vq->vq_lock));

	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
		return (NULL);

	/*
	 * The synchronous i/o queues are not sorted by LBA, so we can't
	 * find adjacent i/os.  These i/os tend to not be tightly clustered,
	 * or too large to aggregate, so this has little impact on performance.
	 */
	if (zio->io_priority == ZIO_PRIORITY_SYNC_READ ||
	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
		return (NULL);

	first = last = zio;

	if (zio->io_type == ZIO_TYPE_READ)
		maxgap = zfs_vdev_read_gap_limit;

	/*
	 * We can aggregate I/Os that are sufficiently adjacent and of
	 * the same flavor, as expressed by the AGG_INHERIT flags.
	 * The latter requirement is necessary so that certain
	 * attributes of the I/O, such as whether it's a normal I/O
	 * or a scrub/resilver, can be preserved in the aggregate.
	 * We can include optional I/Os, but don't allow them
	 * to begin a range as they add no benefit in that situation.
	 */

	/*
	 * We keep track of the last non-optional I/O.
	 */
	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;

	/*
	 * Walk backwards through sufficiently contiguous I/Os
	 * recording the last non-option I/O.
	 */
	flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
	t = &vq->vq_class[zio->io_priority].vqc_queued_tree;
	while ((dio = AVL_PREV(t, first)) != NULL &&
	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
	    IO_GAP(dio, first) <= maxgap) {
		first = dio;
		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
			mandatory = first;
	}

	/*
	 * Skip any initial optional I/Os.
	 */
	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
		first = AVL_NEXT(t, first);
		ASSERT(first != NULL);
	}

	/*
	 * Walk forward through sufficiently contiguous I/Os.
	 */
	while ((dio = AVL_NEXT(t, last)) != NULL &&
	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
	    IO_GAP(last, dio) <= maxgap) {
		last = dio;
		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
			mandatory = last;
	}

	/*
	 * Now that we've established the range of the I/O aggregation
	 * we must decide what to do with trailing optional I/Os.
	 * For reads, there's nothing to do. While we are unable to
	 * aggregate further, it's possible that a trailing optional
	 * I/O would allow the underlying device to aggregate with
	 * subsequent I/Os. We must therefore determine if the next
	 * non-optional I/O is close enough to make aggregation
	 * worthwhile.
	 */
	stretch = B_FALSE;
	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
		zio_t *nio = last;
		while ((dio = AVL_NEXT(t, nio)) != NULL &&
		    IO_GAP(nio, dio) == 0 &&
		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
			nio = dio;
			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
				stretch = B_TRUE;
				break;
			}
		}
	}

	if (stretch) {
		/* This may be a no-op. */
		dio = AVL_NEXT(t, last);
		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
	} else {
		while (last != mandatory && last != first) {
			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
			last = AVL_PREV(t, last);
			ASSERT(last != NULL);
		}
	}

	if (first == last)
		return (NULL);

	size = IO_SPAN(first, last);
	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);

	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
	    vdev_queue_agg_io_done, NULL);
	aio->io_timestamp = first->io_timestamp;

	nio = first;
	do {
		dio = nio;
		nio = AVL_NEXT(t, dio);
		ASSERT3U(dio->io_type, ==, aio->io_type);

		if (dio->io_flags & ZIO_FLAG_NODATA) {
			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
			bzero((char *)aio->io_data + (dio->io_offset -
			    aio->io_offset), dio->io_size);
		} else if (dio->io_type == ZIO_TYPE_WRITE) {
			bcopy(dio->io_data, (char *)aio->io_data +
			    (dio->io_offset - aio->io_offset),
			    dio->io_size);
		}

		zio_add_child(dio, aio);
		vdev_queue_io_remove(vq, dio);
		zio_vdev_io_bypass(dio);
		zio_execute(dio);
	} while (dio != last);
Exemple #9
0
static void
vdev_disk_io_start(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;
	vdev_disk_t *dvd;
	vdev_buf_t *vb;
	struct dk_callback *dkc;
	buf_t *bp;
	int error;

	rw_enter(&vd->vdev_tsd_lock, RW_READER);
	dvd = vd->vdev_tsd;
	/*
	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
	 * Nothing to be done here but return failure.
	 */
	if (dvd == NULL || dvd->vd_lh == NULL) {
		zio->io_error = ENXIO;
		rw_exit(&vd->vdev_tsd_lock);
		zio_interrupt(zio);
		return;
	}

	if (zio->io_type == ZIO_TYPE_IOCTL) {
		/* XXPOLICY */
		if (!vdev_readable(vd)) {
			zio->io_error = SET_ERROR(ENXIO);
			rw_exit(&vd->vdev_tsd_lock);
			zio_interrupt(zio);
			return;
		}

		switch (zio->io_cmd) {

		case DKIOCFLUSHWRITECACHE:

			if (zfs_nocacheflush)
				break;

			if (vd->vdev_nowritecache) {
				zio->io_error = SET_ERROR(ENOTSUP);
				break;
			}

			zio->io_vsd = dkc = kmem_alloc(sizeof (*dkc), KM_SLEEP);
			zio->io_vsd_ops = &vdev_disk_vsd_ops;

			dkc->dkc_callback = vdev_disk_ioctl_done;
			dkc->dkc_flag = FLUSH_VOLATILE;
			dkc->dkc_cookie = zio;

			error = ldi_ioctl(dvd->vd_lh, zio->io_cmd,
			    (uintptr_t)dkc, FKIOCTL, kcred, NULL);

			if (error == 0) {
				/*
				 * The ioctl will be done asychronously,
				 * and will call vdev_disk_ioctl_done()
				 * upon completion.
				 */
				rw_exit(&vd->vdev_tsd_lock);
				return;
			}

			if (error == ENOTSUP || error == ENOTTY) {
				/*
				 * If we get ENOTSUP or ENOTTY, we know that
				 * no future attempts will ever succeed.
				 * In this case we set a persistent bit so
				 * that we don't bother with the ioctl in the
				 * future.
				 */
				vd->vdev_nowritecache = B_TRUE;
			}
			zio->io_error = error;

			break;

		case DKIOCFREE:
			/*
			 * We perform device support checks here instead of
			 * in zio_trim(), as zio_trim() might be invoked on
			 * top of a top-level vdev, whereas vdev_disk_io_start
			 * is guaranteed to be operating a leaf vdev.
			 */
			if (vd->vdev_notrim &&
			    spa_get_force_trim(vd->vdev_spa) !=
			    SPA_FORCE_TRIM_ON) {
				zio->io_error = SET_ERROR(ENOTSUP);
				break;
			}

			/*
			 * zio->io_private contains a dkioc_free_list_t
			 * specifying which offsets are to be freed
			 */
			ASSERT(zio->io_private != NULL);
			error = ldi_ioctl(dvd->vd_lh, zio->io_cmd,
			    (uintptr_t)zio->io_private, FKIOCTL, kcred, NULL);

			if (error == ENOTSUP || error == ENOTTY)
				vd->vdev_notrim = B_TRUE;
			zio->io_error = error;

			break;

		default:
			zio->io_error = SET_ERROR(ENOTSUP);
		}

		rw_exit(&vd->vdev_tsd_lock);
		zio_execute(zio);
		return;
	}

	vb = kmem_alloc(sizeof (vdev_buf_t), KM_SLEEP);

	vb->vb_io = zio;
	bp = &vb->vb_buf;

	bioinit(bp);
	bp->b_flags = B_BUSY | B_NOCACHE |
	    (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE);
	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
		bp->b_flags |= B_FAILFAST;
	bp->b_bcount = zio->io_size;
	bp->b_un.b_addr = zio->io_data;
	bp->b_lblkno = lbtodb(zio->io_offset);
	bp->b_bufsize = zio->io_size;
	bp->b_iodone = (int (*)())vdev_disk_io_intr;

	/* ldi_strategy() will return non-zero only on programming errors */
	VERIFY(ldi_strategy(dvd->vd_lh, bp) == 0);
	rw_exit(&vd->vdev_tsd_lock);
}
Exemple #10
0
static zio_t *
vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
{
	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
	uint64_t maxgap = 0;
	uint64_t size;
	boolean_t stretch = B_FALSE;
	avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
	enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;

	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
		return (NULL);

	/*
	 * Prevent users from setting the zfs_vdev_aggregation_limit
	 * tuning larger than SPA_MAXBLOCKSIZE.
	 */
	zfs_vdev_aggregation_limit =
	    MIN(zfs_vdev_aggregation_limit, SPA_MAXBLOCKSIZE);

	first = last = zio;

	if (zio->io_type == ZIO_TYPE_READ)
		maxgap = zfs_vdev_read_gap_limit;

	/*
	 * We can aggregate I/Os that are sufficiently adjacent and of
	 * the same flavor, as expressed by the AGG_INHERIT flags.
	 * The latter requirement is necessary so that certain
	 * attributes of the I/O, such as whether it's a normal I/O
	 * or a scrub/resilver, can be preserved in the aggregate.
	 * We can include optional I/Os, but don't allow them
	 * to begin a range as they add no benefit in that situation.
	 */

	/*
	 * We keep track of the last non-optional I/O.
	 */
	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;

	/*
	 * Walk backwards through sufficiently contiguous I/Os
	 * recording the last non-optional I/O.
	 */
	while ((dio = AVL_PREV(t, first)) != NULL &&
	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
	    IO_GAP(dio, first) <= maxgap &&
	    dio->io_type == zio->io_type) {
		first = dio;
		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
			mandatory = first;
	}

	/*
	 * Skip any initial optional I/Os.
	 */
	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
		first = AVL_NEXT(t, first);
		ASSERT(first != NULL);
	}


	/*
	 * Walk forward through sufficiently contiguous I/Os.
	 * The aggregation limit does not apply to optional i/os, so that
	 * we can issue contiguous writes even if they are larger than the
	 * aggregation limit.
	 */
	while ((dio = AVL_NEXT(t, last)) != NULL &&
	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
	    (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit ||
	    (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
	    IO_GAP(last, dio) <= maxgap &&
	    dio->io_type == zio->io_type) {
		last = dio;
		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
			mandatory = last;
	}

	/*
	 * Now that we've established the range of the I/O aggregation
	 * we must decide what to do with trailing optional I/Os.
	 * For reads, there's nothing to do. While we are unable to
	 * aggregate further, it's possible that a trailing optional
	 * I/O would allow the underlying device to aggregate with
	 * subsequent I/Os. We must therefore determine if the next
	 * non-optional I/O is close enough to make aggregation
	 * worthwhile.
	 */
	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
		zio_t *nio = last;
		while ((dio = AVL_NEXT(t, nio)) != NULL &&
		    IO_GAP(nio, dio) == 0 &&
		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
			nio = dio;
			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
				stretch = B_TRUE;
				break;
			}
		}
	}

	if (stretch) {
		/*
		 * We are going to include an optional io in our aggregated
		 * span, thus closing the write gap.  Only mandatory i/os can
		 * start aggregated spans, so make sure that the next i/o
		 * after our span is mandatory.
		 */
		dio = AVL_NEXT(t, last);
		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
	} else {
		/* do not include the optional i/o */
		while (last != mandatory && last != first) {
			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
			last = AVL_PREV(t, last);
			ASSERT(last != NULL);
		}
	}

	if (first == last)
		return (NULL);

	size = IO_SPAN(first, last);
	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);

	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
	    abd_alloc_for_io(size, B_TRUE), size, first->io_type,
	    zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
	    vdev_queue_agg_io_done, NULL);
	aio->io_timestamp = first->io_timestamp;

	nio = first;
	do {
		dio = nio;
		nio = AVL_NEXT(t, dio);
		ASSERT3U(dio->io_type, ==, aio->io_type);

		if (dio->io_flags & ZIO_FLAG_NODATA) {
			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
			abd_zero_off(aio->io_abd,
			    dio->io_offset - aio->io_offset, dio->io_size);
		} else if (dio->io_type == ZIO_TYPE_WRITE) {
			abd_copy_off(aio->io_abd, dio->io_abd,
			    dio->io_offset - aio->io_offset, 0, dio->io_size);
		}

		zio_add_child(dio, aio);
		vdev_queue_io_remove(vq, dio);
		zio_vdev_io_bypass(dio);
		zio_execute(dio);
	} while (dio != last);
Exemple #11
0
/* ARGSUSED */
static void
vdev_missing_io_start(zio_t *zio)
{
	zio->io_error = SET_ERROR(ENOTSUP);
	zio_execute(zio);
}
/*
 * Read data from the cache.  Returns 0 on cache hit, errno on a miss.
 */
int
vdev_cache_read(zio_t *zio)
{
	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
	vdev_cache_entry_t *ve, ve_search;
	uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
	zio_t *fio;

	ASSERT(zio->io_type == ZIO_TYPE_READ);

	if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
		return (EINVAL);

	if (zio->io_size > zfs_vdev_cache_max)
		return (EOVERFLOW);

	/*
	 * If the I/O straddles two or more cache blocks, don't cache it.
	 */
	if (P2CROSS(zio->io_offset, zio->io_offset + zio->io_size - 1, VCBS))
		return (EXDEV);

	ASSERT(cache_phase + zio->io_size <= VCBS);

	mutex_enter(&vc->vc_lock);

	ve_search.ve_offset = cache_offset;
	ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);

	if (ve != NULL) {
		if (ve->ve_missed_update) {
			mutex_exit(&vc->vc_lock);
			return (ESTALE);
		}

		if ((fio = ve->ve_fill_io) != NULL) {
			zio->io_delegate_next = fio->io_delegate_list;
			fio->io_delegate_list = zio;
			zio_vdev_io_bypass(zio);
			mutex_exit(&vc->vc_lock);
			VDCSTAT_BUMP(vdc_stat_delegations);
			return (0);
		}

		vdev_cache_hit(vc, ve, zio);
		zio_vdev_io_bypass(zio);

		mutex_exit(&vc->vc_lock);
		zio_execute(zio);
		VDCSTAT_BUMP(vdc_stat_hits);
		return (0);
	}

	ve = vdev_cache_allocate(zio);

	if (ve == NULL) {
		mutex_exit(&vc->vc_lock);
		return (ENOMEM);
	}

	fio = zio_vdev_child_io(zio, NULL, zio->io_vd, cache_offset,
	    ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_CACHE_FILL,
	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE |
	    ZIO_FLAG_DONT_RETRY | ZIO_FLAG_NOBOOKMARK,
	    vdev_cache_fill, ve);

	ve->ve_fill_io = fio;
	fio->io_delegate_list = zio;
	zio_vdev_io_bypass(zio);

	mutex_exit(&vc->vc_lock);
	zio_nowait(fio);
	VDCSTAT_BUMP(vdc_stat_misses);

	return (0);
}
Exemple #13
0
static zio_t *
vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
{
	zio_t *fio, *lio, *aio, *dio, *nio;
	avl_tree_t *t;
	int flags;
	uint64_t maxspan = zfs_vdev_aggregation_limit;
	uint64_t maxgap;

	ASSERT(MUTEX_HELD(&vq->vq_lock));

	if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
	    avl_numnodes(&vq->vq_deadline_tree) == 0)
		return (NULL);

	fio = lio = avl_first(&vq->vq_deadline_tree);

	t = fio->io_vdev_tree;
	flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
	maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;

	if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
		/*
		 * We can aggregate I/Os that are adjacent and of the
		 * same flavor, as expressed by the AGG_INHERIT flags.
		 * The latter is necessary so that certain attributes
		 * of the I/O, such as whether it's a normal I/O or a
		 * scrub/resilver, can be preserved in the aggregate.
		 */
		while ((dio = AVL_PREV(t, fio)) != NULL &&
		    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
		    IO_SPAN(dio, lio) <= maxspan && IO_GAP(dio, fio) <= maxgap)
			fio = dio;

		while ((dio = AVL_NEXT(t, lio)) != NULL &&
		    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
		    IO_SPAN(fio, dio) <= maxspan && IO_GAP(lio, dio) <= maxgap)
			lio = dio;
	}

	if (fio != lio) {
		uint64_t size = IO_SPAN(fio, lio);
		ASSERT(size <= zfs_vdev_aggregation_limit);

		aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
		    zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_NOW,
		    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
		    vdev_queue_agg_io_done, NULL);

		nio = fio;
		do {
			dio = nio;
			nio = AVL_NEXT(t, dio);
			ASSERT(dio->io_type == aio->io_type);
			ASSERT(dio->io_vdev_tree == t);

			if (dio->io_type == ZIO_TYPE_WRITE)
				bcopy(dio->io_data, (char *)aio->io_data +
				    (dio->io_offset - aio->io_offset),
				    dio->io_size);

			zio_add_child(dio, aio);
			vdev_queue_io_remove(vq, dio);
			zio_vdev_io_bypass(dio);
			zio_execute(dio);
		} while (dio != lio);

		avl_add(&vq->vq_pending_tree, aio);

		return (aio);
	}

	ASSERT(fio->io_vdev_tree == t);
	vdev_queue_io_remove(vq, fio);

	avl_add(&vq->vq_pending_tree, fio);

	return (fio);
}