Exemple #1
0
void Learner::act(ALEInterface& ale, int action, vector<float> &reward, vector<vector<vector<float> > > &learnedOptions){

	float r_alg = 0.0, r_real = 0.0;

	FRam.clear();
	ramFeatures.getCompleteFeatureVector(ale.getRAM(), FRam);

	if(action < numBasicActions){
		r_real = ale.act(actions[action]);
	} 
	else{
		int option_idx = action - numBasicActions;
		r_real = playOption(ale, option_idx, learnedOptions);
	}

	FnextRam.clear();
	ramFeatures.getCompleteFeatureVector(ale.getRAM(), FnextRam);
	updateTransitionVector(FRam, FnextRam);

	for(int i = 0; i < transitions.size(); i++){
		transitions[i] = (transitions[i] - mean[i])/std[i];
		r_alg += eigVector[i] * transitions[i];
	}

	reward[0] = r_alg;
	reward[1] = r_real;
}
void TrueOnlineSarsaLearner::evaluatePolicy(ALEInterface& ale, Features *features){
	double reward = 0;
	double cumReward = 0; 
	double prevCumReward = 0;

	//Repeat (for each episode):
	for(int episode = 0; episode < numEpisodesEval; episode++){
		//Repeat(for each step of episode) until game is over:
		for(int step = 0; !ale.game_over() && step < episodeLength; step++){
			//Get state and features active on that state:		
			F.clear();
			features->getActiveFeaturesIndices(ale.getScreen(), ale.getRAM(), F);
			updateQValues(F, Q);       //Update Q-values for each possible action
			currentAction = epsilonGreedy(Q);
			//Take action, observe reward and next state:
			reward = 0;
			for(int i = 0; i < numStepsPerAction && !ale.game_over() ; i++){
				reward += ale.act(actions[currentAction]);
			}
			cumReward  += reward;
		}
		ale.reset_game();
		sanityCheck();
		
		printf("%d, %f, %f \n", episode + 1, (double)cumReward/(episode + 1.0), cumReward-prevCumReward);
		
		prevCumReward = cumReward;
	}
}
Exemple #3
0
int actUpdatingAvg(ALEInterface& ale, RAMFeatures *ram, BPROFeatures *features, int nextAction, 
	vector<vector<vector<float> > > &w, Parameters param, int totalNumFrames, int gameId,
	vector<bool> &F, vector<bool> &Fprev){

	int reward = 0;

	//If the selected action was one of the primitive actions
	if(nextAction < NUM_ACTIONS){ 
		for(int i = 0; i < FRAME_SKIP && totalNumFrames + ale.getEpisodeFrameNumber() < MAX_NUM_FRAMES; i++){
			reward += ale.act((Action) nextAction);
			Fprev.swap(F);
			F.clear();
			ram->getCompleteFeatureVector(ale.getRAM(), F);
			F.pop_back();
			updateAverage(Fprev, F, ale.getEpisodeFrameNumber(), param, gameId);
		}
	}
	//If the selected action was one of the options
	else{
		int currentAction;
		vector<int> Fbpro;	                  //Set of features active
		vector<float> Q(NUM_ACTIONS, 0.0);    //Q(a) entries

		int option = nextAction - NUM_ACTIONS;
		while(rand()%1000 > 1000 * PROB_TERMINATION && !ale.game_over() && totalNumFrames + ale.getEpisodeFrameNumber() < MAX_NUM_FRAMES){
			//Get state and features active on that state:		
			Fbpro.clear();
			features->getActiveFeaturesIndices(ale.getScreen(), Fbpro);
			updateQValues(Fbpro, Q, w, option);       //Update Q-values for each possible action
			currentAction = epsilonGreedy(Q);
			//Take action, observe reward and next state:
			reward += ale.act((Action) currentAction);
			Fprev.swap(F);
			F.clear();
			ram->getCompleteFeatureVector(ale.getRAM(), F);
			F.pop_back();
			updateAverage(Fprev, F, ale.getEpisodeFrameNumber(), param, gameId);
		}
	}
	return reward;
}
bool does_value_change(ALEInterface &ale,
					   const vector<Action> &possible_actions,
					   unsigned int addr) {
	ALEState s0 = ale.cloneSystemState();
	ale.environment->oneStepAct(possible_actions.at(0), PLAYER_B_NOOP);
//	printf("initial X: %d\n", ale.getRAM().get(addr));
	const byte_t x0 = ale.getRAM().get(addr);
	bool controllable = false;
	for(size_t i=1; !controllable && i<possible_actions.size(); i++) {
		ale.restoreSystemState(s0);
		ale.environment->oneStepAct(possible_actions.at(i), PLAYER_B_NOOP);
//		printf("X: %zu %d\n", i, ale.getRAM().get(addr));
		const byte_t xi = ale.getRAM().get(addr);
		if(x0 != xi) {
			controllable = true;
		}
	}
	ale.restoreSystemState(s0);
	ale.environment->processRAM();
	ale.environment->processScreen();
	return controllable;
}
void TrueOnlineSarsaLearner::learnPolicy(ALEInterface& ale, Features *features){
	
	struct timeval tvBegin, tvEnd, tvDiff;
	vector<double> reward;
	double elapsedTime;
	double norm_a;
	double q_old, delta_q;
	double cumReward = 0, prevCumReward = 0;
	unsigned int maxFeatVectorNorm = 1;
	sawFirstReward = 0; firstReward = 1.0;

	//Repeat (for each episode):
	for(int episode = 0; episode < numEpisodesLearn; episode++){
		for(unsigned int a = 0; a < nonZeroElig.size(); a++){
			for(unsigned int i = 0; i < nonZeroElig[a].size(); i++){
				int idx = nonZeroElig[a][i];
				e[a][idx] = 0.0;
			}
			nonZeroElig[a].clear();
		}
		//We have to clean the traces every episode:
		for(unsigned int i = 0; i < e.size(); i++){
			for(unsigned int j = 0; j < e[i].size(); j++){
				e[i][j] = 0.0;
			}
		}
		F.clear();
		features->getActiveFeaturesIndices(ale.getScreen(), ale.getRAM(), F);
		updateQValues(F, Q);
		currentAction = epsilonGreedy(Q);
		
		q_old = Q[currentAction];

		//Repeat(for each step of episode) until game is over:
		gettimeofday(&tvBegin, NULL);
		frame = 0;
		while(frame < episodeLength && !ale.game_over()){
			reward.clear();
			reward.push_back(0.0);
			reward.push_back(0.0);
			updateQValues(F, Q);
			sanityCheck();

			//Take action, observe reward and next state:
			act(ale, currentAction, reward);
			cumReward  += reward[1];
			if(!ale.game_over()){
				//Obtain active features in the new state:
				Fnext.clear();
				features->getActiveFeaturesIndices(ale.getScreen(), ale.getRAM(), Fnext);
				updateQValues(Fnext, Qnext);     //Update Q-values for the new active features
				nextAction = epsilonGreedy(Qnext);
			}
			else{
				nextAction = 0;
				for(unsigned int i = 0; i < Qnext.size(); i++){
					Qnext[i] = 0;
				}
			}
			//To ensure the learning rate will never increase along
			//the time, Marc used such approach in his JAIR paper		
			if (F.size() > maxFeatVectorNorm){
				maxFeatVectorNorm = F.size();
			}

			norm_a = alpha/maxFeatVectorNorm;
			delta_q =  Q[currentAction] - q_old;
			q_old   = Qnext[nextAction];
			delta   = reward[0] + gamma * Qnext[nextAction] - Q[currentAction];
			//e <- e + [1 - alpha * e^T phi(S,A)] phi(S,A)
			updateTrace(currentAction, norm_a);
			//theta <- theta + alpha * delta * e + alpha * delta_q (e - phi(S,A))
			updateWeights(currentAction, norm_a, delta_q);
			//e <- gamma * lambda * e
			decayTrace();

			F = Fnext;
			currentAction = nextAction;
		}
		ale.reset_game();
		gettimeofday(&tvEnd, NULL);
		timeval_subtract(&tvDiff, &tvEnd, &tvBegin);
		elapsedTime = double(tvDiff.tv_sec) + double(tvDiff.tv_usec)/1000000.0;
		
		double fps = double(frame)/elapsedTime;
		printf("episode: %d,\t%.0f points,\tavg. return: %.1f,\t%d frames,\t%.0f fps\n", 
			episode + 1, (cumReward-prevCumReward), (double)cumReward/(episode + 1.0), frame, fps);
		prevCumReward = cumReward;
	}
}
static hexq::Reward
move_to_the(ALEInterface &ale, DisplayScreen *display, const Action action, const hexq::Reward discount_rate, hexq::MontezumaOptionsMdp &mdp, size_t &elapsed_time, hexq::Reward &nophi_reward, hexq::Reward &phi_reward, vector<pair<hexq::Reward,hexq::State> > &all_steps) {
	const vector<Action> *axis_actions;
	unsigned int unchanging_addr, changing_addr;
	if(action == PLAYER_A_LEFT || action == PLAYER_A_RIGHT) {
		axis_actions = &vertical_actions;
		unchanging_addr = ADDR_Y;
		changing_addr = ADDR_X;
	} else {
		axis_actions = &horizontal_actions;
		unchanging_addr = ADDR_X;
		changing_addr = ADDR_Y;
	}

	const bool initial_cannot_change_axis =
		!does_value_change(ale, *axis_actions, unchanging_addr);
	hexq::State prev_s = mdp.StateUniqueID();
	phi_reward = mdp.ComputeState(ale.act(action), nophi_reward);

	vector<pair<pair<hexq::Reward, hexq::Reward>, ALEState> > frames;
	frames.push_back(make_pair(make_pair(phi_reward, nophi_reward), ale.cloneSystemState()));
	all_steps.push_back(make_pair(phi_reward, prev_s));
	byte_t prev_changing = ale.getRAM().get(changing_addr);
	const int initial_lives = ale.lives();
	int n_frames_unchanged;
	bool controllable = true;
	bool lost_life =  false;
	for(size_t max_n_iterations=0; !lost_life && max_n_iterations<MAX_FRAMES; max_n_iterations++) {
		hexq::Reward nophi_r;
		prev_s = mdp.StateUniqueID();
		hexq::Reward reward = mdp.ComputeState(ale.act(action), nophi_r);

		frames.push_back(make_pair(make_pair(reward, nophi_r), ale.cloneSystemState()));
		all_steps.push_back(make_pair(reward, prev_s));
		DISPLAY(display);
		controllable = !(ale.getRAM().get(0xd8) != 0x00 || ale.getRAM().get(0xd6) != 0xff);
		if(!controllable)break;
		bool stop_for_axis_change = initial_cannot_change_axis &&
			does_value_change(ale, *axis_actions, unchanging_addr);
		if(stop_for_axis_change) {
//			printf("Break because axis change possibility %d\n", ABHG++);
			break;
		}
//		printf("X: %d Y: %d\n", ale.getRAM().get(ADDR_X), ale.getRAM().get(ADDR_Y));
		byte_t new_changing = ale.getRAM().get(changing_addr);
		if(new_changing == prev_changing && controllable) {
			n_frames_unchanged++;
			if(n_frames_unchanged >= NOT_MOVING_FRAMES) {
//				printf("Break because not moving %d\n", ABHG++);
				break;
			}
		} else {
			n_frames_unchanged = 0;
			prev_changing = new_changing;
		}
		lost_life = ale.lives() < initial_lives;
	}
	if((lost_life || !controllable) && frames.size() > N_BACK_FRAMES) {
		size_t new_size = frames.size() - N_BACK_FRAMES;
		frames.resize(new_size);
		all_steps.resize(new_size);
		printf("went back\n");
		ale.restoreSystemState(frames.rbegin()->second);
		ale.environment->processRAM();
		ale.environment->processScreen();
		DISPLAY(display);
		hexq::Reward r;
		(void)mdp.ComputeState(0, r);
	}
	hexq::Reward discount = 1.;
	hexq::Reward total_reward = 0;
	phi_reward = nophi_reward = 0;
	for(size_t i=0; i<frames.size(); i++) {
		total_reward += discount*frames.at(i).first.first;
		discount *= discount_rate;
		nophi_reward += frames.at(i).first.second;
		phi_reward += frames.at(i).first.first;
	}
	elapsed_time += frames.size();
	return total_reward;
}