Exemple #1
0
int main(void)
{
    /* Local scalars */
    char side, side_i;
    char trans, trans_i;
    lapack_int m, m_i;
    lapack_int n, n_i;
    lapack_int ilo, ilo_i;
    lapack_int ihi, ihi_i;
    lapack_int lda, lda_i;
    lapack_int lda_r;
    lapack_int ldc, ldc_i;
    lapack_int ldc_r;
    lapack_int lwork, lwork_i;
    lapack_int info, info_i;
    /* Declare scalars */
    lapack_int r;
    lapack_int i;
    int failed;

    /* Local arrays */
    lapack_complex_double *a = NULL, *a_i = NULL;
    lapack_complex_double *tau = NULL, *tau_i = NULL;
    lapack_complex_double *c = NULL, *c_i = NULL;
    lapack_complex_double *work = NULL, *work_i = NULL;
    lapack_complex_double *c_save = NULL;
    lapack_complex_double *a_r = NULL;
    lapack_complex_double *c_r = NULL;

    /* Iniitialize the scalar parameters */
    init_scalars_zunmhr( &side, &trans, &m, &n, &ilo, &ihi, &lda, &ldc,
                         &lwork );
    r = LAPACKE_lsame( side, 'l' ) ? m : n;
    lda_r = r+2;
    ldc_r = n+2;
    side_i = side;
    trans_i = trans;
    m_i = m;
    n_i = n;
    ilo_i = ilo;
    ihi_i = ihi;
    lda_i = lda;
    ldc_i = ldc;
    lwork_i = lwork;

    /* Allocate memory for the LAPACK routine arrays */
    a = (lapack_complex_double *)
        LAPACKE_malloc( lda*m * sizeof(lapack_complex_double) );
    tau = (lapack_complex_double *)
        LAPACKE_malloc( (m-1) * sizeof(lapack_complex_double) );
    c = (lapack_complex_double *)
        LAPACKE_malloc( ldc*n * sizeof(lapack_complex_double) );
    work = (lapack_complex_double *)
        LAPACKE_malloc( lwork * sizeof(lapack_complex_double) );

    /* Allocate memory for the C interface function arrays */
    a_i = (lapack_complex_double *)
        LAPACKE_malloc( lda*m * sizeof(lapack_complex_double) );
    tau_i = (lapack_complex_double *)
        LAPACKE_malloc( (m-1) * sizeof(lapack_complex_double) );
    c_i = (lapack_complex_double *)
        LAPACKE_malloc( ldc*n * sizeof(lapack_complex_double) );
    work_i = (lapack_complex_double *)
        LAPACKE_malloc( lwork * sizeof(lapack_complex_double) );

    /* Allocate memory for the backup arrays */
    c_save = (lapack_complex_double *)
        LAPACKE_malloc( ldc*n * sizeof(lapack_complex_double) );

    /* Allocate memory for the row-major arrays */
    a_r = (lapack_complex_double *)
        LAPACKE_malloc( r*(r+2) * sizeof(lapack_complex_double) );
    c_r = (lapack_complex_double *)
        LAPACKE_malloc( m*(n+2) * sizeof(lapack_complex_double) );

    /* Initialize input arrays */
    init_a( lda*m, a );
    init_tau( (m-1), tau );
    init_c( ldc*n, c );
    init_work( lwork, work );

    /* Backup the ouptut arrays */
    for( i = 0; i < ldc*n; i++ ) {
        c_save[i] = c[i];
    }

    /* Call the LAPACK routine */
    zunmhr_( &side, &trans, &m, &n, &ilo, &ihi, a, &lda, tau, c, &ldc, work,
             &lwork, &info );

    /* Initialize input data, call the column-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < lda*m; i++ ) {
        a_i[i] = a[i];
    }
    for( i = 0; i < (m-1); i++ ) {
        tau_i[i] = tau[i];
    }
    for( i = 0; i < ldc*n; i++ ) {
        c_i[i] = c_save[i];
    }
    for( i = 0; i < lwork; i++ ) {
        work_i[i] = work[i];
    }
    info_i = LAPACKE_zunmhr_work( LAPACK_COL_MAJOR, side_i, trans_i, m_i, n_i,
                                  ilo_i, ihi_i, a_i, lda_i, tau_i, c_i, ldc_i,
                                  work_i, lwork_i );

    failed = compare_zunmhr( c, c_i, info, info_i, ldc, n );
    if( failed == 0 ) {
        printf( "PASSED: column-major middle-level interface to zunmhr\n" );
    } else {
        printf( "FAILED: column-major middle-level interface to zunmhr\n" );
    }

    /* Initialize input data, call the column-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < lda*m; i++ ) {
        a_i[i] = a[i];
    }
    for( i = 0; i < (m-1); i++ ) {
        tau_i[i] = tau[i];
    }
    for( i = 0; i < ldc*n; i++ ) {
        c_i[i] = c_save[i];
    }
    for( i = 0; i < lwork; i++ ) {
        work_i[i] = work[i];
    }
    info_i = LAPACKE_zunmhr( LAPACK_COL_MAJOR, side_i, trans_i, m_i, n_i, ilo_i,
                             ihi_i, a_i, lda_i, tau_i, c_i, ldc_i );

    failed = compare_zunmhr( c, c_i, info, info_i, ldc, n );
    if( failed == 0 ) {
        printf( "PASSED: column-major high-level interface to zunmhr\n" );
    } else {
        printf( "FAILED: column-major high-level interface to zunmhr\n" );
    }

    /* Initialize input data, call the row-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < lda*m; i++ ) {
        a_i[i] = a[i];
    }
    for( i = 0; i < (m-1); i++ ) {
        tau_i[i] = tau[i];
    }
    for( i = 0; i < ldc*n; i++ ) {
        c_i[i] = c_save[i];
    }
    for( i = 0; i < lwork; i++ ) {
        work_i[i] = work[i];
    }

    LAPACKE_zge_trans( LAPACK_COL_MAJOR, r, r, a_i, lda, a_r, r+2 );
    LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, c_i, ldc, c_r, n+2 );
    info_i = LAPACKE_zunmhr_work( LAPACK_ROW_MAJOR, side_i, trans_i, m_i, n_i,
                                  ilo_i, ihi_i, a_r, lda_r, tau_i, c_r, ldc_r,
                                  work_i, lwork_i );

    LAPACKE_zge_trans( LAPACK_ROW_MAJOR, m, n, c_r, n+2, c_i, ldc );

    failed = compare_zunmhr( c, c_i, info, info_i, ldc, n );
    if( failed == 0 ) {
        printf( "PASSED: row-major middle-level interface to zunmhr\n" );
    } else {
        printf( "FAILED: row-major middle-level interface to zunmhr\n" );
    }

    /* Initialize input data, call the row-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < lda*m; i++ ) {
        a_i[i] = a[i];
    }
    for( i = 0; i < (m-1); i++ ) {
        tau_i[i] = tau[i];
    }
    for( i = 0; i < ldc*n; i++ ) {
        c_i[i] = c_save[i];
    }
    for( i = 0; i < lwork; i++ ) {
        work_i[i] = work[i];
    }

    /* Init row_major arrays */
    LAPACKE_zge_trans( LAPACK_COL_MAJOR, r, r, a_i, lda, a_r, r+2 );
    LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, c_i, ldc, c_r, n+2 );
    info_i = LAPACKE_zunmhr( LAPACK_ROW_MAJOR, side_i, trans_i, m_i, n_i, ilo_i,
                             ihi_i, a_r, lda_r, tau_i, c_r, ldc_r );

    LAPACKE_zge_trans( LAPACK_ROW_MAJOR, m, n, c_r, n+2, c_i, ldc );

    failed = compare_zunmhr( c, c_i, info, info_i, ldc, n );
    if( failed == 0 ) {
        printf( "PASSED: row-major high-level interface to zunmhr\n" );
    } else {
        printf( "FAILED: row-major high-level interface to zunmhr\n" );
    }

    /* Release memory */
    if( a != NULL ) {
        LAPACKE_free( a );
    }
    if( a_i != NULL ) {
        LAPACKE_free( a_i );
    }
    if( a_r != NULL ) {
        LAPACKE_free( a_r );
    }
    if( tau != NULL ) {
        LAPACKE_free( tau );
    }
    if( tau_i != NULL ) {
        LAPACKE_free( tau_i );
    }
    if( c != NULL ) {
        LAPACKE_free( c );
    }
    if( c_i != NULL ) {
        LAPACKE_free( c_i );
    }
    if( c_r != NULL ) {
        LAPACKE_free( c_r );
    }
    if( c_save != NULL ) {
        LAPACKE_free( c_save );
    }
    if( work != NULL ) {
        LAPACKE_free( work );
    }
    if( work_i != NULL ) {
        LAPACKE_free( work_i );
    }

    return 0;
}
/* Subroutine */ int zerrhs_(char *path, integer *nunit)
{
    /* Format strings */
    static char fmt_9999[] = "(1x,a3,\002 routines passed the tests of the e"
	    "rror exits\002,\002 (\002,i3,\002 tests done)\002)";
    static char fmt_9998[] = "(\002 *** \002,a3,\002 routines failed the tes"
	    "ts of the error \002,\002exits ***\002)";

    /* System generated locals */
    integer i__1;
    doublereal d__1;

    /* Local variables */
    doublecomplex a[9]	/* was [3][3] */, c__[9]	/* was [3][3] */;
    integer i__, j, m;
    doublereal s[3];
    doublecomplex w[9], x[3];
    char c2[2];
    integer nt;
    doublecomplex vl[9]	/* was [3][3] */, vr[9]	/* was [3][3] */;
    doublereal rw[3];
    integer ihi, ilo;
    logical sel[3];
    doublecomplex tau[3];
    integer info, ifaill[3];
    extern /* Subroutine */ int zgebak_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublecomplex *, integer *, 
	    integer *), zgebal_(char *, integer *, 
	    doublecomplex *, integer *, integer *, integer *, doublereal *, 
	    integer *);
    integer ifailr[3];
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *), chkxer_(char *, integer *, integer *, 
	    logical *, logical *), zhsein_(char *, char *, char *, 
	    logical *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     doublecomplex *, integer *, doublecomplex *, integer *, integer *
, integer *, doublecomplex *, doublereal *, integer *, integer *, 
	    integer *), zhseqr_(char *, char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, integer *), ztrevc_(char *, char *, 
	    logical *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, integer *, integer *, integer *, 
	    doublecomplex *, doublereal *, integer *), 
	    zunghr_(integer *, integer *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, doublecomplex *, integer *, integer *), 
	    zunmhr_(char *, char *, integer *, integer *, integer *, integer *
, doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };
    static cilist io___22 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___23 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRHS tests the error exits for ZGEBAK, CGEBAL, CGEHRD, ZUNGHR, */
/*  ZUNMHR, ZHSEQR, CHSEIN, and ZTREVC. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 3; ++j) {
	for (i__ = 1; i__ <= 3; ++i__) {
	    i__1 = i__ + j * 3 - 4;
	    d__1 = 1. / (doublereal) (i__ + j);
	    a[i__1].r = d__1, a[i__1].i = 0.;
/* L10: */
	}
	sel[j - 1] = TRUE_;
/* L20: */
    }
    infoc_1.ok = TRUE_;
    nt = 0;

/*     Test error exits of the nonsymmetric eigenvalue routines. */

    if (lsamen_(&c__2, c2, "HS")) {

/*        ZGEBAL */

	s_copy(srnamc_1.srnamt, "ZGEBAL", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zgebal_("/", &c__0, a, &c__1, &ilo, &ihi, s, &info);
	chkxer_("ZGEBAL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgebal_("N", &c_n1, a, &c__1, &ilo, &ihi, s, &info);
	chkxer_("ZGEBAL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgebal_("N", &c__2, a, &c__1, &ilo, &ihi, s, &info);
	chkxer_("ZGEBAL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 3;

/*        ZGEBAK */

	s_copy(srnamc_1.srnamt, "ZGEBAK", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zgebak_("/", "R", &c__0, &c__1, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgebak_("N", "/", &c__0, &c__1, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgebak_("N", "R", &c_n1, &c__1, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgebak_("N", "R", &c__0, &c__0, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgebak_("N", "R", &c__0, &c__2, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgebak_("N", "R", &c__2, &c__2, &c__1, s, &c__0, a, &c__2, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgebak_("N", "R", &c__0, &c__1, &c__1, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zgebak_("N", "R", &c__0, &c__1, &c__0, s, &c_n1, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zgebak_("N", "R", &c__2, &c__1, &c__2, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 9;

/*        ZGEHRD */

	s_copy(srnamc_1.srnamt, "ZGEHRD", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zgehrd_(&c_n1, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgehrd_(&c__0, &c__0, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgehrd_(&c__0, &c__2, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgehrd_(&c__1, &c__1, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgehrd_(&c__0, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgehrd_(&c__2, &c__1, &c__1, a, &c__1, tau, w, &c__2, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zgehrd_(&c__2, &c__1, &c__2, a, &c__2, tau, w, &c__1, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 7;

/*        ZUNGHR */

	s_copy(srnamc_1.srnamt, "ZUNGHR", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zunghr_(&c_n1, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zunghr_(&c__0, &c__0, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zunghr_(&c__0, &c__2, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zunghr_(&c__1, &c__1, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zunghr_(&c__0, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zunghr_(&c__2, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zunghr_(&c__3, &c__1, &c__3, a, &c__3, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 7;

/*        ZUNMHR */

	s_copy(srnamc_1.srnamt, "ZUNMHR", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zunmhr_("/", "N", &c__0, &c__0, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zunmhr_("L", "/", &c__0, &c__0, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zunmhr_("L", "N", &c_n1, &c__0, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zunmhr_("L", "N", &c__0, &c_n1, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zunmhr_("L", "N", &c__0, &c__0, &c__0, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zunmhr_("L", "N", &c__0, &c__0, &c__2, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zunmhr_("L", "N", &c__1, &c__2, &c__2, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__2, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zunmhr_("R", "N", &c__2, &c__1, &c__2, &c__1, a, &c__1, tau, c__, &
		c__2, w, &c__2, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zunmhr_("L", "N", &c__1, &c__1, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zunmhr_("L", "N", &c__0, &c__1, &c__1, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zunmhr_("R", "N", &c__1, &c__0, &c__1, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zunmhr_("L", "N", &c__2, &c__1, &c__1, &c__1, a, &c__1, tau, c__, &
		c__2, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zunmhr_("R", "N", &c__1, &c__2, &c__1, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	zunmhr_("L", "N", &c__2, &c__1, &c__1, &c__1, a, &c__2, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 13;
	zunmhr_("L", "N", &c__1, &c__2, &c__1, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 13;
	zunmhr_("R", "N", &c__2, &c__1, &c__1, &c__1, a, &c__1, tau, c__, &
		c__2, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 16;

/*        ZHSEQR */

	s_copy(srnamc_1.srnamt, "ZHSEQR", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zhseqr_("/", "N", &c__0, &c__1, &c__0, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zhseqr_("E", "/", &c__0, &c__1, &c__0, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zhseqr_("E", "N", &c_n1, &c__1, &c__0, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zhseqr_("E", "N", &c__0, &c__0, &c__0, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zhseqr_("E", "N", &c__0, &c__2, &c__0, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zhseqr_("E", "N", &c__1, &c__1, &c__0, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zhseqr_("E", "N", &c__1, &c__1, &c__2, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zhseqr_("E", "N", &c__2, &c__1, &c__2, a, &c__1, x, c__, &c__2, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zhseqr_("E", "V", &c__2, &c__1, &c__2, a, &c__2, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 9;

/*        ZHSEIN */

	s_copy(srnamc_1.srnamt, "ZHSEIN", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zhsein_("/", "N", "N", sel, &c__0, a, &c__1, x, vl, &c__1, vr, &c__1, 
		&c__0, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zhsein_("R", "/", "N", sel, &c__0, a, &c__1, x, vl, &c__1, vr, &c__1, 
		&c__0, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zhsein_("R", "N", "/", sel, &c__0, a, &c__1, x, vl, &c__1, vr, &c__1, 
		&c__0, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zhsein_("R", "N", "N", sel, &c_n1, a, &c__1, x, vl, &c__1, vr, &c__1, 
		&c__0, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zhsein_("R", "N", "N", sel, &c__2, a, &c__1, x, vl, &c__1, vr, &c__2, 
		&c__4, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zhsein_("L", "N", "N", sel, &c__2, a, &c__2, x, vl, &c__1, vr, &c__1, 
		&c__4, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zhsein_("R", "N", "N", sel, &c__2, a, &c__2, x, vl, &c__1, vr, &c__1, 
		&c__4, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 13;
	zhsein_("R", "N", "N", sel, &c__2, a, &c__2, x, vl, &c__1, vr, &c__2, 
		&c__1, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 8;

/*        ZTREVC */

	s_copy(srnamc_1.srnamt, "ZTREVC", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	ztrevc_("/", "A", sel, &c__0, a, &c__1, vl, &c__1, vr, &c__1, &c__0, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	ztrevc_("L", "/", sel, &c__0, a, &c__1, vl, &c__1, vr, &c__1, &c__0, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	ztrevc_("L", "A", sel, &c_n1, a, &c__1, vl, &c__1, vr, &c__1, &c__0, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	ztrevc_("L", "A", sel, &c__2, a, &c__1, vl, &c__2, vr, &c__1, &c__4, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	ztrevc_("L", "A", sel, &c__2, a, &c__2, vl, &c__1, vr, &c__1, &c__4, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	ztrevc_("R", "A", sel, &c__2, a, &c__2, vl, &c__1, vr, &c__1, &c__4, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	ztrevc_("L", "A", sel, &c__2, a, &c__2, vl, &c__2, vr, &c__1, &c__1, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 7;
    }

/*     Print a summary line. */

    if (infoc_1.ok) {
	io___22.ciunit = infoc_1.nout;
	s_wsfe(&io___22);
	do_fio(&c__1, path, (ftnlen)3);
	do_fio(&c__1, (char *)&nt, (ftnlen)sizeof(integer));
	e_wsfe();
    } else {
	io___23.ciunit = infoc_1.nout;
	s_wsfe(&io___23);
	do_fio(&c__1, path, (ftnlen)3);
	e_wsfe();
    }


    return 0;

/*     End of ZERRHS */

} /* zerrhs_ */
Exemple #3
0
/* Subroutine */
int zlaqr2_(logical *wantt, logical *wantz, integer *n, integer *ktop, integer *kbot, integer *nw, doublecomplex *h__, integer *ldh, integer *iloz, integer *ihiz, doublecomplex *z__, integer *ldz, integer *ns, integer *nd, doublecomplex *sh, doublecomplex *v, integer *ldv, integer *nh, doublecomplex *t, integer *ldt, integer *nv, doublecomplex *wv, integer *ldwv, doublecomplex *work, integer *lwork)
{
    /* System generated locals */
    integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
    doublereal d__1, d__2, d__3, d__4, d__5, d__6;
    doublecomplex z__1, z__2;
    /* Builtin functions */
    double d_imag(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *);
    /* Local variables */
    integer i__, j;
    doublecomplex s;
    integer jw;
    doublereal foo;
    integer kln;
    doublecomplex tau;
    integer knt;
    doublereal ulp;
    integer lwk1, lwk2;
    doublecomplex beta;
    integer kcol, info, ifst, ilst, ltop, krow;
    extern /* Subroutine */
    int zlarf_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *);
    integer infqr;
    extern /* Subroutine */
    int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *);
    integer kwtop;
    extern /* Subroutine */
    int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
    extern doublereal dlamch_(char *);
    doublereal safmin, safmax;
    extern /* Subroutine */
    int zgehrd_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *), zlahqr_(logical *, logical *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *);
    doublereal smlnum;
    extern /* Subroutine */
    int ztrexc_(char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *, integer *);
    integer lwkopt;
    extern /* Subroutine */
    int zunmhr_(char *, char *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer * );
    /* -- LAPACK auxiliary routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ================================================================ */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Statement Functions .. */
    /* .. */
    /* .. Statement Function definitions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* ==== Estimate optimal workspace. ==== */
    /* Parameter adjustments */
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --sh;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    wv_dim1 = *ldwv;
    wv_offset = 1 + wv_dim1;
    wv -= wv_offset;
    --work;
    /* Function Body */
    /* Computing MIN */
    i__1 = *nw;
    i__2 = *kbot - *ktop + 1; // , expr subst
    jw = min(i__1,i__2);
    if (jw <= 2)
    {
        lwkopt = 1;
    }
    else
    {
        /* ==== Workspace query call to ZGEHRD ==== */
        i__1 = jw - 1;
        zgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], & c_n1, &info);
        lwk1 = (integer) work[1].r;
        /* ==== Workspace query call to ZUNMHR ==== */
        i__1 = jw - 1;
        zunmhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &v[v_offset], ldv, &work[1], &c_n1, &info);
        lwk2 = (integer) work[1].r;
        /* ==== Optimal workspace ==== */
        lwkopt = jw + max(lwk1,lwk2);
    }
    /* ==== Quick return in case of workspace query. ==== */
    if (*lwork == -1)
    {
        d__1 = (doublereal) lwkopt;
        z__1.r = d__1;
        z__1.i = 0.; // , expr subst
        work[1].r = z__1.r;
        work[1].i = z__1.i; // , expr subst
        return 0;
    }
    /* ==== Nothing to do ... */
    /* ... for an empty active block ... ==== */
    *ns = 0;
    *nd = 0;
    work[1].r = 1.;
    work[1].i = 0.; // , expr subst
    if (*ktop > *kbot)
    {
        return 0;
    }
    /* ... nor for an empty deflation window. ==== */
    if (*nw < 1)
    {
        return 0;
    }
    /* ==== Machine constants ==== */
    safmin = dlamch_("SAFE MINIMUM");
    safmax = 1. / safmin;
    dlabad_(&safmin, &safmax);
    ulp = dlamch_("PRECISION");
    smlnum = safmin * ((doublereal) (*n) / ulp);
    /* ==== Setup deflation window ==== */
    /* Computing MIN */
    i__1 = *nw;
    i__2 = *kbot - *ktop + 1; // , expr subst
    jw = min(i__1,i__2);
    kwtop = *kbot - jw + 1;
    if (kwtop == *ktop)
    {
        s.r = 0.;
        s.i = 0.; // , expr subst
    }
    else
    {
        i__1 = kwtop + (kwtop - 1) * h_dim1;
        s.r = h__[i__1].r;
        s.i = h__[i__1].i; // , expr subst
    }
    if (*kbot == kwtop)
    {
        /* ==== 1-by-1 deflation window: not much to do ==== */
        i__1 = kwtop;
        i__2 = kwtop + kwtop * h_dim1;
        sh[i__1].r = h__[i__2].r;
        sh[i__1].i = h__[i__2].i; // , expr subst
        *ns = 1;
        *nd = 0;
        /* Computing MAX */
        i__1 = kwtop + kwtop * h_dim1;
        d__5 = smlnum;
        d__6 = ulp * ((d__1 = h__[i__1].r, f2c_abs(d__1)) + (d__2 = d_imag(&h__[kwtop + kwtop * h_dim1]), f2c_abs(d__2))); // , expr subst
        if ((d__3 = s.r, f2c_abs(d__3)) + (d__4 = d_imag(&s), f2c_abs(d__4)) <= max( d__5,d__6))
        {
            *ns = 0;
            *nd = 1;
            if (kwtop > *ktop)
            {
                i__1 = kwtop + (kwtop - 1) * h_dim1;
                h__[i__1].r = 0.;
                h__[i__1].i = 0.; // , expr subst
            }
        }
        work[1].r = 1.;
        work[1].i = 0.; // , expr subst
        return 0;
    }
    /* ==== Convert to spike-triangular form. (In case of a */
    /* . rare QR failure, this routine continues to do */
    /* . aggressive early deflation using that part of */
    /* . the deflation window that converged using INFQR */
    /* . here and there to keep track.) ==== */
    zlacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset], ldt);
    i__1 = jw - 1;
    i__2 = *ldh + 1;
    i__3 = *ldt + 1;
    zcopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], & i__3);
    zlaset_("A", &jw, &jw, &c_b1, &c_b2, &v[v_offset], ldv);
    zlahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
    /* ==== Deflation detection loop ==== */
    *ns = jw;
    ilst = infqr + 1;
    i__1 = jw;
    for (knt = infqr + 1;
            knt <= i__1;
            ++knt)
    {
        /* ==== Small spike tip deflation test ==== */
        i__2 = *ns + *ns * t_dim1;
        foo = (d__1 = t[i__2].r, f2c_abs(d__1)) + (d__2 = d_imag(&t[*ns + *ns * t_dim1]), f2c_abs(d__2));
        if (foo == 0.)
        {
            foo = (d__1 = s.r, f2c_abs(d__1)) + (d__2 = d_imag(&s), f2c_abs(d__2));
        }
        i__2 = *ns * v_dim1 + 1;
        /* Computing MAX */
        d__5 = smlnum;
        d__6 = ulp * foo; // , expr subst
        if (((d__1 = s.r, f2c_abs(d__1)) + (d__2 = d_imag(&s), f2c_abs(d__2))) * (( d__3 = v[i__2].r, f2c_abs(d__3)) + (d__4 = d_imag(&v[*ns * v_dim1 + 1]), f2c_abs(d__4))) <= max(d__5,d__6))
        {
            /* ==== One more converged eigenvalue ==== */
            --(*ns);
        }
        else
        {
            /* ==== One undeflatable eigenvalue. Move it up out of the */
            /* . way. (ZTREXC can not fail in this case.) ==== */
            ifst = *ns;
            ztrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, & ilst, &info);
            ++ilst;
        }
        /* L10: */
    }
    /* ==== Return to Hessenberg form ==== */
    if (*ns == 0)
    {
        s.r = 0.;
        s.i = 0.; // , expr subst
    }
    if (*ns < jw)
    {
        /* ==== sorting the diagonal of T improves accuracy for */
        /* . graded matrices. ==== */
        i__1 = *ns;
        for (i__ = infqr + 1;
                i__ <= i__1;
                ++i__)
        {
            ifst = i__;
            i__2 = *ns;
            for (j = i__ + 1;
                    j <= i__2;
                    ++j)
            {
                i__3 = j + j * t_dim1;
                i__4 = ifst + ifst * t_dim1;
                if ((d__1 = t[i__3].r, f2c_abs(d__1)) + (d__2 = d_imag(&t[j + j * t_dim1]), f2c_abs(d__2)) > (d__3 = t[i__4].r, f2c_abs(d__3)) + (d__4 = d_imag(&t[ifst + ifst * t_dim1]), f2c_abs(d__4)) )
                {
                    ifst = j;
                }
                /* L20: */
            }
            ilst = i__;
            if (ifst != ilst)
            {
                ztrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &ilst, &info);
            }
            /* L30: */
        }
    }
    /* ==== Restore shift/eigenvalue array from T ==== */
    i__1 = jw;
    for (i__ = infqr + 1;
            i__ <= i__1;
            ++i__)
    {
        i__2 = kwtop + i__ - 1;
        i__3 = i__ + i__ * t_dim1;
        sh[i__2].r = t[i__3].r;
        sh[i__2].i = t[i__3].i; // , expr subst
        /* L40: */
    }
    if (*ns < jw || s.r == 0. && s.i == 0.)
    {
        if (*ns > 1 && (s.r != 0. || s.i != 0.))
        {
            /* ==== Reflect spike back into lower triangle ==== */
            zcopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
            i__1 = *ns;
            for (i__ = 1;
                    i__ <= i__1;
                    ++i__)
            {
                i__2 = i__;
                d_cnjg(&z__1, &work[i__]);
                work[i__2].r = z__1.r;
                work[i__2].i = z__1.i; // , expr subst
                /* L50: */
            }
            beta.r = work[1].r;
            beta.i = work[1].i; // , expr subst
            zlarfg_(ns, &beta, &work[2], &c__1, &tau);
            work[1].r = 1.;
            work[1].i = 0.; // , expr subst
            i__1 = jw - 2;
            i__2 = jw - 2;
            zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &t[t_dim1 + 3], ldt);
            d_cnjg(&z__1, &tau);
            zlarf_("L", ns, &jw, &work[1], &c__1, &z__1, &t[t_offset], ldt, & work[jw + 1]);
            zlarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, & work[jw + 1]);
            zlarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, & work[jw + 1]);
            i__1 = *lwork - jw;
            zgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1] , &i__1, &info);
        }
        /* ==== Copy updated reduced window into place ==== */
        if (kwtop > 1)
        {
            i__1 = kwtop + (kwtop - 1) * h_dim1;
            d_cnjg(&z__2, &v[v_dim1 + 1]);
            z__1.r = s.r * z__2.r - s.i * z__2.i;
            z__1.i = s.r * z__2.i + s.i * z__2.r; // , expr subst
            h__[i__1].r = z__1.r;
            h__[i__1].i = z__1.i; // , expr subst
        }
        zlacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1] , ldh);
        i__1 = jw - 1;
        i__2 = *ldt + 1;
        i__3 = *ldh + 1;
        zcopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1], &i__3);
        /* ==== Accumulate orthogonal matrix in order update */
        /* . H and Z, if requested. ==== */
        if (*ns > 1 && (s.r != 0. || s.i != 0.))
        {
            i__1 = *lwork - jw;
            zunmhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1], &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
        }
        /* ==== Update vertical slab in H ==== */
        if (*wantt)
        {
            ltop = 1;
        }
        else
        {
            ltop = *ktop;
        }
        i__1 = kwtop - 1;
        i__2 = *nv;
        for (krow = ltop;
                i__2 < 0 ? krow >= i__1 : krow <= i__1;
                krow += i__2)
        {
            /* Computing MIN */
            i__3 = *nv;
            i__4 = kwtop - krow; // , expr subst
            kln = min(i__3,i__4);
            zgemm_("N", "N", &kln, &jw, &jw, &c_b2, &h__[krow + kwtop * h_dim1], ldh, &v[v_offset], ldv, &c_b1, &wv[wv_offset], ldwv);
            zlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop * h_dim1], ldh);
            /* L60: */
        }
        /* ==== Update horizontal slab in H ==== */
        if (*wantt)
        {
            i__2 = *n;
            i__1 = *nh;
            for (kcol = *kbot + 1;
                    i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
                    kcol += i__1)
            {
                /* Computing MIN */
                i__3 = *nh;
                i__4 = *n - kcol + 1; // , expr subst
                kln = min(i__3,i__4);
                zgemm_("C", "N", &jw, &kln, &jw, &c_b2, &v[v_offset], ldv, & h__[kwtop + kcol * h_dim1], ldh, &c_b1, &t[t_offset], ldt);
                zlacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol * h_dim1], ldh);
                /* L70: */
            }
        }
        /* ==== Update vertical slab in Z ==== */
        if (*wantz)
        {
            i__1 = *ihiz;
            i__2 = *nv;
            for (krow = *iloz;
                    i__2 < 0 ? krow >= i__1 : krow <= i__1;
                    krow += i__2)
            {
                /* Computing MIN */
                i__3 = *nv;
                i__4 = *ihiz - krow + 1; // , expr subst
                kln = min(i__3,i__4);
                zgemm_("N", "N", &kln, &jw, &jw, &c_b2, &z__[krow + kwtop * z_dim1], ldz, &v[v_offset], ldv, &c_b1, &wv[wv_offset] , ldwv);
                zlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow + kwtop * z_dim1], ldz);
                /* L80: */
            }
        }
    }
    /* ==== Return the number of deflations ... ==== */
    *nd = jw - *ns;
    /* ==== ... and the number of shifts. (Subtracting */
    /* . INFQR from the spike length takes care */
    /* . of the case of a rare QR failure while */
    /* . calculating eigenvalues of the deflation */
    /* . window.) ==== */
    *ns -= infqr;
    /* ==== Return optimal workspace. ==== */
    d__1 = (doublereal) lwkopt;
    z__1.r = d__1;
    z__1.i = 0.; // , expr subst
    work[1].r = z__1.r;
    work[1].i = z__1.i; // , expr subst
    /* ==== End of ZLAQR2 ==== */
    return 0;
}
Exemple #4
0
/* Subroutine */ int zchkhs_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, doublereal *thresh, integer *nounit, 
	doublecomplex *a, integer *lda, doublecomplex *h__, doublecomplex *t1, 
	 doublecomplex *t2, doublecomplex *u, integer *ldu, doublecomplex *
	z__, doublecomplex *uz, doublecomplex *w1, doublecomplex *w3, 
	doublecomplex *evectl, doublecomplex *evectr, doublecomplex *evecty, 
	doublecomplex *evectx, doublecomplex *uu, doublecomplex *tau, 
	doublecomplex *work, integer *nwork, doublereal *rwork, integer *
	iwork, logical *select, doublereal *result, integer *info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };

    /* Format strings */
    static char fmt_9999[] = "(\002 ZCHKHS: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(\002 ZCHKHS: \002,a,\002 Eigenvectors from"
	    " \002,a,\002 incorrectly \002,\002normalized.\002,/\002 Bits of "
	    "error=\002,0p,g10.3,\002,\002,9x,\002N=\002,i6,\002, JTYPE=\002,"
	    "i6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9997[] = "(\002 ZCHKHS: Selected \002,a,\002 Eigenvector"
	    "s from \002,a,\002 do not match other eigenvectors \002,9x,\002N="
	    "\002,i6,\002, JTYPE=\002,i6,\002, ISEED=(\002,3(i5,\002,\002),i5,"
	    "\002)\002)";

    /* System generated locals */
    integer a_dim1, a_offset, evectl_dim1, evectl_offset, evectr_dim1, 
	    evectr_offset, evectx_dim1, evectx_offset, evecty_dim1, 
	    evecty_offset, h_dim1, h_offset, t1_dim1, t1_offset, t2_dim1, 
	    t2_offset, u_dim1, u_offset, uu_dim1, uu_offset, uz_dim1, 
	    uz_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    double z_abs(doublecomplex *);

    /* Local variables */
    integer i__, j, k, n, n1, jj, in, ihi, ilo;
    doublereal ulp, cond;
    integer jcol, nmax;
    doublereal unfl, ovfl, temp1, temp2;
    logical badnn, match;
    integer imode;
    doublereal dumma[4];
    integer iinfo;
    doublereal conds;
    extern /* Subroutine */ int zget10_(integer *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublereal *, doublereal *);
    doublereal aninv, anorm;
    extern /* Subroutine */ int zget22_(char *, char *, char *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, doublecomplex *, doublereal *, doublereal *), zgemm_(char *, char *, integer *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *, 
	     doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    integer nmats, jsize, nerrs, itype, jtype, ntest;
    extern /* Subroutine */ int zhst01_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *), zcopy_(integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *);
    doublereal rtulp;
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    extern doublereal dlamch_(char *);
    doublecomplex cdumma[4];
    integer idumma[1];
    extern /* Subroutine */ int dlafts_(char *, integer *, integer *, integer 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *);
    integer ioldsd[4];
    extern /* Subroutine */ int xerbla_(char *, integer *), zgehrd_(
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, integer *), dlasum_(
	    char *, integer *, integer *, integer *), zlatme_(integer 
	    *, char *, integer *, doublecomplex *, integer *, doublereal *, 
	    doublecomplex *, char *, char *, char *, char *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, doublereal *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), zhsein_(char *, char *, char *, 
	    logical *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     doublecomplex *, integer *, doublecomplex *, integer *, integer *
, integer *, doublecomplex *, doublereal *, integer *, integer *, 
	    integer *), zlacpy_(char *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, integer *), zlatmr_(
	    integer *, integer *, char *, integer *, char *, doublecomplex *, 
	    integer *, doublereal *, doublecomplex *, char *, char *, 
	    doublecomplex *, integer *, doublereal *, doublecomplex *, 
	    integer *, doublereal *, char *, integer *, integer *, integer *, 
	    doublereal *, doublereal *, char *, doublecomplex *, integer *, 
	    integer *, integer *);
    doublereal rtunfl, rtovfl, rtulpi, ulpinv;
    integer mtypes, ntestt;
    extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, 
	     char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), ztrevc_(char 
	    *, char *, logical *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *, 
	     integer *, doublecomplex *, doublereal *, integer *), zunghr_(integer *, integer *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, doublecomplex *, integer *, integer *
), zunmhr_(char *, char *, integer *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___35 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___38 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___47 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___56 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___57 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___58 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___62 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___63 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___64 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     February 2007 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*     ZCHKHS  checks the nonsymmetric eigenvalue problem routines. */

/*             ZGEHRD factors A as  U H U' , where ' means conjugate */
/*             transpose, H is hessenberg, and U is unitary. */

/*             ZUNGHR generates the unitary matrix U. */

/*             ZUNMHR multiplies a matrix by the unitary matrix U. */

/*             ZHSEQR factors H as  Z T Z' , where Z is unitary and T */
/*             is upper triangular.  It also computes the eigenvalues, */
/*             w(1), ..., w(n); we define a diagonal matrix W whose */
/*             (diagonal) entries are the eigenvalues. */

/*             ZTREVC computes the left eigenvector matrix L and the */
/*             right eigenvector matrix R for the matrix T.  The */
/*             columns of L are the complex conjugates of the left */
/*             eigenvectors of T.  The columns of R are the right */
/*             eigenvectors of T.  L is lower triangular, and R is */
/*             upper triangular. */

/*             ZHSEIN computes the left eigenvector matrix Y and the */
/*             right eigenvector matrix X for the matrix H.  The */
/*             columns of Y are the complex conjugates of the left */
/*             eigenvectors of H.  The columns of X are the right */
/*             eigenvectors of H.  Y is lower triangular, and X is */
/*             upper triangular. */

/*     When ZCHKHS is called, a number of matrix "sizes" ("n's") and a */
/*     number of matrix "types" are specified.  For each size ("n") */
/*     and each type of matrix, one matrix will be generated and used */
/*     to test the nonsymmetric eigenroutines.  For each matrix, 14 */
/*     tests will be performed: */

/*     (1)     | A - U H U**H | / ( |A| n ulp ) */

/*     (2)     | I - UU**H | / ( n ulp ) */

/*     (3)     | H - Z T Z**H | / ( |H| n ulp ) */

/*     (4)     | I - ZZ**H | / ( n ulp ) */

/*     (5)     | A - UZ H (UZ)**H | / ( |A| n ulp ) */

/*     (6)     | I - UZ (UZ)**H | / ( n ulp ) */

/*     (7)     | T(Z computed) - T(Z not computed) | / ( |T| ulp ) */

/*     (8)     | W(Z computed) - W(Z not computed) | / ( |W| ulp ) */

/*     (9)     | TR - RW | / ( |T| |R| ulp ) */

/*     (10)    | L**H T - W**H L | / ( |T| |L| ulp ) */

/*     (11)    | HX - XW | / ( |H| |X| ulp ) */

/*     (12)    | Y**H H - W**H Y | / ( |H| |Y| ulp ) */

/*     (13)    | AX - XW | / ( |A| |X| ulp ) */

/*     (14)    | Y**H A - W**H Y | / ( |A| |Y| ulp ) */

/*     The "sizes" are specified by an array NN(1:NSIZES); the value of */
/*     each element NN(j) specifies one size. */
/*     The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
/*     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
/*     Currently, the list of possible types is: */

/*     (1)  The zero matrix. */
/*     (2)  The identity matrix. */
/*     (3)  A (transposed) Jordan block, with 1's on the diagonal. */

/*     (4)  A diagonal matrix with evenly spaced entries */
/*          1, ..., ULP  and random complex angles. */
/*          (ULP = (first number larger than 1) - 1 ) */
/*     (5)  A diagonal matrix with geometrically spaced entries */
/*          1, ..., ULP  and random complex angles. */
/*     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*          and random complex angles. */

/*     (7)  Same as (4), but multiplied by SQRT( overflow threshold ) */
/*     (8)  Same as (4), but multiplied by SQRT( underflow threshold ) */

/*     (9)  A matrix of the form  U' T U, where U is unitary and */
/*          T has evenly spaced entries 1, ..., ULP with random complex */
/*          angles on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (10) A matrix of the form  U' T U, where U is unitary and */
/*          T has geometrically spaced entries 1, ..., ULP with random */
/*          complex angles on the diagonal and random O(1) entries in */
/*          the upper triangle. */

/*     (11) A matrix of the form  U' T U, where U is unitary and */
/*          T has "clustered" entries 1, ULP,..., ULP with random */
/*          complex angles on the diagonal and random O(1) entries in */
/*          the upper triangle. */

/*     (12) A matrix of the form  U' T U, where U is unitary and */
/*          T has complex eigenvalues randomly chosen from */
/*          ULP < |z| < 1   and random O(1) entries in the upper */
/*          triangle. */

/*     (13) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */
/*          with random complex angles on the diagonal and random O(1) */
/*          entries in the upper triangle. */

/*     (14) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has geometrically spaced entries */
/*          1, ..., ULP with random complex angles on the diagonal */
/*          and random O(1) entries in the upper triangle. */

/*     (15) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */
/*          with random complex angles on the diagonal and random O(1) */
/*          entries in the upper triangle. */

/*     (16) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has complex eigenvalues randomly chosen */
/*          from   ULP < |z| < 1   and random O(1) entries in the upper */
/*          triangle. */

/*     (17) Same as (16), but multiplied by SQRT( overflow threshold ) */
/*     (18) Same as (16), but multiplied by SQRT( underflow threshold ) */

/*     (19) Nonsymmetric matrix with random entries chosen from |z| < 1 */
/*     (20) Same as (19), but multiplied by SQRT( overflow threshold ) */
/*     (21) Same as (19), but multiplied by SQRT( underflow threshold ) */

/*  Arguments */
/*  ========== */

/*  NSIZES - INTEGER */
/*           The number of sizes of matrices to use.  If it is zero, */
/*           ZCHKHS does nothing.  It must be at least zero. */
/*           Not modified. */

/*  NN     - INTEGER array, dimension (NSIZES) */
/*           An array containing the sizes to be used for the matrices. */
/*           Zero values will be skipped.  The values must be at least */
/*           zero. */
/*           Not modified. */

/*  NTYPES - INTEGER */
/*           The number of elements in DOTYPE.   If it is zero, ZCHKHS */
/*           does nothing.  It must be at least zero.  If it is MAXTYP+1 */
/*           and NSIZES is 1, then an additional type, MAXTYP+1 is */
/*           defined, which is to use whatever matrix is in A.  This */
/*           is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
/*           DOTYPE(MAXTYP+1) is .TRUE. . */
/*           Not modified. */

/*  DOTYPE - LOGICAL array, dimension (NTYPES) */
/*           If DOTYPE(j) is .TRUE., then for each size in NN a */
/*           matrix of that size and of type j will be generated. */
/*           If NTYPES is smaller than the maximum number of types */
/*           defined (PARAMETER MAXTYP), then types NTYPES+1 through */
/*           MAXTYP will not be generated.  If NTYPES is larger */
/*           than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
/*           will be ignored. */
/*           Not modified. */

/*  ISEED  - INTEGER array, dimension (4) */
/*           On entry ISEED specifies the seed of the random number */
/*           generator. The array elements should be between 0 and 4095; */
/*           if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*           be odd.  The random number generator uses a linear */
/*           congruential sequence limited to small integers, and so */
/*           should produce machine independent random numbers. The */
/*           values of ISEED are changed on exit, and can be used in the */
/*           next call to ZCHKHS to continue the same random number */
/*           sequence. */
/*           Modified. */

/*  THRESH - DOUBLE PRECISION */
/*           A test will count as "failed" if the "error", computed as */
/*           described above, exceeds THRESH.  Note that the error */
/*           is scaled to be O(1), so THRESH should be a reasonably */
/*           small multiple of 1, e.g., 10 or 100.  In particular, */
/*           it should not depend on the precision (single vs. double) */
/*           or the size of the matrix.  It must be at least zero. */
/*           Not modified. */

/*  NOUNIT - INTEGER */
/*           The FORTRAN unit number for printing out error messages */
/*           (e.g., if a routine returns IINFO not equal to 0.) */
/*           Not modified. */

/*  A      - COMPLEX*16 array, dimension (LDA,max(NN)) */
/*           Used to hold the matrix whose eigenvalues are to be */
/*           computed.  On exit, A contains the last matrix actually */
/*           used. */
/*           Modified. */

/*  LDA    - INTEGER */
/*           The leading dimension of A, H, T1 and T2.  It must be at */
/*           least 1 and at least max( NN ). */
/*           Not modified. */

/*  H      - COMPLEX*16 array, dimension (LDA,max(NN)) */
/*           The upper hessenberg matrix computed by ZGEHRD.  On exit, */
/*           H contains the Hessenberg form of the matrix in A. */
/*           Modified. */

/*  T1     - COMPLEX*16 array, dimension (LDA,max(NN)) */
/*           The Schur (="quasi-triangular") matrix computed by ZHSEQR */
/*           if Z is computed.  On exit, T1 contains the Schur form of */
/*           the matrix in A. */
/*           Modified. */

/*  T2     - COMPLEX*16 array, dimension (LDA,max(NN)) */
/*           The Schur matrix computed by ZHSEQR when Z is not computed. */
/*           This should be identical to T1. */
/*           Modified. */

/*  LDU    - INTEGER */
/*           The leading dimension of U, Z, UZ and UU.  It must be at */
/*           least 1 and at least max( NN ). */
/*           Not modified. */

/*  U      - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The unitary matrix computed by ZGEHRD. */
/*           Modified. */

/*  Z      - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The unitary matrix computed by ZHSEQR. */
/*           Modified. */

/*  UZ     - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The product of U times Z. */
/*           Modified. */

/*  W1     - COMPLEX*16 array, dimension (max(NN)) */
/*           The eigenvalues of A, as computed by a full Schur */
/*           decomposition H = Z T Z'.  On exit, W1 contains the */
/*           eigenvalues of the matrix in A. */
/*           Modified. */

/*  W3     - COMPLEX*16 array, dimension (max(NN)) */
/*           The eigenvalues of A, as computed by a partial Schur */
/*           decomposition (Z not computed, T only computed as much */
/*           as is necessary for determining eigenvalues).  On exit, */
/*           W3 contains the eigenvalues of the matrix in A, possibly */
/*           perturbed by ZHSEIN. */
/*           Modified. */

/*  EVECTL - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The conjugate transpose of the (upper triangular) left */
/*           eigenvector matrix for the matrix in T1. */
/*           Modified. */

/*  EVEZTR - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The (upper triangular) right eigenvector matrix for the */
/*           matrix in T1. */
/*           Modified. */

/*  EVECTY - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The conjugate transpose of the left eigenvector matrix */
/*           for the matrix in H. */
/*           Modified. */

/*  EVECTX - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           The right eigenvector matrix for the matrix in H. */
/*           Modified. */

/*  UU     - COMPLEX*16 array, dimension (LDU,max(NN)) */
/*           Details of the unitary matrix computed by ZGEHRD. */
/*           Modified. */

/*  TAU    - COMPLEX*16 array, dimension (max(NN)) */
/*           Further details of the unitary matrix computed by ZGEHRD. */
/*           Modified. */

/*  WORK   - COMPLEX*16 array, dimension (NWORK) */
/*           Workspace. */
/*           Modified. */

/*  NWORK  - INTEGER */
/*           The number of entries in WORK.  NWORK >= 4*NN(j)*NN(j) + 2. */

/*  RWORK  - DOUBLE PRECISION array, dimension (max(NN)) */
/*           Workspace.  Could be equivalenced to IWORK, but not SELECT. */
/*           Modified. */

/*  IWORK  - INTEGER array, dimension (max(NN)) */
/*           Workspace. */
/*           Modified. */

/*  SELECT - LOGICAL array, dimension (max(NN)) */
/*           Workspace.  Could be equivalenced to IWORK, but not RWORK. */
/*           Modified. */

/*  RESULT - DOUBLE PRECISION array, dimension (14) */
/*           The values computed by the fourteen tests described above. */
/*           The values are currently limited to 1/ulp, to avoid */
/*           overflow. */
/*           Modified. */

/*  INFO   - INTEGER */
/*           If 0, then everything ran OK. */
/*            -1: NSIZES < 0 */
/*            -2: Some NN(j) < 0 */
/*            -3: NTYPES < 0 */
/*            -6: THRESH < 0 */
/*            -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). */
/*           -14: LDU < 1 or LDU < NMAX. */
/*           -26: NWORK too small. */
/*           If  ZLATMR, CLATMS, or CLATME returns an error code, the */
/*               absolute value of it is returned. */
/*           If 1, then ZHSEQR could not find all the shifts. */
/*           If 2, then the EISPACK code (for small blocks) failed. */
/*           If >2, then 30*N iterations were not enough to find an */
/*               eigenvalue or to decompose the problem. */
/*           Modified. */

/* ----------------------------------------------------------------------- */

/*     Some Local Variables and Parameters: */
/*     ---- ----- --------- --- ---------- */

/*     ZERO, ONE       Real 0 and 1. */
/*     MAXTYP          The number of types defined. */
/*     MTEST           The number of tests defined: care must be taken */
/*                     that (1) the size of RESULT, (2) the number of */
/*                     tests actually performed, and (3) MTEST agree. */
/*     NTEST           The number of tests performed on this matrix */
/*                     so far.  This should be less than MTEST, and */
/*                     equal to it by the last test.  It will be less */
/*                     if any of the routines being tested indicates */
/*                     that it could not compute the matrices that */
/*                     would be tested. */
/*     NMAX            Largest value in NN. */
/*     NMATS           The number of matrices generated so far. */
/*     NERRS           The number of tests which have exceeded THRESH */
/*                     so far (computed by DLAFTS). */
/*     COND, CONDS, */
/*     IMODE           Values to be passed to the matrix generators. */
/*     ANORM           Norm of A; passed to matrix generators. */

/*     OVFL, UNFL      Overflow and underflow thresholds. */
/*     ULP, ULPINV     Finest relative precision and its inverse. */
/*     RTOVFL, RTUNFL, */
/*     RTULP, RTULPI   Square roots of the previous 4 values. */

/*             The following four arrays decode JTYPE: */
/*     KTYPE(j)        The general type (1-10) for type "j". */
/*     KMODE(j)        The MODE value to be passed to the matrix */
/*                     generator for type "j". */
/*     KMAGN(j)        The order of magnitude ( O(1), */
/*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */
/*     KCONDS(j)       Selects whether CONDS is to be 1 or */
/*                     1/sqrt(ulp).  (0 means irrelevant.) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    t2_dim1 = *lda;
    t2_offset = 1 + t2_dim1;
    t2 -= t2_offset;
    t1_dim1 = *lda;
    t1_offset = 1 + t1_dim1;
    t1 -= t1_offset;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    uu_dim1 = *ldu;
    uu_offset = 1 + uu_dim1;
    uu -= uu_offset;
    evectx_dim1 = *ldu;
    evectx_offset = 1 + evectx_dim1;
    evectx -= evectx_offset;
    evecty_dim1 = *ldu;
    evecty_offset = 1 + evecty_dim1;
    evecty -= evecty_offset;
    evectr_dim1 = *ldu;
    evectr_offset = 1 + evectr_dim1;
    evectr -= evectr_offset;
    evectl_dim1 = *ldu;
    evectl_offset = 1 + evectl_dim1;
    evectl -= evectl_offset;
    uz_dim1 = *ldu;
    uz_offset = 1 + uz_dim1;
    uz -= uz_offset;
    z_dim1 = *ldu;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    --w1;
    --w3;
    --tau;
    --work;
    --rwork;
    --iwork;
    --select;
    --result;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Check for errors */

    ntestt = 0;
    *info = 0;

    badnn = FALSE_;
    nmax = 0;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.) {
	*info = -6;
    } else if (*lda <= 1 || *lda < nmax) {
	*info = -9;
    } else if (*ldu <= 1 || *ldu < nmax) {
	*info = -14;
    } else if ((nmax << 2) * nmax + 2 > *nwork) {
	*info = -26;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZCHKHS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0) {
	return 0;
    }

/*     More important constants */

    unfl = dlamch_("Safe minimum");
    ovfl = dlamch_("Overflow");
    dlabad_(&unfl, &ovfl);
    ulp = dlamch_("Epsilon") * dlamch_("Base");
    ulpinv = 1. / ulp;
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);
    rtulp = sqrt(ulp);
    rtulpi = 1. / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	n1 = max(1,n);
	aninv = 1. / (doublereal) n1;

	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L250;
	    }
	    ++nmats;
	    ntest = 0;

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Initialize RESULT */

	    for (j = 1; j <= 14; ++j) {
		result[j] = 0.;
/* L30: */
	    }

/*           Compute "A" */

/*           Control parameters: */

/*           KMAGN  KCONDS  KMODE        KTYPE */
/*       =1  O(1)   1       clustered 1  zero */
/*       =2  large  large   clustered 2  identity */
/*       =3  small          exponential  Jordan */
/*       =4                 arithmetic   diagonal, (w/ eigenvalues) */
/*       =5                 random log   hermitian, w/ eigenvalues */
/*       =6                 random       general, w/ eigenvalues */
/*       =7                              random diagonal */
/*       =8                              random hermitian */
/*       =9                              random general */
/*       =10                             random triangular */

	    if (mtypes > 21) {
		goto L100;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L40;
		case 2:  goto L50;
		case 3:  goto L60;
	    }

L40:
	    anorm = 1.;
	    goto L70;

L50:
	    anorm = rtovfl * ulp * aninv;
	    goto L70;

L60:
	    anorm = rtunfl * n * ulpinv;
	    goto L70;

L70:

	    zlaset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices */

	    if (itype == 1) {

/*              Zero */

		iinfo = 0;
	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    i__4 = jcol + jcol * a_dim1;
		    a[i__4].r = anorm, a[i__4].i = 0.;
/* L80: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    i__4 = jcol + jcol * a_dim1;
		    a[i__4].r = anorm, a[i__4].i = 0.;
		    if (jcol > 1) {
			i__4 = jcol + (jcol - 1) * a_dim1;
			a[i__4].r = 1., a[i__4].i = 0.;
		    }
/* L90: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &imode, &cond, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &c__0, &
			c__0, &c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 5) {

/*              Hermitian, eigenvalues specified */

		zlatms_(&n, &n, "D", &iseed[1], "H", &rwork[1], &imode, &cond, 
			 &anorm, &n, &n, "N", &a[a_offset], lda, &work[1], &
			iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.;
		}

		zlatme_(&n, "D", &iseed[1], &work[1], &imode, &cond, &c_b2, 
			" ", "T", "T", "T", &rwork[1], &c__4, &conds, &n, &n, 
			&anorm, &a[a_offset], lda, &work[n + 1], &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b27, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &c__0, &
			c__0, &c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              Hermitian, random eigenvalues */

		zlatmr_(&n, &n, "D", &iseed[1], "H", &work[1], &c__6, &c_b27, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &n, &n, &
			c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b27, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &n, &n, &
			c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b27, 
			&c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[(
			n << 1) + 1], &c__1, &c_b27, "N", idumma, &n, &c__0, &
			c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___35.ciunit = *nounit;
		s_wsfe(&io___35);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L100:

/*           Call ZGEHRD to compute H and U, do tests. */

	    zlacpy_(" ", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
	    ntest = 1;

	    ilo = 1;
	    ihi = n;

	    i__3 = *nwork - n;
	    zgehrd_(&n, &ilo, &ihi, &h__[h_offset], lda, &work[1], &work[n + 
		    1], &i__3, &iinfo);

	    if (iinfo != 0) {
		result[1] = ulpinv;
		io___38.ciunit = *nounit;
		s_wsfe(&io___38);
		do_fio(&c__1, "ZGEHRD", (ftnlen)6);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

	    i__3 = n - 1;
	    for (j = 1; j <= i__3; ++j) {
		i__4 = j + 1 + j * uu_dim1;
		uu[i__4].r = 0., uu[i__4].i = 0.;
		i__4 = n;
		for (i__ = j + 2; i__ <= i__4; ++i__) {
		    i__5 = i__ + j * u_dim1;
		    i__6 = i__ + j * h_dim1;
		    u[i__5].r = h__[i__6].r, u[i__5].i = h__[i__6].i;
		    i__5 = i__ + j * uu_dim1;
		    i__6 = i__ + j * h_dim1;
		    uu[i__5].r = h__[i__6].r, uu[i__5].i = h__[i__6].i;
		    i__5 = i__ + j * h_dim1;
		    h__[i__5].r = 0., h__[i__5].i = 0.;
/* L110: */
		}
/* L120: */
	    }
	    i__3 = n - 1;
	    zcopy_(&i__3, &work[1], &c__1, &tau[1], &c__1);
	    i__3 = *nwork - n;
	    zunghr_(&n, &ilo, &ihi, &u[u_offset], ldu, &work[1], &work[n + 1], 
		     &i__3, &iinfo);
	    ntest = 2;

	    zhst01_(&n, &ilo, &ihi, &a[a_offset], lda, &h__[h_offset], lda, &
		    u[u_offset], ldu, &work[1], nwork, &rwork[1], &result[1]);

/*           Call ZHSEQR to compute T1, T2 and Z, do tests. */

/*           Eigenvalues only (W3) */

	    zlacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda);
	    ntest = 3;
	    result[3] = ulpinv;

	    zhseqr_("E", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &w3[1], &
		    uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0) {
		io___40.ciunit = *nounit;
		s_wsfe(&io___40);
		do_fio(&c__1, "ZHSEQR(E)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		if (iinfo <= n + 2) {
		    *info = abs(iinfo);
		    goto L240;
		}
	    }

/*           Eigenvalues (W1) and Full Schur Form (T2) */

	    zlacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda);

	    zhseqr_("S", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &w1[1], &
		    uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0 && iinfo <= n + 2) {
		io___41.ciunit = *nounit;
		s_wsfe(&io___41);
		do_fio(&c__1, "ZHSEQR(S)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

/*           Eigenvalues (W1), Schur Form (T1), and Schur Vectors (UZ) */

	    zlacpy_(" ", &n, &n, &h__[h_offset], lda, &t1[t1_offset], lda);
	    zlacpy_(" ", &n, &n, &u[u_offset], ldu, &uz[uz_offset], ldu);

	    zhseqr_("S", "V", &n, &ilo, &ihi, &t1[t1_offset], lda, &w1[1], &
		    uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0 && iinfo <= n + 2) {
		io___42.ciunit = *nounit;
		s_wsfe(&io___42);
		do_fio(&c__1, "ZHSEQR(V)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

/*           Compute Z = U' UZ */

	    zgemm_("C", "N", &n, &n, &n, &c_b2, &u[u_offset], ldu, &uz[
		    uz_offset], ldu, &c_b1, &z__[z_offset], ldu);
	    ntest = 8;

/*           Do Tests 3: | H - Z T Z' | / ( |H| n ulp ) */
/*                and 4: | I - Z Z' | / ( n ulp ) */

	    zhst01_(&n, &ilo, &ihi, &h__[h_offset], lda, &t1[t1_offset], lda, 
		    &z__[z_offset], ldu, &work[1], nwork, &rwork[1], &result[
		    3]);

/*           Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp ) */
/*                and 6: | I - UZ (UZ)' | / ( n ulp ) */

	    zhst01_(&n, &ilo, &ihi, &a[a_offset], lda, &t1[t1_offset], lda, &
		    uz[uz_offset], ldu, &work[1], nwork, &rwork[1], &result[5]
);

/*           Do Test 7: | T2 - T1 | / ( |T| n ulp ) */

	    zget10_(&n, &n, &t2[t2_offset], lda, &t1[t1_offset], lda, &work[1]
, &rwork[1], &result[7]);

/*           Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp ) */

	    temp1 = 0.;
	    temp2 = 0.;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
		d__1 = temp1, d__2 = z_abs(&w1[j]), d__1 = max(d__1,d__2), 
			d__2 = z_abs(&w3[j]);
		temp1 = max(d__1,d__2);
/* Computing MAX */
		i__4 = j;
		i__5 = j;
		z__1.r = w1[i__4].r - w3[i__5].r, z__1.i = w1[i__4].i - w3[
			i__5].i;
		d__1 = temp2, d__2 = z_abs(&z__1);
		temp2 = max(d__1,d__2);
/* L130: */
	    }

/* Computing MAX */
	    d__1 = unfl, d__2 = ulp * max(temp1,temp2);
	    result[8] = temp2 / max(d__1,d__2);

/*           Compute the Left and Right Eigenvectors of T */

/*           Compute the Right eigenvector Matrix: */

	    ntest = 9;
	    result[9] = ulpinv;

/*           Select every other eigenvector */

	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = FALSE_;
/* L140: */
	    }
	    i__3 = n;
	    for (j = 1; j <= i__3; j += 2) {
		select[j] = TRUE_;
/* L150: */
	    }
	    ztrevc_("Right", "All", &select[1], &n, &t1[t1_offset], lda, 
		    cdumma, ldu, &evectr[evectr_offset], ldu, &n, &in, &work[
		    1], &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___47.ciunit = *nounit;
		s_wsfe(&io___47);
		do_fio(&c__1, "ZTREVC(R,A)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

/*           Test 9:  | TR - RW | / ( |T| |R| ulp ) */

	    zget22_("N", "N", "N", &n, &t1[t1_offset], lda, &evectr[
		    evectr_offset], ldu, &w1[1], &work[1], &rwork[1], dumma);
	    result[9] = dumma[0];
	    if (dumma[1] > *thresh) {
		io___49.ciunit = *nounit;
		s_wsfe(&io___49);
		do_fio(&c__1, "Right", (ftnlen)5);
		do_fio(&c__1, "ZTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(doublereal));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute selected right eigenvectors and confirm that */
/*           they agree with previous right eigenvectors */

	    ztrevc_("Right", "Some", &select[1], &n, &t1[t1_offset], lda, 
		    cdumma, ldu, &evectl[evectl_offset], ldu, &n, &in, &work[
		    1], &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___50.ciunit = *nounit;
		s_wsfe(&io___50);
		do_fio(&c__1, "ZTREVC(R,S)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

	    k = 1;
	    match = TRUE_;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		if (select[j]) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			i__5 = jj + j * evectr_dim1;
			i__6 = jj + k * evectl_dim1;
			if (evectr[i__5].r != evectl[i__6].r || evectr[i__5]
				.i != evectl[i__6].i) {
			    match = FALSE_;
			    goto L180;
			}
/* L160: */
		    }
		    ++k;
		}
/* L170: */
	    }
L180:
	    if (! match) {
		io___54.ciunit = *nounit;
		s_wsfe(&io___54);
		do_fio(&c__1, "Right", (ftnlen)5);
		do_fio(&c__1, "ZTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute the Left eigenvector Matrix: */

	    ntest = 10;
	    result[10] = ulpinv;
	    ztrevc_("Left", "All", &select[1], &n, &t1[t1_offset], lda, &
		    evectl[evectl_offset], ldu, cdumma, ldu, &n, &in, &work[1]
, &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___55.ciunit = *nounit;
		s_wsfe(&io___55);
		do_fio(&c__1, "ZTREVC(L,A)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

/*           Test 10:  | LT - WL | / ( |T| |L| ulp ) */

	    zget22_("C", "N", "C", &n, &t1[t1_offset], lda, &evectl[
		    evectl_offset], ldu, &w1[1], &work[1], &rwork[1], &dumma[
		    2]);
	    result[10] = dumma[2];
	    if (dumma[3] > *thresh) {
		io___56.ciunit = *nounit;
		s_wsfe(&io___56);
		do_fio(&c__1, "Left", (ftnlen)4);
		do_fio(&c__1, "ZTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(doublereal));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute selected left eigenvectors and confirm that */
/*           they agree with previous left eigenvectors */

	    ztrevc_("Left", "Some", &select[1], &n, &t1[t1_offset], lda, &
		    evectr[evectr_offset], ldu, cdumma, ldu, &n, &in, &work[1]
, &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___57.ciunit = *nounit;
		s_wsfe(&io___57);
		do_fio(&c__1, "ZTREVC(L,S)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L240;
	    }

	    k = 1;
	    match = TRUE_;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		if (select[j]) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			i__5 = jj + j * evectl_dim1;
			i__6 = jj + k * evectr_dim1;
			if (evectl[i__5].r != evectr[i__6].r || evectl[i__5]
				.i != evectr[i__6].i) {
			    match = FALSE_;
			    goto L210;
			}
/* L190: */
		    }
		    ++k;
		}
/* L200: */
	    }
L210:
	    if (! match) {
		io___58.ciunit = *nounit;
		s_wsfe(&io___58);
		do_fio(&c__1, "Left", (ftnlen)4);
		do_fio(&c__1, "ZTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Call ZHSEIN for Right eigenvectors of H, do test 11 */

	    ntest = 11;
	    result[11] = ulpinv;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = TRUE_;
/* L220: */
	    }

	    zhsein_("Right", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], 
		    lda, &w3[1], cdumma, ldu, &evectx[evectx_offset], ldu, &
		    n1, &in, &work[1], &rwork[1], &iwork[1], &iwork[1], &
		    iinfo);
	    if (iinfo != 0) {
		io___59.ciunit = *nounit;
		s_wsfe(&io___59);
		do_fio(&c__1, "ZHSEIN(R)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L240;
		}
	    } else {

/*              Test 11:  | HX - XW | / ( |H| |X| ulp ) */

/*                        (from inverse iteration) */

		zget22_("N", "N", "N", &n, &h__[h_offset], lda, &evectx[
			evectx_offset], ldu, &w3[1], &work[1], &rwork[1], 
			dumma);
		if (dumma[0] < ulpinv) {
		    result[11] = dumma[0] * aninv;
		}
		if (dumma[1] > *thresh) {
		    io___60.ciunit = *nounit;
		    s_wsfe(&io___60);
		    do_fio(&c__1, "Right", (ftnlen)5);
		    do_fio(&c__1, "ZHSEIN", (ftnlen)6);
		    do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(
			    doublereal));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		}
	    }

/*           Call ZHSEIN for Left eigenvectors of H, do test 12 */

	    ntest = 12;
	    result[12] = ulpinv;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = TRUE_;
/* L230: */
	    }

	    zhsein_("Left", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], 
		    lda, &w3[1], &evecty[evecty_offset], ldu, cdumma, ldu, &
		    n1, &in, &work[1], &rwork[1], &iwork[1], &iwork[1], &
		    iinfo);
	    if (iinfo != 0) {
		io___61.ciunit = *nounit;
		s_wsfe(&io___61);
		do_fio(&c__1, "ZHSEIN(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L240;
		}
	    } else {

/*              Test 12:  | YH - WY | / ( |H| |Y| ulp ) */

/*                        (from inverse iteration) */

		zget22_("C", "N", "C", &n, &h__[h_offset], lda, &evecty[
			evecty_offset], ldu, &w3[1], &work[1], &rwork[1], &
			dumma[2]);
		if (dumma[2] < ulpinv) {
		    result[12] = dumma[2] * aninv;
		}
		if (dumma[3] > *thresh) {
		    io___62.ciunit = *nounit;
		    s_wsfe(&io___62);
		    do_fio(&c__1, "Left", (ftnlen)4);
		    do_fio(&c__1, "ZHSEIN", (ftnlen)6);
		    do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(
			    doublereal));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		}
	    }

/*           Call ZUNMHR for Right eigenvectors of A, do test 13 */

	    ntest = 13;
	    result[13] = ulpinv;

	    zunmhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset]
, ldu, &tau[1], &evectx[evectx_offset], ldu, &work[1], 
		    nwork, &iinfo);
	    if (iinfo != 0) {
		io___63.ciunit = *nounit;
		s_wsfe(&io___63);
		do_fio(&c__1, "ZUNMHR(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L240;
		}
	    } else {

/*              Test 13:  | AX - XW | / ( |A| |X| ulp ) */

/*                        (from inverse iteration) */

		zget22_("N", "N", "N", &n, &a[a_offset], lda, &evectx[
			evectx_offset], ldu, &w3[1], &work[1], &rwork[1], 
			dumma);
		if (dumma[0] < ulpinv) {
		    result[13] = dumma[0] * aninv;
		}
	    }

/*           Call ZUNMHR for Left eigenvectors of A, do test 14 */

	    ntest = 14;
	    result[14] = ulpinv;

	    zunmhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset]
, ldu, &tau[1], &evecty[evecty_offset], ldu, &work[1], 
		    nwork, &iinfo);
	    if (iinfo != 0) {
		io___64.ciunit = *nounit;
		s_wsfe(&io___64);
		do_fio(&c__1, "ZUNMHR(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L240;
		}
	    } else {

/*              Test 14:  | YA - WY | / ( |A| |Y| ulp ) */

/*                        (from inverse iteration) */

		zget22_("C", "N", "C", &n, &a[a_offset], lda, &evecty[
			evecty_offset], ldu, &w3[1], &work[1], &rwork[1], &
			dumma[2]);
		if (dumma[2] < ulpinv) {
		    result[14] = dumma[2] * aninv;
		}
	    }

/*           End of Loop -- Check for RESULT(j) > THRESH */

L240:

	    ntestt += ntest;
	    dlafts_("ZHS", &n, &n, &jtype, &ntest, &result[1], ioldsd, thresh, 
		     nounit, &nerrs);

L250:
	    ;
	}
/* L260: */
    }

/*     Summary */

    dlasum_("ZHS", nounit, &nerrs, &ntestt);

    return 0;


/*     End of ZCHKHS */

} /* zchkhs_ */
Exemple #5
0
/* Subroutine */ int zlaqr3_(logical *wantt, logical *wantz, integer *n, 
	integer *ktop, integer *kbot, integer *nw, doublecomplex *h__, 
	integer *ldh, integer *iloz, integer *ihiz, doublecomplex *z__, 
	integer *ldz, integer *ns, integer *nd, doublecomplex *sh, 
	doublecomplex *v, integer *ldv, integer *nh, doublecomplex *t, 
	integer *ldt, integer *nv, doublecomplex *wv, integer *ldwv, 
	doublecomplex *work, integer *lwork)
{
    /* System generated locals */
    integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1, 
	    wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
    doublereal d__1, d__2, d__3, d__4, d__5, d__6;
    doublecomplex z__1, z__2;

    /* Builtin functions */
    double d_imag(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    integer i__, j;
    doublecomplex s;
    integer jw;
    doublereal foo;
    integer kln;
    doublecomplex tau;
    integer knt;
    doublereal ulp;
    integer lwk1, lwk2, lwk3;
    doublecomplex beta;
    integer kcol, info, nmin, ifst, ilst, ltop, krow;
    extern /* Subroutine */ int zlarf_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *);
    integer infqr;
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    integer kwtop;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), dlabad_(doublereal *, doublereal *), 
	    zlaqr4_(logical *, logical *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *, 
	     doublecomplex *, integer *, doublecomplex *, integer *, integer *
);
    extern doublereal dlamch_(char *);
    doublereal safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    doublereal safmax;
    extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *), zlarfg_(integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *), zlahqr_(logical *, 
	    logical *, integer *, integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, integer *, doublecomplex *, 
	     integer *, integer *), zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zlaset_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, integer *);
    doublereal smlnum;
    extern /* Subroutine */ int ztrexc_(char *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, integer *, integer *, 
	    integer *);
    integer lwkopt;
    extern /* Subroutine */ int zunmhr_(char *, char *, integer *, integer *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     doublecomplex *, integer *, doublecomplex *, integer *, integer *
);


/*  -- LAPACK auxiliary routine (version 3.2.1)                        -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. */
/*  -- April 2009                                                      -- */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*     ****************************************************************** */
/*     Aggressive early deflation: */

/*     This subroutine accepts as input an upper Hessenberg matrix */
/*     H and performs an unitary similarity transformation */
/*     designed to detect and deflate fully converged eigenvalues from */
/*     a trailing principal submatrix.  On output H has been over- */
/*     written by a new Hessenberg matrix that is a perturbation of */
/*     an unitary similarity transformation of H.  It is to be */
/*     hoped that the final version of H has many zero subdiagonal */
/*     entries. */

/*     ****************************************************************** */
/*     WANTT   (input) LOGICAL */
/*          If .TRUE., then the Hessenberg matrix H is fully updated */
/*          so that the triangular Schur factor may be */
/*          computed (in cooperation with the calling subroutine). */
/*          If .FALSE., then only enough of H is updated to preserve */
/*          the eigenvalues. */

/*     WANTZ   (input) LOGICAL */
/*          If .TRUE., then the unitary matrix Z is updated so */
/*          so that the unitary Schur factor may be computed */
/*          (in cooperation with the calling subroutine). */
/*          If .FALSE., then Z is not referenced. */

/*     N       (input) INTEGER */
/*          The order of the matrix H and (if WANTZ is .TRUE.) the */
/*          order of the unitary matrix Z. */

/*     KTOP    (input) INTEGER */
/*          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
/*          KBOT and KTOP together determine an isolated block */
/*          along the diagonal of the Hessenberg matrix. */

/*     KBOT    (input) INTEGER */
/*          It is assumed without a check that either */
/*          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together */
/*          determine an isolated block along the diagonal of the */
/*          Hessenberg matrix. */

/*     NW      (input) INTEGER */
/*          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1). */

/*     H       (input/output) COMPLEX*16 array, dimension (LDH,N) */
/*          On input the initial N-by-N section of H stores the */
/*          Hessenberg matrix undergoing aggressive early deflation. */
/*          On output H has been transformed by a unitary */
/*          similarity transformation, perturbed, and the returned */
/*          to Hessenberg form that (it is to be hoped) has some */
/*          zero subdiagonal entries. */

/*     LDH     (input) integer */
/*          Leading dimension of H just as declared in the calling */
/*          subroutine.  N .LE. LDH */

/*     ILOZ    (input) INTEGER */
/*     IHIZ    (input) INTEGER */
/*          Specify the rows of Z to which transformations must be */
/*          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N. */

/*     Z       (input/output) COMPLEX*16 array, dimension (LDZ,N) */
/*          IF WANTZ is .TRUE., then on output, the unitary */
/*          similarity transformation mentioned above has been */
/*          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right. */
/*          If WANTZ is .FALSE., then Z is unreferenced. */

/*     LDZ     (input) integer */
/*          The leading dimension of Z just as declared in the */
/*          calling subroutine.  1 .LE. LDZ. */

/*     NS      (output) integer */
/*          The number of unconverged (ie approximate) eigenvalues */
/*          returned in SR and SI that may be used as shifts by the */
/*          calling subroutine. */

/*     ND      (output) integer */
/*          The number of converged eigenvalues uncovered by this */
/*          subroutine. */

/*     SH      (output) COMPLEX*16 array, dimension KBOT */
/*          On output, approximate eigenvalues that may */
/*          be used for shifts are stored in SH(KBOT-ND-NS+1) */
/*          through SR(KBOT-ND).  Converged eigenvalues are */
/*          stored in SH(KBOT-ND+1) through SH(KBOT). */

/*     V       (workspace) COMPLEX*16 array, dimension (LDV,NW) */
/*          An NW-by-NW work array. */

/*     LDV     (input) integer scalar */
/*          The leading dimension of V just as declared in the */
/*          calling subroutine.  NW .LE. LDV */

/*     NH      (input) integer scalar */
/*          The number of columns of T.  NH.GE.NW. */

/*     T       (workspace) COMPLEX*16 array, dimension (LDT,NW) */

/*     LDT     (input) integer */
/*          The leading dimension of T just as declared in the */
/*          calling subroutine.  NW .LE. LDT */

/*     NV      (input) integer */
/*          The number of rows of work array WV available for */
/*          workspace.  NV.GE.NW. */

/*     WV      (workspace) COMPLEX*16 array, dimension (LDWV,NW) */

/*     LDWV    (input) integer */
/*          The leading dimension of W just as declared in the */
/*          calling subroutine.  NW .LE. LDV */

/*     WORK    (workspace) COMPLEX*16 array, dimension LWORK. */
/*          On exit, WORK(1) is set to an estimate of the optimal value */
/*          of LWORK for the given values of N, NW, KTOP and KBOT. */

/*     LWORK   (input) integer */
/*          The dimension of the work array WORK.  LWORK = 2*NW */
/*          suffices, but greater efficiency may result from larger */
/*          values of LWORK. */

/*          If LWORK = -1, then a workspace query is assumed; ZLAQR3 */
/*          only estimates the optimal workspace size for the given */
/*          values of N, NW, KTOP and KBOT.  The estimate is returned */
/*          in WORK(1).  No error message related to LWORK is issued */
/*          by XERBLA.  Neither H nor Z are accessed. */

/*     ================================================================ */
/*     Based on contributions by */
/*        Karen Braman and Ralph Byers, Department of Mathematics, */
/*        University of Kansas, USA */

/*     ================================================================ */
/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function definitions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     ==== Estimate optimal workspace. ==== */

    /* Parameter adjustments */
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --sh;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    wv_dim1 = *ldwv;
    wv_offset = 1 + wv_dim1;
    wv -= wv_offset;
    --work;

    /* Function Body */
/* Computing MIN */
    i__1 = *nw, i__2 = *kbot - *ktop + 1;
    jw = min(i__1,i__2);
    if (jw <= 2) {
	lwkopt = 1;
    } else {

/*        ==== Workspace query call to ZGEHRD ==== */

	i__1 = jw - 1;
	zgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
		c_n1, &info);
	lwk1 = (integer) work[1].r;

/*        ==== Workspace query call to ZUNMHR ==== */

	i__1 = jw - 1;
	zunmhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], 
		 &v[v_offset], ldv, &work[1], &c_n1, &info);
	lwk2 = (integer) work[1].r;

/*        ==== Workspace query call to ZLAQR4 ==== */

	zlaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[1], 
		&c__1, &jw, &v[v_offset], ldv, &work[1], &c_n1, &infqr);
	lwk3 = (integer) work[1].r;

/*        ==== Optimal workspace ==== */

/* Computing MAX */
	i__1 = jw + max(lwk1,lwk2);
	lwkopt = max(i__1,lwk3);
    }

/*     ==== Quick return in case of workspace query. ==== */

    if (*lwork == -1) {
	d__1 = (doublereal) lwkopt;
	z__1.r = d__1, z__1.i = 0.;
	work[1].r = z__1.r, work[1].i = z__1.i;
	return 0;
    }

/*     ==== Nothing to do ... */
/*     ... for an empty active block ... ==== */
    *ns = 0;
    *nd = 0;
    work[1].r = 1., work[1].i = 0.;
    if (*ktop > *kbot) {
	return 0;
    }
/*     ... nor for an empty deflation window. ==== */
    if (*nw < 1) {
	return 0;
    }

/*     ==== Machine constants ==== */

    safmin = dlamch_("SAFE MINIMUM");
    safmax = 1. / safmin;
    dlabad_(&safmin, &safmax);
    ulp = dlamch_("PRECISION");
    smlnum = safmin * ((doublereal) (*n) / ulp);

/*     ==== Setup deflation window ==== */

/* Computing MIN */
    i__1 = *nw, i__2 = *kbot - *ktop + 1;
    jw = min(i__1,i__2);
    kwtop = *kbot - jw + 1;
    if (kwtop == *ktop) {
	s.r = 0., s.i = 0.;
    } else {
	i__1 = kwtop + (kwtop - 1) * h_dim1;
	s.r = h__[i__1].r, s.i = h__[i__1].i;
    }

    if (*kbot == kwtop) {

/*        ==== 1-by-1 deflation window: not much to do ==== */

	i__1 = kwtop;
	i__2 = kwtop + kwtop * h_dim1;
	sh[i__1].r = h__[i__2].r, sh[i__1].i = h__[i__2].i;
	*ns = 1;
	*nd = 0;
/* Computing MAX */
	i__1 = kwtop + kwtop * h_dim1;
	d__5 = smlnum, d__6 = ulp * ((d__1 = h__[i__1].r, abs(d__1)) + (d__2 =
		 d_imag(&h__[kwtop + kwtop * h_dim1]), abs(d__2)));
	if ((d__3 = s.r, abs(d__3)) + (d__4 = d_imag(&s), abs(d__4)) <= max(
		d__5,d__6)) {
	    *ns = 0;
	    *nd = 1;
	    if (kwtop > *ktop) {
		i__1 = kwtop + (kwtop - 1) * h_dim1;
		h__[i__1].r = 0., h__[i__1].i = 0.;
	    }
	}
	work[1].r = 1., work[1].i = 0.;
	return 0;
    }

/*     ==== Convert to spike-triangular form.  (In case of a */
/*     .    rare QR failure, this routine continues to do */
/*     .    aggressive early deflation using that part of */
/*     .    the deflation window that converged using INFQR */
/*     .    here and there to keep track.) ==== */

    zlacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset], 
	    ldt);
    i__1 = jw - 1;
    i__2 = *ldh + 1;
    i__3 = *ldt + 1;
    zcopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
	    i__3);

    zlaset_("A", &jw, &jw, &c_b1, &c_b2, &v[v_offset], ldv);
    nmin = ilaenv_(&c__12, "ZLAQR3", "SV", &jw, &c__1, &jw, lwork);
    if (jw > nmin) {
	zlaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[
		kwtop], &c__1, &jw, &v[v_offset], ldv, &work[1], lwork, &
		infqr);
    } else {
	zlahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[
		kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
    }

/*     ==== Deflation detection loop ==== */

    *ns = jw;
    ilst = infqr + 1;
    i__1 = jw;
    for (knt = infqr + 1; knt <= i__1; ++knt) {

/*        ==== Small spike tip deflation test ==== */

	i__2 = *ns + *ns * t_dim1;
	foo = (d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[*ns + *ns * 
		t_dim1]), abs(d__2));
	if (foo == 0.) {
	    foo = (d__1 = s.r, abs(d__1)) + (d__2 = d_imag(&s), abs(d__2));
	}
	i__2 = *ns * v_dim1 + 1;
/* Computing MAX */
	d__5 = smlnum, d__6 = ulp * foo;
	if (((d__1 = s.r, abs(d__1)) + (d__2 = d_imag(&s), abs(d__2))) * ((
		d__3 = v[i__2].r, abs(d__3)) + (d__4 = d_imag(&v[*ns * v_dim1 
		+ 1]), abs(d__4))) <= max(d__5,d__6)) {

/*           ==== One more converged eigenvalue ==== */

	    --(*ns);
	} else {

/*           ==== One undeflatable eigenvalue.  Move it up out of the */
/*           .    way.   (ZTREXC can not fail in this case.) ==== */

	    ifst = *ns;
	    ztrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &
		    ilst, &info);
	    ++ilst;
	}
/* L10: */
    }

/*        ==== Return to Hessenberg form ==== */

    if (*ns == 0) {
	s.r = 0., s.i = 0.;
    }

    if (*ns < jw) {

/*        ==== sorting the diagonal of T improves accuracy for */
/*        .    graded matrices.  ==== */

	i__1 = *ns;
	for (i__ = infqr + 1; i__ <= i__1; ++i__) {
	    ifst = i__;
	    i__2 = *ns;
	    for (j = i__ + 1; j <= i__2; ++j) {
		i__3 = j + j * t_dim1;
		i__4 = ifst + ifst * t_dim1;
		if ((d__1 = t[i__3].r, abs(d__1)) + (d__2 = d_imag(&t[j + j * 
			t_dim1]), abs(d__2)) > (d__3 = t[i__4].r, abs(d__3)) 
			+ (d__4 = d_imag(&t[ifst + ifst * t_dim1]), abs(d__4))
			) {
		    ifst = j;
		}
/* L20: */
	    }
	    ilst = i__;
	    if (ifst != ilst) {
		ztrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, 
			 &ilst, &info);
	    }
/* L30: */
	}
    }

/*     ==== Restore shift/eigenvalue array from T ==== */

    i__1 = jw;
    for (i__ = infqr + 1; i__ <= i__1; ++i__) {
	i__2 = kwtop + i__ - 1;
	i__3 = i__ + i__ * t_dim1;
	sh[i__2].r = t[i__3].r, sh[i__2].i = t[i__3].i;
/* L40: */
    }


    if (*ns < jw || s.r == 0. && s.i == 0.) {
	if (*ns > 1 && (s.r != 0. || s.i != 0.)) {

/*           ==== Reflect spike back into lower triangle ==== */

	    zcopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
	    i__1 = *ns;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		i__2 = i__;
		d_cnjg(&z__1, &work[i__]);
		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
/* L50: */
	    }
	    beta.r = work[1].r, beta.i = work[1].i;
	    zlarfg_(ns, &beta, &work[2], &c__1, &tau);
	    work[1].r = 1., work[1].i = 0.;

	    i__1 = jw - 2;
	    i__2 = jw - 2;
	    zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &t[t_dim1 + 3], ldt);

	    d_cnjg(&z__1, &tau);
	    zlarf_("L", ns, &jw, &work[1], &c__1, &z__1, &t[t_offset], ldt, &
		    work[jw + 1]);
	    zlarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
		    work[jw + 1]);
	    zlarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
		    work[jw + 1]);

	    i__1 = *lwork - jw;
	    zgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
, &i__1, &info);
	}

/*        ==== Copy updated reduced window into place ==== */

	if (kwtop > 1) {
	    i__1 = kwtop + (kwtop - 1) * h_dim1;
	    d_cnjg(&z__2, &v[v_dim1 + 1]);
	    z__1.r = s.r * z__2.r - s.i * z__2.i, z__1.i = s.r * z__2.i + s.i 
		    * z__2.r;
	    h__[i__1].r = z__1.r, h__[i__1].i = z__1.i;
	}
	zlacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
, ldh);
	i__1 = jw - 1;
	i__2 = *ldt + 1;
	i__3 = *ldh + 1;
	zcopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1], 
		 &i__3);

/*        ==== Accumulate orthogonal matrix in order update */
/*        .    H and Z, if requested.  ==== */

	if (*ns > 1 && (s.r != 0. || s.i != 0.)) {
	    i__1 = *lwork - jw;
	    zunmhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1], 
		     &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
	}

/*        ==== Update vertical slab in H ==== */

	if (*wantt) {
	    ltop = 1;
	} else {
	    ltop = *ktop;
	}
	i__1 = kwtop - 1;
	i__2 = *nv;
	for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow += 
		i__2) {
/* Computing MIN */
	    i__3 = *nv, i__4 = kwtop - krow;
	    kln = min(i__3,i__4);
	    zgemm_("N", "N", &kln, &jw, &jw, &c_b2, &h__[krow + kwtop * 
		    h_dim1], ldh, &v[v_offset], ldv, &c_b1, &wv[wv_offset], 
		    ldwv);
	    zlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop * 
		    h_dim1], ldh);
/* L60: */
	}

/*        ==== Update horizontal slab in H ==== */

	if (*wantt) {
	    i__2 = *n;
	    i__1 = *nh;
	    for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2; 
		    kcol += i__1) {
/* Computing MIN */
		i__3 = *nh, i__4 = *n - kcol + 1;
		kln = min(i__3,i__4);
		zgemm_("C", "N", &jw, &kln, &jw, &c_b2, &v[v_offset], ldv, &
			h__[kwtop + kcol * h_dim1], ldh, &c_b1, &t[t_offset], 
			ldt);
		zlacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
			 h_dim1], ldh);
/* L70: */
	    }
	}

/*        ==== Update vertical slab in Z ==== */

	if (*wantz) {
	    i__1 = *ihiz;
	    i__2 = *nv;
	    for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
		     i__2) {
/* Computing MIN */
		i__3 = *nv, i__4 = *ihiz - krow + 1;
		kln = min(i__3,i__4);
		zgemm_("N", "N", &kln, &jw, &jw, &c_b2, &z__[krow + kwtop * 
			z_dim1], ldz, &v[v_offset], ldv, &c_b1, &wv[wv_offset]
, ldwv);
		zlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow + 
			kwtop * z_dim1], ldz);
/* L80: */
	    }
	}
    }

/*     ==== Return the number of deflations ... ==== */

    *nd = jw - *ns;

/*     ==== ... and the number of shifts. (Subtracting */
/*     .    INFQR from the spike length takes care */
/*     .    of the case of a rare QR failure while */
/*     .    calculating eigenvalues of the deflation */
/*     .    window.)  ==== */

    *ns -= infqr;

/*      ==== Return optimal workspace. ==== */

    d__1 = (doublereal) lwkopt;
    z__1.r = d__1, z__1.i = 0.;
    work[1].r = z__1.r, work[1].i = z__1.i;

/*     ==== End of ZLAQR3 ==== */

    return 0;
} /* zlaqr3_ */